freebsd-skq/sys/dev/sge/if_sge.c
mmacy 7aeac9ef18 ifnet: Replace if_addr_lock rwlock with epoch + mutex
Run on LLNW canaries and tested by pho@

gallatin:
Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5
based ConnectX 4-LX NIC, I see an almost 12% improvement in received
packet rate, and a larger improvement in bytes delivered all the way
to userspace.

When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1,
I see, using nstat -I mce0 1 before the patch:

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
4.98   0.00   4.42   0.00 4235592     33   83.80 4720653 2149771   1235 247.32
4.73   0.00   4.20   0.00 4025260     33   82.99 4724900 2139833   1204 247.32
4.72   0.00   4.20   0.00 4035252     33   82.14 4719162 2132023   1264 247.32
4.71   0.00   4.21   0.00 4073206     33   83.68 4744973 2123317   1347 247.32
4.72   0.00   4.21   0.00 4061118     33   80.82 4713615 2188091   1490 247.32
4.72   0.00   4.21   0.00 4051675     33   85.29 4727399 2109011   1205 247.32
4.73   0.00   4.21   0.00 4039056     33   84.65 4724735 2102603   1053 247.32

After the patch

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
5.43   0.00   4.20   0.00 3313143     33   84.96 5434214 1900162   2656 245.51
5.43   0.00   4.20   0.00 3308527     33   85.24 5439695 1809382   2521 245.51
5.42   0.00   4.19   0.00 3316778     33   87.54 5416028 1805835   2256 245.51
5.42   0.00   4.19   0.00 3317673     33   90.44 5426044 1763056   2332 245.51
5.42   0.00   4.19   0.00 3314839     33   88.11 5435732 1792218   2499 245.52
5.44   0.00   4.19   0.00 3293228     33   91.84 5426301 1668597   2121 245.52

Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch

Reviewed by:	gallatin
Sponsored by:	Limelight Networks
Differential Revision:	https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00

1906 lines
49 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
* Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR
* THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SiS 190/191 PCI Ethernet NIC driver.
*
* Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
* SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
* Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
* <kmliu@sis.com>. Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
* review and very useful comments.
*
* Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
* Linux and Solaris drivers.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/sge/if_sgereg.h>
MODULE_DEPEND(sge, pci, 1, 1, 1);
MODULE_DEPEND(sge, ether, 1, 1, 1);
MODULE_DEPEND(sge, miibus, 1, 1, 1);
/* "device miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types and their names.
*/
static struct sge_type sge_devs[] = {
{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int sge_probe(device_t);
static int sge_attach(device_t);
static int sge_detach(device_t);
static int sge_shutdown(device_t);
static int sge_suspend(device_t);
static int sge_resume(device_t);
static int sge_miibus_readreg(device_t, int, int);
static int sge_miibus_writereg(device_t, int, int, int);
static void sge_miibus_statchg(device_t);
static int sge_newbuf(struct sge_softc *, int);
static int sge_encap(struct sge_softc *, struct mbuf **);
static __inline void
sge_discard_rxbuf(struct sge_softc *, int);
static void sge_rxeof(struct sge_softc *);
static void sge_txeof(struct sge_softc *);
static void sge_intr(void *);
static void sge_tick(void *);
static void sge_start(struct ifnet *);
static void sge_start_locked(struct ifnet *);
static int sge_ioctl(struct ifnet *, u_long, caddr_t);
static void sge_init(void *);
static void sge_init_locked(struct sge_softc *);
static void sge_stop(struct sge_softc *);
static void sge_watchdog(struct sge_softc *);
static int sge_ifmedia_upd(struct ifnet *);
static void sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
static int sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
static uint16_t sge_read_eeprom(struct sge_softc *, int);
static void sge_rxfilter(struct sge_softc *);
static void sge_setvlan(struct sge_softc *);
static void sge_reset(struct sge_softc *);
static int sge_list_rx_init(struct sge_softc *);
static int sge_list_rx_free(struct sge_softc *);
static int sge_list_tx_init(struct sge_softc *);
static int sge_list_tx_free(struct sge_softc *);
static int sge_dma_alloc(struct sge_softc *);
static void sge_dma_free(struct sge_softc *);
static void sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static device_method_t sge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sge_probe),
DEVMETHOD(device_attach, sge_attach),
DEVMETHOD(device_detach, sge_detach),
DEVMETHOD(device_suspend, sge_suspend),
DEVMETHOD(device_resume, sge_resume),
DEVMETHOD(device_shutdown, sge_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, sge_miibus_readreg),
DEVMETHOD(miibus_writereg, sge_miibus_writereg),
DEVMETHOD(miibus_statchg, sge_miibus_statchg),
DEVMETHOD_END
};
static driver_t sge_driver = {
"sge", sge_methods, sizeof(struct sge_softc)
};
static devclass_t sge_devclass;
DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
/*
* Register space access macros.
*/
#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sge_res, reg, val)
#define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->sge_res, reg, val)
#define CSR_WRITE_1(cs, reg, val) bus_write_1(sc->sge_res, reg, val)
#define CSR_READ_4(sc, reg) bus_read_4(sc->sge_res, reg)
#define CSR_READ_2(sc, reg) bus_read_2(sc->sge_res, reg)
#define CSR_READ_1(sc, reg) bus_read_1(sc->sge_res, reg)
/* Define to show Tx/Rx error status. */
#undef SGE_SHOW_ERRORS
#define SGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
static void
sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *p;
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
p = arg;
*p = segs->ds_addr;
}
/*
* Read a sequence of words from the EEPROM.
*/
static uint16_t
sge_read_eeprom(struct sge_softc *sc, int offset)
{
uint32_t val;
int i;
KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
CSR_WRITE_4(sc, ROMInterface,
EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
DELAY(500);
for (i = 0; i < SGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, ROMInterface);
if ((val & EI_REQ) == 0)
break;
DELAY(100);
}
if (i == SGE_TIMEOUT) {
device_printf(sc->sge_dev,
"EEPROM read timeout : 0x%08x\n", val);
return (0xffff);
}
return ((val & EI_DATA) >> EI_DATA_SHIFT);
}
static int
sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
{
uint16_t val;
int i;
val = sge_read_eeprom(sc, EEPROMSignature);
if (val == 0xffff || val == 0) {
device_printf(sc->sge_dev,
"invalid EEPROM signature : 0x%04x\n", val);
return (EINVAL);
}
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
dest[i + 0] = (uint8_t)val;
dest[i + 1] = (uint8_t)(val >> 8);
}
if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
sc->sge_flags |= SGE_FLAG_RGMII;
return (0);
}
/*
* For SiS96x, APC CMOS RAM is used to store ethernet address.
* APC CMOS RAM is accessed through ISA bridge.
*/
static int
sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
{
#if defined(__amd64__) || defined(__i386__)
devclass_t pci;
device_t bus, dev = NULL;
device_t *kids;
struct apc_tbl {
uint16_t vid;
uint16_t did;
} *tp, apc_tbls[] = {
{ SIS_VENDORID, 0x0965 },
{ SIS_VENDORID, 0x0966 },
{ SIS_VENDORID, 0x0968 }
};
uint8_t reg;
int busnum, i, j, numkids;
pci = devclass_find("pci");
for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
bus = devclass_get_device(pci, busnum);
if (!bus)
continue;
if (device_get_children(bus, &kids, &numkids) != 0)
continue;
for (i = 0; i < numkids; i++) {
dev = kids[i];
if (pci_get_class(dev) == PCIC_BRIDGE &&
pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
tp = apc_tbls;
for (j = 0; j < nitems(apc_tbls); j++) {
if (pci_get_vendor(dev) == tp->vid &&
pci_get_device(dev) == tp->did) {
free(kids, M_TEMP);
goto apc_found;
}
tp++;
}
}
}
free(kids, M_TEMP);
}
device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
return (EINVAL);
apc_found:
/* Enable port 0x78 and 0x79 to access APC registers. */
reg = pci_read_config(dev, 0x48, 1);
pci_write_config(dev, 0x48, reg & ~0x02, 1);
DELAY(50);
pci_read_config(dev, 0x48, 1);
/* Read stored ethernet address. */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
outb(0x78, 0x09 + i);
dest[i] = inb(0x79);
}
outb(0x78, 0x12);
if ((inb(0x79) & 0x80) != 0)
sc->sge_flags |= SGE_FLAG_RGMII;
/* Restore access to APC registers. */
pci_write_config(dev, 0x48, reg, 1);
return (0);
#else
return (EINVAL);
#endif
}
static int
sge_miibus_readreg(device_t dev, int phy, int reg)
{
struct sge_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
(reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
DELAY(10);
for (i = 0; i < SGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, GMIIControl);
if ((val & GMI_REQ) == 0)
break;
DELAY(10);
}
if (i == SGE_TIMEOUT) {
device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
return (0);
}
return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
}
static int
sge_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct sge_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
(reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
GMI_OP_WR | GMI_REQ);
DELAY(10);
for (i = 0; i < SGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, GMIIControl);
if ((val & GMI_REQ) == 0)
break;
DELAY(10);
}
if (i == SGE_TIMEOUT)
device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
return (0);
}
static void
sge_miibus_statchg(device_t dev)
{
struct sge_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t ctl, speed;
sc = device_get_softc(dev);
mii = device_get_softc(sc->sge_miibus);
ifp = sc->sge_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
speed = 0;
sc->sge_flags &= ~SGE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
sc->sge_flags |= SGE_FLAG_LINK;
speed = SC_SPEED_10;
break;
case IFM_100_TX:
sc->sge_flags |= SGE_FLAG_LINK;
speed = SC_SPEED_100;
break;
case IFM_1000_T:
if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
sc->sge_flags |= SGE_FLAG_LINK;
speed = SC_SPEED_1000;
}
break;
default:
break;
}
}
if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
return;
/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
ctl = CSR_READ_4(sc, StationControl);
ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
if (speed == SC_SPEED_1000) {
ctl |= 0x07000000;
sc->sge_flags |= SGE_FLAG_SPEED_1000;
} else {
ctl |= 0x04000000;
sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
}
#ifdef notyet
if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
ctl |= 0x03000000;
#endif
ctl |= speed;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
ctl |= SC_FDX;
sc->sge_flags |= SGE_FLAG_FDX;
} else
sc->sge_flags &= ~SGE_FLAG_FDX;
CSR_WRITE_4(sc, StationControl, ctl);
if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
}
}
static void
sge_rxfilter(struct sge_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc, hashes[2];
uint16_t rxfilt;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
rxfilt = CSR_READ_2(sc, RxMacControl);
rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
rxfilt |= AcceptMyPhys;
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxfilt |= AcceptBroadcast;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxfilt |= AcceptAllPhys;
rxfilt |= AcceptMulticast;
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
rxfilt |= AcceptMulticast;
hashes[0] = hashes[1] = 0;
/* Now program new ones. */
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
}
CSR_WRITE_2(sc, RxMacControl, rxfilt);
CSR_WRITE_4(sc, RxHashTable, hashes[0]);
CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
}
static void
sge_setvlan(struct sge_softc *sc)
{
struct ifnet *ifp;
uint16_t rxfilt;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
return;
rxfilt = CSR_READ_2(sc, RxMacControl);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
rxfilt |= RXMAC_STRIP_VLAN;
else
rxfilt &= ~RXMAC_STRIP_VLAN;
CSR_WRITE_2(sc, RxMacControl, rxfilt);
}
static void
sge_reset(struct sge_softc *sc)
{
CSR_WRITE_4(sc, IntrMask, 0);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
/* Soft reset. */
CSR_WRITE_4(sc, IntrControl, 0x8000);
CSR_READ_4(sc, IntrControl);
DELAY(100);
CSR_WRITE_4(sc, IntrControl, 0);
/* Stop MAC. */
CSR_WRITE_4(sc, TX_CTL, 0x1a00);
CSR_WRITE_4(sc, RX_CTL, 0x1a00);
CSR_WRITE_4(sc, IntrMask, 0);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
CSR_WRITE_4(sc, GMIIControl, 0);
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
sge_probe(device_t dev)
{
struct sge_type *t;
t = sge_devs;
while (t->sge_name != NULL) {
if ((pci_get_vendor(dev) == t->sge_vid) &&
(pci_get_device(dev) == t->sge_did)) {
device_set_desc(dev, t->sge_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sge_attach(device_t dev)
{
struct sge_softc *sc;
struct ifnet *ifp;
uint8_t eaddr[ETHER_ADDR_LEN];
int error = 0, rid;
sc = device_get_softc(dev);
sc->sge_dev = dev;
mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/* Allocate resources. */
sc->sge_res_id = PCIR_BAR(0);
sc->sge_res_type = SYS_RES_MEMORY;
sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
&sc->sge_res_id, RF_ACTIVE);
if (sc->sge_res == NULL) {
device_printf(dev, "couldn't allocate resource\n");
error = ENXIO;
goto fail;
}
rid = 0;
sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sge_irq == NULL) {
device_printf(dev, "couldn't allocate IRQ resources\n");
error = ENXIO;
goto fail;
}
sc->sge_rev = pci_get_revid(dev);
if (pci_get_device(dev) == SIS_DEVICEID_190)
sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
/* Reset the adapter. */
sge_reset(sc);
/* Get MAC address from the EEPROM. */
if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
sge_get_mac_addr_apc(sc, eaddr);
else
sge_get_mac_addr_eeprom(sc, eaddr);
if ((error = sge_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sge_ioctl;
ifp->if_start = sge_start;
ifp->if_init = sge_init;
ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
ifp->if_capenable = ifp->if_capabilities;
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* VLAN setup. */
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer(s) we support long frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, sge_intr, sc, &sc->sge_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
sge_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sge_detach(device_t dev)
{
struct sge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->sge_ifp;
/* These should only be active if attach succeeded. */
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
SGE_LOCK(sc);
sge_stop(sc);
SGE_UNLOCK(sc);
callout_drain(&sc->sge_stat_ch);
}
if (sc->sge_miibus)
device_delete_child(dev, sc->sge_miibus);
bus_generic_detach(dev);
if (sc->sge_intrhand)
bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
if (sc->sge_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
if (sc->sge_res)
bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
sc->sge_res);
if (ifp)
if_free(ifp);
sge_dma_free(sc);
mtx_destroy(&sc->sge_mtx);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
sge_shutdown(device_t dev)
{
struct sge_softc *sc;
sc = device_get_softc(dev);
SGE_LOCK(sc);
sge_stop(sc);
SGE_UNLOCK(sc);
return (0);
}
static int
sge_suspend(device_t dev)
{
struct sge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SGE_LOCK(sc);
ifp = sc->sge_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
sge_stop(sc);
SGE_UNLOCK(sc);
return (0);
}
static int
sge_resume(device_t dev)
{
struct sge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SGE_LOCK(sc);
ifp = sc->sge_ifp;
if ((ifp->if_flags & IFF_UP) != 0)
sge_init_locked(sc);
SGE_UNLOCK(sc);
return (0);
}
static int
sge_dma_alloc(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_list_data *ld;
struct sge_rxdesc *rxd;
struct sge_txdesc *txd;
int error, i;
cd = &sc->sge_cdata;
ld = &sc->sge_ldata;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&cd->sge_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* RX descriptor ring */
error = bus_dma_tag_create(cd->sge_tag,
SGE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SGE_RX_RING_SZ, 1, /* maxsize,nsegments */
SGE_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&cd->sge_rx_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load DMA map for RX ring. */
error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&cd->sge_rx_dmamap);
if (error != 0) {
device_printf(sc->sge_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
&ld->sge_rx_paddr, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sge_dev,
"could not load DMA'able memory for Rx ring.\n");
}
/* TX descriptor ring */
error = bus_dma_tag_create(cd->sge_tag,
SGE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SGE_TX_RING_SZ, 1, /* maxsize,nsegments */
SGE_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&cd->sge_tx_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load DMA map for TX ring. */
error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&cd->sge_tx_dmamap);
if (error != 0) {
device_printf(sc->sge_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
&ld->sge_tx_paddr, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sge_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Tx mbuf DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx buffers. */
error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Rx mbuf DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < SGE_TX_RING_CNT; i++) {
txd = &cd->sge_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
txd->tx_ndesc = 0;
error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Tx DMA map.\n");
goto fail;
}
}
/* Create spare DMA map for Rx buffer. */
error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create spare Rx DMA map.\n");
goto fail;
}
/* Create DMA maps for Rx buffers. */
for (i = 0; i < SGE_RX_RING_CNT; i++) {
rxd = &cd->sge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
&rxd->rx_dmamap);
if (error) {
device_printf(sc->sge_dev,
"could not create Rx DMA map.\n");
goto fail;
}
}
fail:
return (error);
}
static void
sge_dma_free(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_list_data *ld;
struct sge_rxdesc *rxd;
struct sge_txdesc *txd;
int i;
cd = &sc->sge_cdata;
ld = &sc->sge_ldata;
/* Rx ring. */
if (cd->sge_rx_tag != NULL) {
if (ld->sge_rx_paddr != 0)
bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
if (ld->sge_rx_ring != NULL)
bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
cd->sge_rx_dmamap);
ld->sge_rx_ring = NULL;
ld->sge_rx_paddr = 0;
bus_dma_tag_destroy(cd->sge_rx_tag);
cd->sge_rx_tag = NULL;
}
/* Tx ring. */
if (cd->sge_tx_tag != NULL) {
if (ld->sge_tx_paddr != 0)
bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
if (ld->sge_tx_ring != NULL)
bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
cd->sge_tx_dmamap);
ld->sge_tx_ring = NULL;
ld->sge_tx_paddr = 0;
bus_dma_tag_destroy(cd->sge_tx_tag);
cd->sge_tx_tag = NULL;
}
/* Rx buffers. */
if (cd->sge_rxmbuf_tag != NULL) {
for (i = 0; i < SGE_RX_RING_CNT; i++) {
rxd = &cd->sge_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(cd->sge_rxmbuf_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (cd->sge_rx_spare_map != NULL) {
bus_dmamap_destroy(cd->sge_rxmbuf_tag,
cd->sge_rx_spare_map);
cd->sge_rx_spare_map = NULL;
}
bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
cd->sge_rxmbuf_tag = NULL;
}
/* Tx buffers. */
if (cd->sge_txmbuf_tag != NULL) {
for (i = 0; i < SGE_TX_RING_CNT; i++) {
txd = &cd->sge_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(cd->sge_txmbuf_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(cd->sge_txmbuf_tag);
cd->sge_txmbuf_tag = NULL;
}
if (cd->sge_tag != NULL)
bus_dma_tag_destroy(cd->sge_tag);
cd->sge_tag = NULL;
}
/*
* Initialize the TX descriptors.
*/
static int
sge_list_tx_init(struct sge_softc *sc)
{
struct sge_list_data *ld;
struct sge_chain_data *cd;
SGE_LOCK_ASSERT(sc);
ld = &sc->sge_ldata;
cd = &sc->sge_cdata;
bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
cd->sge_tx_prod = 0;
cd->sge_tx_cons = 0;
cd->sge_tx_cnt = 0;
return (0);
}
static int
sge_list_tx_free(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_txdesc *txd;
int i;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
for (i = 0; i < SGE_TX_RING_CNT; i++) {
txd = &cd->sge_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
}
}
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* has RING_END flag set.
*/
static int
sge_list_rx_init(struct sge_softc *sc)
{
struct sge_chain_data *cd;
int i;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
cd->sge_rx_cons = 0;
bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
for (i = 0; i < SGE_RX_RING_CNT; i++) {
if (sge_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
sge_list_rx_free(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_rxdesc *rxd;
int i;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
for (i = 0; i < SGE_RX_RING_CNT; i++) {
rxd = &cd->sge_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(cd->sge_rxmbuf_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
sge_newbuf(struct sge_softc *sc, int prod)
{
struct mbuf *m;
struct sge_desc *desc;
struct sge_chain_data *cd;
struct sge_rxdesc *rxd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int error, nsegs;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, SGE_RX_BUF_ALIGN);
error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
cd->sge_rx_spare_map, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &cd->sge_rxdesc[prod];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = cd->sge_rx_spare_map;
cd->sge_rx_spare_map = map;
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = &sc->sge_ldata.sge_rx_ring[prod];
desc->sge_sts_size = 0;
desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
desc->sge_flags = htole32(segs[0].ds_len);
if (prod == SGE_RX_RING_CNT - 1)
desc->sge_flags |= htole32(RING_END);
desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
return (0);
}
static __inline void
sge_discard_rxbuf(struct sge_softc *sc, int index)
{
struct sge_desc *desc;
desc = &sc->sge_ldata.sge_rx_ring[index];
desc->sge_sts_size = 0;
desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
if (index == SGE_RX_RING_CNT - 1)
desc->sge_flags |= htole32(RING_END);
desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
sge_rxeof(struct sge_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m;
struct sge_chain_data *cd;
struct sge_desc *cur_rx;
uint32_t rxinfo, rxstat;
int cons, prog;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
cd = &sc->sge_cdata;
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = cd->sge_rx_cons;
for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
SGE_INC(cons, SGE_RX_RING_CNT)) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
rxinfo = le32toh(cur_rx->sge_cmdsts);
if ((rxinfo & RDC_OWN) != 0)
break;
rxstat = le32toh(cur_rx->sge_sts_size);
if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
SGE_RX_NSEGS(rxstat) != 1) {
/* XXX We don't support multi-segment frames yet. */
#ifdef SGE_SHOW_ERRORS
device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
RX_ERR_BITS);
#endif
sge_discard_rxbuf(sc, cons);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
continue;
}
m = cd->sge_rxdesc[cons].rx_m;
if (sge_newbuf(sc, cons) != 0) {
sge_discard_rxbuf(sc, cons);
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
continue;
}
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((rxinfo & RDC_IP_CSUM) != 0 &&
(rxinfo & RDC_IP_CSUM_OK) != 0)
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID;
if (((rxinfo & RDC_TCP_CSUM) != 0 &&
(rxinfo & RDC_TCP_CSUM_OK) != 0) ||
((rxinfo & RDC_UDP_CSUM) != 0 &&
(rxinfo & RDC_UDP_CSUM_OK) != 0)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* Check for VLAN tagged frame. */
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(rxstat & RDS_VLAN) != 0) {
m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
m->m_flags |= M_VLANTAG;
}
/*
* Account for 10bytes auto padding which is used
* to align IP header on 32bit boundary. Also note,
* CRC bytes is automatically removed by the
* hardware.
*/
m->m_data += SGE_RX_PAD_BYTES;
m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
SGE_RX_PAD_BYTES;
m->m_pkthdr.rcvif = ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
SGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
SGE_LOCK(sc);
}
if (prog > 0) {
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
cd->sge_rx_cons = cons;
}
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
sge_txeof(struct sge_softc *sc)
{
struct ifnet *ifp;
struct sge_list_data *ld;
struct sge_chain_data *cd;
struct sge_txdesc *txd;
uint32_t txstat;
int cons, nsegs, prod;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
ld = &sc->sge_ldata;
cd = &sc->sge_cdata;
if (cd->sge_tx_cnt == 0)
return;
bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = cd->sge_tx_cons;
prod = cd->sge_tx_prod;
for (; cons != prod;) {
txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
if ((txstat & TDC_OWN) != 0)
break;
/*
* Only the first descriptor of multi-descriptor transmission
* is updated by controller. Driver should skip entire
* chained buffers for the transmitted frame. In other words
* TDC_OWN bit is valid only at the first descriptor of a
* multi-descriptor transmission.
*/
if (SGE_TX_ERROR(txstat) != 0) {
#ifdef SGE_SHOW_ERRORS
device_printf(sc->sge_dev, "Tx error : 0x%b\n",
txstat, TX_ERR_BITS);
#endif
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
} else {
#ifdef notyet
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
#endif
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
txd = &cd->sge_txdesc[cons];
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
ld->sge_tx_ring[cons].sge_cmdsts = 0;
SGE_INC(cons, SGE_TX_RING_CNT);
}
/* Reclaim transmitted mbuf. */
KASSERT(txd->tx_m != NULL,
("%s: freeing NULL mbuf\n", __func__));
bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
cd->sge_tx_cnt -= txd->tx_ndesc;
KASSERT(cd->sge_tx_cnt >= 0,
("%s: Active Tx desc counter was garbled\n", __func__));
txd->tx_ndesc = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
cd->sge_tx_cons = cons;
if (cd->sge_tx_cnt == 0)
sc->sge_timer = 0;
}
static void
sge_tick(void *arg)
{
struct sge_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = arg;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
mii = device_get_softc(sc->sge_miibus);
mii_tick(mii);
if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
sge_miibus_statchg(sc->sge_dev);
if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sge_start_locked(ifp);
}
/*
* Reclaim transmitted frames here as we do not request
* Tx completion interrupt for every queued frames to
* reduce excessive interrupts.
*/
sge_txeof(sc);
sge_watchdog(sc);
callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
}
static void
sge_intr(void *arg)
{
struct sge_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = arg;
SGE_LOCK(sc);
ifp = sc->sge_ifp;
status = CSR_READ_4(sc, IntrStatus);
if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
/* Not ours. */
SGE_UNLOCK(sc);
return;
}
/* Acknowledge interrupts. */
CSR_WRITE_4(sc, IntrStatus, status);
/* Disable further interrupts. */
CSR_WRITE_4(sc, IntrMask, 0);
/*
* It seems the controller supports some kind of interrupt
* moderation mechanism but we still don't know how to
* enable that. To reduce number of generated interrupts
* under load we check pending interrupts in a loop. This
* will increase number of register access and is not correct
* way to handle interrupt moderation but there seems to be
* no other way at this time.
*/
for (;;) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
sge_rxeof(sc);
/* Wakeup Rx MAC. */
if ((status & INTR_RX_IDLE) != 0)
CSR_WRITE_4(sc, RX_CTL,
0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
}
if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
sge_txeof(sc);
status = CSR_READ_4(sc, IntrStatus);
if ((status & SGE_INTRS) == 0)
break;
/* Acknowledge interrupts. */
CSR_WRITE_4(sc, IntrStatus, status);
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
/* Re-enable interrupts */
CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sge_start_locked(ifp);
}
SGE_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
sge_encap(struct sge_softc *sc, struct mbuf **m_head)
{
struct mbuf *m;
struct sge_desc *desc;
struct sge_txdesc *txd;
bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
uint32_t cflags, mss;
int error, i, nsegs, prod, si;
SGE_LOCK_ASSERT(sc);
si = prod = sc->sge_cdata.sge_tx_prod;
txd = &sc->sge_cdata.sge_txdesc[prod];
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
uint32_t ip_off, poff;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(*m_head, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check the existence of VLAN tag. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Reset IP checksum and recompute TCP pseudo
* checksum that NDIS specification requires.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
ip->ip_sum = 0;
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(IPPROTO_TCP));
*m_head = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
KASSERT(nsegs != 0, ("zero segment returned"));
/* Check descriptor overrun. */
if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
m = *m_head;
cflags = 0;
mss = 0;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
cflags |= TDC_LS;
mss = (uint32_t)m->m_pkthdr.tso_segsz;
mss <<= 16;
} else {
if (m->m_pkthdr.csum_flags & CSUM_IP)
cflags |= TDC_IP_CSUM;
if (m->m_pkthdr.csum_flags & CSUM_TCP)
cflags |= TDC_TCP_CSUM;
if (m->m_pkthdr.csum_flags & CSUM_UDP)
cflags |= TDC_UDP_CSUM;
}
for (i = 0; i < nsegs; i++) {
desc = &sc->sge_ldata.sge_tx_ring[prod];
if (i == 0) {
desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
desc->sge_cmdsts = 0;
} else {
desc->sge_sts_size = 0;
desc->sge_cmdsts = htole32(TDC_OWN);
}
desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
desc->sge_flags = htole32(txsegs[i].ds_len);
if (prod == SGE_TX_RING_CNT - 1)
desc->sge_flags |= htole32(RING_END);
sc->sge_cdata.sge_tx_cnt++;
SGE_INC(prod, SGE_TX_RING_CNT);
}
/* Update producer index. */
sc->sge_cdata.sge_tx_prod = prod;
desc = &sc->sge_ldata.sge_tx_ring[si];
/* Configure VLAN. */
if((m->m_flags & M_VLANTAG) != 0) {
cflags |= m->m_pkthdr.ether_vtag;
desc->sge_sts_size |= htole32(TDS_INS_VLAN);
}
desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
#if 1
if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
desc->sge_cmdsts |= htole32(TDC_BST);
#else
if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
}
#endif
/* Request interrupt and give ownership to controller. */
desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
txd->tx_m = m;
txd->tx_ndesc = nsegs;
return (0);
}
static void
sge_start(struct ifnet *ifp)
{
struct sge_softc *sc;
sc = ifp->if_softc;
SGE_LOCK(sc);
sge_start_locked(ifp);
SGE_UNLOCK(sc);
}
static void
sge_start_locked(struct ifnet *ifp)
{
struct sge_softc *sc;
struct mbuf *m_head;
int queued = 0;
sc = ifp->if_softc;
SGE_LOCK_ASSERT(sc);
if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
(ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
SGE_MAXTXSEGS)) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sge_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (queued > 0) {
bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
sc->sge_cdata.sge_tx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
sc->sge_timer = 5;
}
}
static void
sge_init(void *arg)
{
struct sge_softc *sc;
sc = arg;
SGE_LOCK(sc);
sge_init_locked(sc);
SGE_UNLOCK(sc);
}
static void
sge_init_locked(struct sge_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint16_t rxfilt;
int i;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
mii = device_get_softc(sc->sge_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sge_stop(sc);
sge_reset(sc);
/* Init circular RX list. */
if (sge_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->sge_dev, "no memory for Rx buffers\n");
sge_stop(sc);
return;
}
/* Init TX descriptors. */
sge_list_tx_init(sc);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
CSR_WRITE_4(sc, TxMacControl, 0x60);
CSR_WRITE_4(sc, RxWakeOnLan, 0);
CSR_WRITE_4(sc, RxWakeOnLanData, 0);
/* Allow receiving VLAN frames. */
CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
SGE_RX_PAD_BYTES);
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
/* Configure RX MAC. */
rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
CSR_WRITE_2(sc, RxMacControl, rxfilt);
sge_rxfilter(sc);
sge_setvlan(sc);
/* Initialize default speed/duplex information. */
if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
sc->sge_flags |= SGE_FLAG_SPEED_1000;
sc->sge_flags |= SGE_FLAG_FDX;
if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
CSR_WRITE_4(sc, StationControl, 0x04008001);
else
CSR_WRITE_4(sc, StationControl, 0x04000001);
/*
* XXX Try to mitigate interrupts.
*/
CSR_WRITE_4(sc, IntrControl, 0x08880000);
#ifdef notyet
if (sc->sge_intrcontrol != 0)
CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
if (sc->sge_intrtimer != 0)
CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
#endif
/*
* Clear and enable interrupts.
*/
CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
/* Enable receiver and transmitter. */
CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sge_flags &= ~SGE_FLAG_LINK;
mii_mediachg(mii);
callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
}
/*
* Set media options.
*/
static int
sge_ifmedia_upd(struct ifnet *ifp)
{
struct sge_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
SGE_LOCK(sc);
mii = device_get_softc(sc->sge_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
SGE_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
SGE_LOCK(sc);
mii = device_get_softc(sc->sge_miibus);
if ((ifp->if_flags & IFF_UP) == 0) {
SGE_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
SGE_UNLOCK(sc);
}
static int
sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct sge_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error = 0, mask, reinit;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch(command) {
case SIOCSIFFLAGS:
SGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sge_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
sge_rxfilter(sc);
else
sge_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
sge_stop(sc);
sc->sge_if_flags = ifp->if_flags;
SGE_UNLOCK(sc);
break;
case SIOCSIFCAP:
SGE_LOCK(sc);
reinit = 0;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= SGE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
/*
* Due to unknown reason, toggling VLAN hardware
* tagging require interface reinitialization.
*/
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &=
~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
reinit = 1;
}
if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sge_init_locked(sc);
}
SGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
sge_rxfilter(sc);
SGE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
sge_watchdog(struct sge_softc *sc)
{
struct ifnet *ifp;
SGE_LOCK_ASSERT(sc);
if (sc->sge_timer == 0 || --sc->sge_timer > 0)
return;
ifp = sc->sge_ifp;
if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
if (1 || bootverbose)
device_printf(sc->sge_dev,
"watchdog timeout (lost link)\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sge_init_locked(sc);
return;
}
device_printf(sc->sge_dev, "watchdog timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sge_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
sge_start_locked(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
sge_stop(struct sge_softc *sc)
{
struct ifnet *ifp;
ifp = sc->sge_ifp;
SGE_LOCK_ASSERT(sc);
sc->sge_timer = 0;
callout_stop(&sc->sge_stat_ch);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
CSR_WRITE_4(sc, IntrMask, 0);
CSR_READ_4(sc, IntrMask);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
/* Stop TX/RX MAC. */
CSR_WRITE_4(sc, TX_CTL, 0x1a00);
CSR_WRITE_4(sc, RX_CTL, 0x1a00);
/* XXX Can we assume active DMA cycles gone? */
DELAY(2000);
CSR_WRITE_4(sc, IntrMask, 0);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
sc->sge_flags &= ~SGE_FLAG_LINK;
sge_list_rx_free(sc);
sge_list_tx_free(sc);
}