freebsd-skq/sys/dev/aac/aac.c
jhb e1bba71fc9 Add locking to taskqueues. There is one mutex per task, one mutex per
queue, and a mutex to protect the global list of taskqueues.  The only
visible change is that a TASK_DESTROY() macro has been added to mirror
the TASK_INIT() macro to destroy a task before it is free'd.

Submitted by:	Andrew Reiter <awr@watson.org>
2001-10-26 06:32:21 +00:00

2613 lines
63 KiB
C

/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2001 Scott Long
* Copyright (c) 2000 BSDi
* Copyright (c) 2001 Adaptec, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
*/
#include "opt_aac.h"
/* #include <stddef.h> */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/sysctl.h>
#include <dev/aac/aac_compat.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/devicestat.h>
#include <sys/disk.h>
#include <sys/file.h>
#include <sys/signalvar.h>
#include <sys/time.h>
#include <sys/eventhandler.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/aac/aacreg.h>
#include <dev/aac/aac_ioctl.h>
#include <dev/aac/aacvar.h>
#include <dev/aac/aac_tables.h>
devclass_t aac_devclass;
static void aac_startup(void *arg);
static void aac_add_container(struct aac_softc *sc,
struct aac_mntinforesponse *mir, int f);
/* Command Processing */
static void aac_startio(struct aac_softc *sc);
static void aac_timeout(struct aac_softc *sc);
static int aac_start(struct aac_command *cm);
static void aac_complete(void *context, int pending);
static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
static void aac_bio_complete(struct aac_command *cm);
static int aac_wait_command(struct aac_command *cm, int timeout);
static void aac_host_command(struct aac_softc *sc);
static void aac_host_response(struct aac_softc *sc);
/* Command Buffer Management */
static int aac_alloc_command(struct aac_softc *sc,
struct aac_command **cmp);
static void aac_release_command(struct aac_command *cm);
static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int aac_alloc_commands(struct aac_softc *sc);
static void aac_free_commands(struct aac_softc *sc);
static void aac_map_command(struct aac_command *cm);
static void aac_unmap_command(struct aac_command *cm);
/* Hardware Interface */
static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static int aac_init(struct aac_softc *sc);
static int aac_sync_command(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
u_int32_t arg3, u_int32_t *sp);
static int aac_sync_fib(struct aac_softc *sc, u_int32_t command,
u_int32_t xferstate, void *data,
u_int16_t datasize, void *result,
u_int16_t *resultsize);
static int aac_enqueue_fib(struct aac_softc *sc, int queue,
struct aac_command *cm);
static int aac_dequeue_fib(struct aac_softc *sc, int queue,
u_int32_t *fib_size, struct aac_fib **fib_addr);
static int aac_enqueue_response(struct aac_softc *sc, int queue,
struct aac_fib *fib);
/* StrongARM interface */
static int aac_sa_get_fwstatus(struct aac_softc *sc);
static void aac_sa_qnotify(struct aac_softc *sc, int qbit);
static int aac_sa_get_istatus(struct aac_softc *sc);
static void aac_sa_clear_istatus(struct aac_softc *sc, int mask);
static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1,
u_int32_t arg2, u_int32_t arg3);
static int aac_sa_get_mailboxstatus(struct aac_softc *sc);
static void aac_sa_set_interrupts(struct aac_softc *sc, int enable);
struct aac_interface aac_sa_interface = {
aac_sa_get_fwstatus,
aac_sa_qnotify,
aac_sa_get_istatus,
aac_sa_clear_istatus,
aac_sa_set_mailbox,
aac_sa_get_mailboxstatus,
aac_sa_set_interrupts
};
/* i960Rx interface */
static int aac_rx_get_fwstatus(struct aac_softc *sc);
static void aac_rx_qnotify(struct aac_softc *sc, int qbit);
static int aac_rx_get_istatus(struct aac_softc *sc);
static void aac_rx_clear_istatus(struct aac_softc *sc, int mask);
static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1,
u_int32_t arg2, u_int32_t arg3);
static int aac_rx_get_mailboxstatus(struct aac_softc *sc);
static void aac_rx_set_interrupts(struct aac_softc *sc, int enable);
struct aac_interface aac_rx_interface = {
aac_rx_get_fwstatus,
aac_rx_qnotify,
aac_rx_get_istatus,
aac_rx_clear_istatus,
aac_rx_set_mailbox,
aac_rx_get_mailboxstatus,
aac_rx_set_interrupts
};
/* Debugging and Diagnostics */
static void aac_describe_controller(struct aac_softc *sc);
static char *aac_describe_code(struct aac_code_lookup *table,
u_int32_t code);
/* Management Interface */
static d_open_t aac_open;
static d_close_t aac_close;
static d_ioctl_t aac_ioctl;
static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
static void aac_handle_aif(struct aac_softc *sc,
struct aac_fib *fib);
static int aac_rev_check(struct aac_softc *sc, caddr_t udata);
static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
static int aac_return_aif(struct aac_softc *sc, caddr_t uptr);
static int aac_query_disk(struct aac_softc *sc, caddr_t uptr);
#define AAC_CDEV_MAJOR 150
static struct cdevsw aac_cdevsw = {
aac_open, /* open */
aac_close, /* close */
noread, /* read */
nowrite, /* write */
aac_ioctl, /* ioctl */
nopoll, /* poll */
nommap, /* mmap */
nostrategy, /* strategy */
"aac", /* name */
AAC_CDEV_MAJOR, /* major */
nodump, /* dump */
nopsize, /* psize */
0, /* flags */
#if __FreeBSD_version < 500005
-1, /* bmaj */
#endif
};
MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
/* sysctl node */
SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
/*
* Device Interface
*/
/*
* Initialise the controller and softc
*/
int
aac_attach(struct aac_softc *sc)
{
int error, unit;
debug_called(1);
/*
* Initialise per-controller queues.
*/
aac_initq_free(sc);
aac_initq_ready(sc);
aac_initq_busy(sc);
aac_initq_complete(sc);
aac_initq_bio(sc);
#if __FreeBSD_version >= 500005
/*
* Initialise command-completion task.
*/
TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
#endif
/* disable interrupts before we enable anything */
AAC_MASK_INTERRUPTS(sc);
/* mark controller as suspended until we get ourselves organised */
sc->aac_state |= AAC_STATE_SUSPEND;
/*
* Allocate command structures.
*/
if ((error = aac_alloc_commands(sc)) != 0)
return(error);
/*
* Initialise the adapter.
*/
if ((error = aac_init(sc)) != 0)
return(error);
/*
* Print a little information about the controller.
*/
aac_describe_controller(sc);
/*
* Register to probe our containers later.
*/
TAILQ_INIT(&sc->aac_container_tqh);
AAC_LOCK_INIT(&sc->aac_container_lock);
sc->aac_ich.ich_func = aac_startup;
sc->aac_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->aac_ich) != 0) {
device_printf(sc->aac_dev,
"can't establish configuration hook\n");
return(ENXIO);
}
/*
* Make the control device.
*/
unit = device_get_unit(sc->aac_dev);
sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
"aac%d", unit);
#if __FreeBSD_version > 500005
(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
#endif
sc->aac_dev_t->si_drv1 = sc;
/* Create the AIF thread */
#if __FreeBSD_version > 500005
if (kthread_create((void(*)(void *))aac_host_command, sc,
&sc->aifthread, 0, "aac%daif", unit))
#else
if (kthread_create((void(*)(void *))aac_host_command, sc,
&sc->aifthread, "aac%daif", unit))
#endif
panic("Could not create AIF thread\n");
/* Register the shutdown method to only be called post-dump */
if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
SHUTDOWN_PRI_DEFAULT)) == NULL)
device_printf(sc->aac_dev, "shutdown event registration failed\n");
return(0);
}
/*
* Probe for containers, create disks.
*/
static void
aac_startup(void *arg)
{
struct aac_softc *sc;
struct aac_mntinfo mi;
struct aac_mntinforesponse mir;
u_int16_t rsize;
int i = 0;
debug_called(1);
sc = (struct aac_softc *)arg;
/* disconnect ourselves from the intrhook chain */
config_intrhook_disestablish(&sc->aac_ich);
/* loop over possible containers */
mi.Command = VM_NameServe;
mi.MntType = FT_FILESYS;
do {
/* request information on this container */
mi.MntCount = i;
rsize = sizeof(mir);
if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
sizeof(struct aac_mntinfo), &mir, &rsize)) {
debug(2, "error probing container %d", i);
continue;
}
/* check response size */
if (rsize != sizeof(mir)) {
debug(2, "container info response wrong size "
"(%d should be %d)", rsize, sizeof(mir));
continue;
}
aac_add_container(sc, &mir, 0);
i++;
} while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS));
/* poke the bus to actually attach the child devices */
if (bus_generic_attach(sc->aac_dev))
device_printf(sc->aac_dev, "bus_generic_attach failed\n");
/* mark the controller up */
sc->aac_state &= ~AAC_STATE_SUSPEND;
/* enable interrupts now */
AAC_UNMASK_INTERRUPTS(sc);
/* enable the timeout watchdog */
timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
}
/*
* Create a device to respresent a new container
*/
static void
aac_add_container(struct aac_softc *sc, struct aac_mntinforesponse *mir, int f)
{
struct aac_container *co;
device_t child;
/*
* Check container volume type for validity. Note that many of
* the possible types may never show up.
*/
if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
M_NOWAIT);
if (co == NULL)
panic("Out of memory?!\n");
debug(1, "id %x name '%.16s' size %u type %d",
mir->MntTable[0].ObjectId,
mir->MntTable[0].FileSystemName,
mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
device_printf(sc->aac_dev, "device_add_child failed\n");
else
device_set_ivars(child, co);
device_set_desc(child, aac_describe_code(aac_container_types,
mir->MntTable[0].VolType));
co->co_disk = child;
co->co_found = f;
bcopy(&mir->MntTable[0], &co->co_mntobj,
sizeof(struct aac_mntobj));
AAC_LOCK_AQUIRE(&sc->aac_container_lock);
TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
AAC_LOCK_RELEASE(&sc->aac_container_lock);
}
}
/*
* Free all of the resources associated with (sc)
*
* Should not be called if the controller is active.
*/
void
aac_free(struct aac_softc *sc)
{
debug_called(1);
/* remove the control device */
if (sc->aac_dev_t != NULL)
destroy_dev(sc->aac_dev_t);
/* throw away any FIB buffers, discard the FIB DMA tag */
if (sc->aac_fibs != NULL)
aac_free_commands(sc);
if (sc->aac_fib_dmat)
bus_dma_tag_destroy(sc->aac_fib_dmat);
/* destroy the common area */
if (sc->aac_common) {
bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
sc->aac_common_dmamap);
}
if (sc->aac_common_dmat)
bus_dma_tag_destroy(sc->aac_common_dmat);
/* disconnect the interrupt handler */
if (sc->aac_intr)
bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
if (sc->aac_irq != NULL)
bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
sc->aac_irq);
/* destroy data-transfer DMA tag */
if (sc->aac_buffer_dmat)
bus_dma_tag_destroy(sc->aac_buffer_dmat);
/* destroy the parent DMA tag */
if (sc->aac_parent_dmat)
bus_dma_tag_destroy(sc->aac_parent_dmat);
/* release the register window mapping */
if (sc->aac_regs_resource != NULL)
bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
sc->aac_regs_rid, sc->aac_regs_resource);
#if __FreeBSD_version >= 500005
TASK_DESTROY(&sc->aac_task_complete);
#endif
}
/*
* Disconnect from the controller completely, in preparation for unload.
*/
int
aac_detach(device_t dev)
{
struct aac_softc *sc;
#if AAC_BROKEN
int error;
#endif
debug_called(1);
sc = device_get_softc(dev);
if (sc->aac_state & AAC_STATE_OPEN)
return(EBUSY);
#if AAC_BROKEN
if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
sc->aifflags |= AAC_AIFFLAGS_EXIT;
wakeup(sc->aifthread);
tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
}
if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
panic("Cannot shutdown AIF thread\n");
if ((error = aac_shutdown(dev)))
return(error);
aac_free(sc);
return(0);
#else
return (EBUSY);
#endif
}
/*
* Bring the controller down to a dormant state and detach all child devices.
*
* This function is called before detach or system shutdown.
*
* Note that we can assume that the bioq on the controller is empty, as we won't
* allow shutdown if any device is open.
*/
int
aac_shutdown(device_t dev)
{
struct aac_softc *sc;
struct aac_close_command cc;
int s, i;
debug_called(1);
sc = device_get_softc(dev);
s = splbio();
sc->aac_state |= AAC_STATE_SUSPEND;
/*
* Send a Container shutdown followed by a HostShutdown FIB to the
* controller to convince it that we don't want to talk to it anymore.
* We've been closed and all I/O completed already
*/
device_printf(sc->aac_dev, "shutting down controller...");
cc.Command = VM_CloseAll;
cc.ContainerId = 0xffffffff;
if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL))
printf("FAILED.\n");
else {
i = 0;
/*
* XXX Issuing this command to the controller makes it shut down
* but also keeps it from coming back up without a reset of the
* PCI bus. This is not desirable if you are just unloading the
* driver module with the intent to reload it later.
*/
if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
sizeof(i), NULL, NULL)) {
printf("FAILED.\n");
} else {
printf("done.\n");
}
}
AAC_MASK_INTERRUPTS(sc);
splx(s);
return(0);
}
/*
* Bring the controller to a quiescent state, ready for system suspend.
*/
int
aac_suspend(device_t dev)
{
struct aac_softc *sc;
int s;
debug_called(1);
sc = device_get_softc(dev);
s = splbio();
sc->aac_state |= AAC_STATE_SUSPEND;
AAC_MASK_INTERRUPTS(sc);
splx(s);
return(0);
}
/*
* Bring the controller back to a state ready for operation.
*/
int
aac_resume(device_t dev)
{
struct aac_softc *sc;
debug_called(1);
sc = device_get_softc(dev);
sc->aac_state &= ~AAC_STATE_SUSPEND;
AAC_UNMASK_INTERRUPTS(sc);
return(0);
}
/*
* Take an interrupt.
*/
void
aac_intr(void *arg)
{
struct aac_softc *sc;
u_int16_t reason;
debug_called(2);
sc = (struct aac_softc *)arg;
reason = AAC_GET_ISTATUS(sc);
/* controller wants to talk to the log? Defer it to the AIF thread */
if (reason & AAC_DB_PRINTF) {
AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
sc->aifflags |= AAC_AIFFLAGS_PENDING;
wakeup(sc->aifthread);
} else
aac_print_printf(sc);
}
/* controller has a message for us? */
if (reason & AAC_DB_COMMAND_READY) {
AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
/* XXX What happens if the thread is already awake? */
if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
sc->aifflags |= AAC_AIFFLAGS_PENDING;
wakeup(sc->aifthread);
}
}
/* controller has a response for us? */
if (reason & AAC_DB_RESPONSE_READY) {
AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
aac_host_response(sc);
}
/*
* spurious interrupts that we don't use - reset the mask and clear the
* interrupts
*/
if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
AAC_UNMASK_INTERRUPTS(sc);
AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
AAC_DB_RESPONSE_NOT_FULL);
}
};
/*
* Command Processing
*/
/*
* Start as much queued I/O as possible on the controller
*/
static void
aac_startio(struct aac_softc *sc)
{
struct aac_command *cm;
debug_called(2);
for (;;) {
/*
* Try to get a command that's been put off for lack of
* resources
*/
cm = aac_dequeue_ready(sc);
/*
* Try to build a command off the bio queue (ignore error
* return)
*/
if (cm == NULL)
aac_bio_command(sc, &cm);
/* nothing to do? */
if (cm == NULL)
break;
/* try to give the command to the controller */
if (aac_start(cm) == EBUSY) {
/* put it on the ready queue for later */
aac_requeue_ready(cm);
break;
}
}
}
/*
* Deliver a command to the controller; allocate controller resources at the
* last moment when possible.
*/
static int
aac_start(struct aac_command *cm)
{
struct aac_softc *sc;
int error;
debug_called(2);
sc = cm->cm_sc;
/* get the command mapped */
aac_map_command(cm);
/* fix up the address values in the FIB */
cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
/* save a pointer to the command for speedy reverse-lookup */
cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical
* address issue */
/* put the FIB on the outbound queue */
error = aac_enqueue_fib(sc, cm->cm_queue, cm);
return(error);
}
/*
* Handle notification of one or more FIBs coming from the controller.
*/
static void
aac_host_command(struct aac_softc *sc)
{
struct aac_fib *fib;
u_int32_t fib_size;
int size;
debug_called(2);
sc->aifflags |= AAC_AIFFLAGS_RUNNING;
while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
for (;;) {
if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
&fib_size, &fib))
break; /* nothing to do */
AAC_PRINT_FIB(sc, fib);
switch (fib->Header.Command) {
case AifRequest:
aac_handle_aif(sc, fib);
break;
default:
device_printf(sc->aac_dev, "unknown command "
"from controller\n");
break;
}
/* Return the AIF to the controller. */
if ((fib->Header.XferState == 0) ||
(fib->Header.StructType != AAC_FIBTYPE_TFIB))
break;
if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
*(AAC_FSAStatus*)fib->data = ST_OK;
/* XXX Compute the Size field? */
size = fib->Header.Size;
if (size > sizeof(struct aac_fib)) {
size = sizeof(struct aac_fib);
fib->Header.Size = size;
}
/*
* Since we did not generate this command, it
* cannot go through the normal
* enqueue->startio chain.
*/
aac_enqueue_response(sc,
AAC_ADAP_NORM_RESP_QUEUE,
fib);
}
}
aac_print_printf(sc);
}
sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
wakeup(sc->aac_dev);
#if __FreeBSD_version > 500005
mtx_lock(&Giant);
#endif
kthread_exit(0);
}
/*
* Handle notification of one or more FIBs completed by the controller
*/
static void
aac_host_response(struct aac_softc *sc)
{
struct aac_command *cm;
struct aac_fib *fib;
u_int32_t fib_size;
debug_called(2);
for (;;) {
/* look for completed FIBs on our queue */
if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
&fib))
break; /* nothing to do */
/* get the command, unmap and queue for later processing */
cm = (struct aac_command *)fib->Header.SenderData;
if (cm == NULL) {
AAC_PRINT_FIB(sc, fib);
} else {
aac_remove_busy(cm);
aac_unmap_command(cm); /* XXX defer? */
aac_enqueue_complete(cm);
}
}
/* handle completion processing */
#if __FreeBSD_version >= 500005
taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
#else
aac_complete(sc, 0);
#endif
}
/*
* Process completed commands.
*/
static void
aac_complete(void *context, int pending)
{
struct aac_softc *sc;
struct aac_command *cm;
debug_called(2);
sc = (struct aac_softc *)context;
/* pull completed commands off the queue */
for (;;) {
cm = aac_dequeue_complete(sc);
if (cm == NULL)
break;
cm->cm_flags |= AAC_CMD_COMPLETED;
/* is there a completion handler? */
if (cm->cm_complete != NULL) {
cm->cm_complete(cm);
} else {
/* assume that someone is sleeping on this command */
wakeup(cm);
}
}
/* see if we can start some more I/O */
aac_startio(sc);
}
/*
* Handle a bio submitted from a disk device.
*/
void
aac_submit_bio(struct bio *bp)
{
struct aac_disk *ad;
struct aac_softc *sc;
debug_called(2);
ad = (struct aac_disk *)bp->bio_dev->si_drv1;
sc = ad->ad_controller;
/* queue the BIO and try to get some work done */
aac_enqueue_bio(sc, bp);
aac_startio(sc);
}
/*
* Get a bio and build a command to go with it.
*/
static int
aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_blockread *br;
struct aac_blockwrite *bw;
struct aac_disk *ad;
struct bio *bp;
debug_called(2);
/* get the resources we will need */
cm = NULL;
if ((bp = aac_dequeue_bio(sc)) == NULL)
goto fail;
if (aac_alloc_command(sc, &cm)) /* get a command */
goto fail;
/* fill out the command */
cm->cm_data = (void *)bp->bio_data;
cm->cm_datalen = bp->bio_bcount;
cm->cm_complete = aac_bio_complete;
cm->cm_private = bp;
cm->cm_timestamp = time_second;
cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
/* build the FIB */
fib = cm->cm_fib;
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM;
fib->Header.Command = ContainerCommand;
fib->Header.Size = sizeof(struct aac_fib_header);
/* build the read/write request */
ad = (struct aac_disk *)bp->bio_dev->si_drv1;
if (BIO_IS_READ(bp)) {
br = (struct aac_blockread *)&fib->data[0];
br->Command = VM_CtBlockRead;
br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
br->BlockNumber = bp->bio_pblkno;
br->ByteCount = bp->bio_bcount;
fib->Header.Size += sizeof(struct aac_blockread);
cm->cm_sgtable = &br->SgMap;
cm->cm_flags |= AAC_CMD_DATAIN;
} else {
bw = (struct aac_blockwrite *)&fib->data[0];
bw->Command = VM_CtBlockWrite;
bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
bw->BlockNumber = bp->bio_pblkno;
bw->ByteCount = bp->bio_bcount;
bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
fib->Header.Size += sizeof(struct aac_blockwrite);
cm->cm_flags |= AAC_CMD_DATAOUT;
cm->cm_sgtable = &bw->SgMap;
}
*cmp = cm;
return(0);
fail:
if (bp != NULL)
aac_enqueue_bio(sc, bp);
if (cm != NULL)
aac_release_command(cm);
return(ENOMEM);
}
/*
* Handle a bio-instigated command that has been completed.
*/
static void
aac_bio_complete(struct aac_command *cm)
{
struct aac_blockread_response *brr;
struct aac_blockwrite_response *bwr;
struct bio *bp;
AAC_FSAStatus status;
/* fetch relevant status and then release the command */
bp = (struct bio *)cm->cm_private;
if (BIO_IS_READ(bp)) {
brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
status = brr->Status;
} else {
bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
status = bwr->Status;
}
aac_release_command(cm);
/* fix up the bio based on status */
if (status == ST_OK) {
bp->bio_resid = 0;
} else {
bp->bio_error = EIO;
bp->bio_flags |= BIO_ERROR;
/* pass an error string out to the disk layer */
bp->bio_driver1 = aac_describe_code(aac_command_status_table,
status);
}
aac_biodone(bp);
}
/*
* Dump a block of data to the controller. If the queue is full, tell the
* caller to hold off and wait for the queue to drain.
*/
int
aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
{
struct aac_softc *sc;
struct aac_command *cm;
struct aac_fib *fib;
struct aac_blockwrite *bw;
sc = ad->ad_controller;
cm = NULL;
if (aac_alloc_command(sc, &cm))
return (EBUSY);
/* fill out the command */
cm->cm_data = data;
cm->cm_datalen = dumppages * PAGE_SIZE;
cm->cm_complete = NULL;
cm->cm_private = NULL;
cm->cm_timestamp = time_second;
cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
/* build the FIB */
fib = cm->cm_fib;
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM;
fib->Header.Command = ContainerCommand;
fib->Header.Size = sizeof(struct aac_fib_header);
bw = (struct aac_blockwrite *)&fib->data[0];
bw->Command = VM_CtBlockWrite;
bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
bw->BlockNumber = lba;
bw->ByteCount = dumppages * PAGE_SIZE;
bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
fib->Header.Size += sizeof(struct aac_blockwrite);
cm->cm_flags |= AAC_CMD_DATAOUT;
cm->cm_sgtable = &bw->SgMap;
return (aac_start(cm));
}
/*
* Wait for the card's queue to drain when dumping. Also check for monitor
* printf's
*/
void
aac_dump_complete(struct aac_softc *sc)
{
struct aac_fib *fib;
struct aac_command *cm;
u_int16_t reason;
u_int32_t pi, ci, fib_size;
do {
reason = AAC_GET_ISTATUS(sc);
if (reason & AAC_DB_RESPONSE_READY) {
AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
for (;;) {
if (aac_dequeue_fib(sc,
AAC_HOST_NORM_RESP_QUEUE,
&fib_size, &fib))
break;
cm = (struct aac_command *)
fib->Header.SenderData;
if (cm == NULL)
AAC_PRINT_FIB(sc, fib);
else {
aac_remove_busy(cm);
aac_unmap_command(cm);
aac_enqueue_complete(cm);
aac_release_command(cm);
}
}
}
if (reason & AAC_DB_PRINTF) {
AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
aac_print_printf(sc);
}
pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
AAC_CONSUMER_INDEX];
} while (ci != pi);
return;
}
/*
* Submit a command to the controller, return when it completes.
*/
static int
aac_wait_command(struct aac_command *cm, int timeout)
{
int s, error = 0;
debug_called(2);
/* Put the command on the ready queue and get things going */
cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
aac_enqueue_ready(cm);
aac_startio(cm->cm_sc);
s = splbio();
while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
error = tsleep(cm, PRIBIO | PCATCH, "aacwait", 0);
if ((error == ERESTART) || (error == EINTR))
break;
}
splx(s);
return(error);
}
/*
*Command Buffer Management
*/
/*
* Allocate a command.
*/
static int
aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
{
struct aac_command *cm;
debug_called(3);
if ((cm = aac_dequeue_free(sc)) == NULL)
return(ENOMEM);
*cmp = cm;
return(0);
}
/*
* Release a command back to the freelist.
*/
static void
aac_release_command(struct aac_command *cm)
{
debug_called(3);
/* (re)initialise the command/FIB */
cm->cm_sgtable = NULL;
cm->cm_flags = 0;
cm->cm_complete = NULL;
cm->cm_private = NULL;
cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
cm->cm_fib->Header.Flags = 0;
cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
/*
* These are duplicated in aac_start to cover the case where an
* intermediate stage may have destroyed them. They're left
* initialised here for debugging purposes only.
*/
cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
aac_enqueue_free(cm);
}
/*
* Map helper for command/FIB allocation.
*/
static void
aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aac_softc *sc;
sc = (struct aac_softc *)arg;
debug_called(3);
sc->aac_fibphys = segs[0].ds_addr;
}
/*
* Allocate and initialise commands/FIBs for this adapter.
*/
static int
aac_alloc_commands(struct aac_softc *sc)
{
struct aac_command *cm;
int i;
debug_called(1);
/* allocate the FIBs in DMAable memory and load them */
if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
return(ENOMEM);
}
bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
AAC_FIB_COUNT * sizeof(struct aac_fib),
aac_map_command_helper, sc, 0);
/* initialise constant fields in the command structure */
for (i = 0; i < AAC_FIB_COUNT; i++) {
cm = &sc->aac_command[i];
cm->cm_sc = sc;
cm->cm_fib = sc->aac_fibs + i;
cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
aac_release_command(cm);
}
return(0);
}
/*
* Free FIBs owned by this adapter.
*/
static void
aac_free_commands(struct aac_softc *sc)
{
int i;
debug_called(1);
for (i = 0; i < AAC_FIB_COUNT; i++)
bus_dmamap_destroy(sc->aac_buffer_dmat,
sc->aac_command[i].cm_datamap);
bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
}
/*
* Command-mapping helper function - populate this command's s/g table.
*/
static void
aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_sg_table *sg;
int i;
debug_called(3);
cm = (struct aac_command *)arg;
fib = cm->cm_fib;
/* find the s/g table */
sg = cm->cm_sgtable;
/* copy into the FIB */
if (sg != NULL) {
sg->SgCount = nseg;
for (i = 0; i < nseg; i++) {
sg->SgEntry[i].SgAddress = segs[i].ds_addr;
sg->SgEntry[i].SgByteCount = segs[i].ds_len;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
}
}
/*
* Map a command into controller-visible space.
*/
static void
aac_map_command(struct aac_command *cm)
{
struct aac_softc *sc;
debug_called(2);
sc = cm->cm_sc;
/* don't map more than once */
if (cm->cm_flags & AAC_CMD_MAPPED)
return;
if (cm->cm_datalen != 0) {
bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
cm->cm_data, cm->cm_datalen,
aac_map_command_sg, cm, 0);
if (cm->cm_flags & AAC_CMD_DATAIN)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_PREREAD);
if (cm->cm_flags & AAC_CMD_DATAOUT)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_PREWRITE);
}
cm->cm_flags |= AAC_CMD_MAPPED;
}
/*
* Unmap a command from controller-visible space.
*/
static void
aac_unmap_command(struct aac_command *cm)
{
struct aac_softc *sc;
debug_called(2);
sc = cm->cm_sc;
if (!(cm->cm_flags & AAC_CMD_MAPPED))
return;
if (cm->cm_datalen != 0) {
if (cm->cm_flags & AAC_CMD_DATAIN)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_POSTREAD);
if (cm->cm_flags & AAC_CMD_DATAOUT)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
}
cm->cm_flags &= ~AAC_CMD_MAPPED;
}
/*
* Hardware Interface
*/
/*
* Initialise the adapter.
*/
static void
aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aac_softc *sc;
debug_called(1);
sc = (struct aac_softc *)arg;
sc->aac_common_busaddr = segs[0].ds_addr;
}
static int
aac_init(struct aac_softc *sc)
{
struct aac_adapter_init *ip;
time_t then;
u_int32_t code;
u_int8_t *qaddr;
debug_called(1);
/*
* First wait for the adapter to come ready.
*/
then = time_second;
do {
code = AAC_GET_FWSTATUS(sc);
if (code & AAC_SELF_TEST_FAILED) {
device_printf(sc->aac_dev, "FATAL: selftest failed\n");
return(ENXIO);
}
if (code & AAC_KERNEL_PANIC) {
device_printf(sc->aac_dev,
"FATAL: controller kernel panic\n");
return(ENXIO);
}
if (time_second > (then + AAC_BOOT_TIMEOUT)) {
device_printf(sc->aac_dev,
"FATAL: controller not coming ready, "
"status %x\n", code);
return(ENXIO);
}
} while (!(code & AAC_UP_AND_RUNNING));
/*
* Create DMA tag for the common structure and allocate it.
*/
if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sizeof(struct aac_common), /* maxsize */
1, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
&sc->aac_common_dmat)) {
device_printf(sc->aac_dev,
"can't allocate common structure DMA tag\n");
return(ENOMEM);
}
if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
device_printf(sc->aac_dev, "can't allocate common structure\n");
return(ENOMEM);
}
bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
sc, 0);
bzero(sc->aac_common, sizeof(*sc->aac_common));
/*
* Fill in the init structure. This tells the adapter about the
* physical location of various important shared data structures.
*/
ip = &sc->aac_common->ac_init;
ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_fibs);
ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
ip->AdapterFibAlign = sizeof(struct aac_fib);
ip->PrintfBufferAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_printf);
ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
ip->HostPhysMemPages = 0; /* not used? */
ip->HostElapsedSeconds = time_second; /* reset later if invalid */
/*
* Initialise FIB queues. Note that it appears that the layout of the
* indexes and the segmentation of the entries may be mandated by the
* adapter, which is only told about the base of the queue index fields.
*
* The initial values of the indices are assumed to inform the adapter
* of the sizes of the respective queues, and theoretically it could
* work out the entire layout of the queue structures from this. We
* take the easy route and just lay this area out like everyone else
* does.
*
* The Linux driver uses a much more complex scheme whereby several
* header records are kept for each queue. We use a couple of generic
* list manipulation functions which 'know' the size of each list by
* virtue of a table.
*/
qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
sc->aac_queues = (struct aac_queue_table *)qaddr;
ip->CommHeaderAddress = sc->aac_common_busaddr +
((u_int32_t)sc->aac_queues -
(u_int32_t)sc->aac_common);
bzero(sc->aac_queues, sizeof(struct aac_queue_table));
sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_HOST_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_HOST_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_HOST_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_HOST_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_ADAP_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_ADAP_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_ADAP_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_ADAP_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_HOST_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_HOST_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_HOST_HIGH_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_HOST_HIGH_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_ADAP_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_ADAP_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_ADAP_HIGH_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_ADAP_HIGH_RESP_ENTRIES;
sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
&sc->aac_queues->qt_HostNormCmdQueue[0];
sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
&sc->aac_queues->qt_HostHighCmdQueue[0];
sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
&sc->aac_queues->qt_AdapNormCmdQueue[0];
sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
&sc->aac_queues->qt_AdapHighCmdQueue[0];
sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
&sc->aac_queues->qt_HostNormRespQueue[0];
sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
&sc->aac_queues->qt_HostHighRespQueue[0];
sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
&sc->aac_queues->qt_AdapNormRespQueue[0];
sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
&sc->aac_queues->qt_AdapHighRespQueue[0];
/*
* Do controller-type-specific initialisation
*/
switch (sc->aac_hwif) {
case AAC_HWIF_I960RX:
AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
break;
}
/*
* Give the init structure to the controller.
*/
if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
sc->aac_common_busaddr +
offsetof(struct aac_common, ac_init), 0, 0, 0,
NULL)) {
device_printf(sc->aac_dev,
"error establishing init structure\n");
return(EIO);
}
return(0);
}
/*
* Send a synchronous command to the controller and wait for a result.
*/
static int
aac_sync_command(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
u_int32_t *sp)
{
time_t then;
u_int32_t status;
debug_called(3);
/* populate the mailbox */
AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
/* ensure the sync command doorbell flag is cleared */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* then set it to signal the adapter */
AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
/* spin waiting for the command to complete */
then = time_second;
do {
if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
debug(2, "timed out");
return(EIO);
}
} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
/* clear the completion flag */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* get the command status */
status = AAC_GET_MAILBOXSTATUS(sc);
if (sp != NULL)
*sp = status;
return(0);
}
/*
* Send a synchronous FIB to the controller and wait for a result.
*/
static int
aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
void *data, u_int16_t datasize,
void *result, u_int16_t *resultsize)
{
struct aac_fib *fib;
debug_called(3);
fib = &sc->aac_common->ac_sync_fib;
if (datasize > AAC_FIB_DATASIZE)
return(EINVAL);
/*
* Set up the sync FIB
*/
fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY;
fib->Header.XferState |= xferstate;
fib->Header.Command = command;
fib->Header.StructType = AAC_FIBTYPE_TFIB;
fib->Header.Size = sizeof(struct aac_fib) + datasize;
fib->Header.SenderSize = sizeof(struct aac_fib);
fib->Header.SenderFibAddress = (u_int32_t)fib;
fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
offsetof(struct aac_common,
ac_sync_fib);
/*
* Copy in data.
*/
if (data != NULL) {
KASSERT(datasize <= sizeof(fib->data),
("aac_sync_fib: datasize to large"));
bcopy(data, fib->data, datasize);
fib->Header.XferState |= AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_NORM;
}
/*
* Give the FIB to the controller, wait for a response.
*/
if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
debug(2, "IO error");
return(EIO);
}
/*
* Copy out the result
*/
if (result != NULL) {
u_int copysize;
copysize = fib->Header.Size - sizeof(struct aac_fib_header);
if (copysize > *resultsize)
copysize = *resultsize;
*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
bcopy(fib->data, result, copysize);
}
return(0);
}
/*
* Adapter-space FIB queue manipulation
*
* Note that the queue implementation here is a little funky; neither the PI or
* CI will ever be zero. This behaviour is a controller feature.
*/
static struct {
int size;
int notify;
} aac_qinfo[] = {
{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
{AAC_HOST_HIGH_CMD_ENTRIES, 0},
{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
{AAC_HOST_HIGH_RESP_ENTRIES, 0},
{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
};
/*
* Atomically insert an entry into the nominated queue, returns 0 on success or
* EBUSY if the queue is full.
*
* Note: it would be more efficient to defer notifying the controller in
* the case where we may be inserting several entries in rapid succession,
* but implementing this usefully may be difficult (it would involve a
* separate queue/notify interface).
*/
static int
aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
{
u_int32_t pi, ci;
int s, error;
u_int32_t fib_size;
u_int32_t fib_addr;
debug_called(3);
fib_size = cm->cm_fib->Header.Size;
fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
s = splbio();
/* get the producer/consumer indices */
pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
/* wrap the queue? */
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* check for queue full */
if ((pi + 1) == ci) {
error = EBUSY;
goto out;
}
/* populate queue entry */
(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
/* update producer index */
sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
/*
* To avoid a race with its completion interrupt, place this command on
* the busy queue prior to advertising it to the controller.
*/
aac_enqueue_busy(cm);
/* notify the adapter if we know how */
if (aac_qinfo[queue].notify != 0)
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
error = 0;
out:
splx(s);
return(error);
}
/*
* Atomically remove one entry from the nominated queue, returns 0 on
* success or ENOENT if the queue is empty.
*/
static int
aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
struct aac_fib **fib_addr)
{
u_int32_t pi, ci;
int s, error;
int notify;
debug_called(3);
s = splbio();
/* get the producer/consumer indices */
pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
/* check for queue empty */
if (ci == pi) {
error = ENOENT;
goto out;
}
notify = 0;
if (ci == pi + 1)
notify++;
/* wrap the queue? */
if (ci >= aac_qinfo[queue].size)
ci = 0;
/* fetch the entry */
*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
ci)->aq_fib_addr;
/* update consumer index */
sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
/* if we have made the queue un-full, notify the adapter */
if (notify && (aac_qinfo[queue].notify != 0))
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
error = 0;
out:
splx(s);
return(error);
}
/*
* Put our response to an Adapter Initialed Fib on the response queue
*/
static int
aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
{
u_int32_t pi, ci;
int s, error;
u_int32_t fib_size;
u_int32_t fib_addr;
debug_called(1);
/* Tell the adapter where the FIB is */
fib_size = fib->Header.Size;
fib_addr = fib->Header.SenderFibAddress;
fib->Header.ReceiverFibAddress = fib_addr;
s = splbio();
/* get the producer/consumer indices */
pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
/* wrap the queue? */
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* check for queue full */
if ((pi + 1) == ci) {
error = EBUSY;
goto out;
}
/* populate queue entry */
(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
/* update producer index */
sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
/* notify the adapter if we know how */
if (aac_qinfo[queue].notify != 0)
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
error = 0;
out:
splx(s);
return(error);
}
/*
* Check for commands that have been outstanding for a suspiciously long time,
* and complain about them.
*/
static void
aac_timeout(struct aac_softc *sc)
{
int s;
struct aac_command *cm;
time_t deadline;
#if 0
/* simulate an interrupt to handle possibly-missed interrupts */
/*
* XXX This was done to work around another bug which has since been
* fixed. It is dangerous anyways because you don't want multiple
* threads in the interrupt handler at the same time! If calling
* is deamed neccesary in the future, proper mutexes must be used.
*/
s = splbio();
aac_intr(sc);
splx(s);
/* kick the I/O queue to restart it in the case of deadlock */
aac_startio(sc);
#endif
/*
* traverse the busy command list, bitch about late commands once
* only.
*/
deadline = time_second - AAC_CMD_TIMEOUT;
s = splbio();
TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
if ((cm->cm_timestamp < deadline)
/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
cm->cm_flags |= AAC_CMD_TIMEDOUT;
device_printf(sc->aac_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n",
cm, (int)(time_second-cm->cm_timestamp));
AAC_PRINT_FIB(sc, cm->cm_fib);
}
}
splx(s);
/* reset the timer for next time */
timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
return;
}
/*
* Interface Function Vectors
*/
/*
* Read the current firmware status word.
*/
static int
aac_sa_get_fwstatus(struct aac_softc *sc)
{
debug_called(3);
return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
}
static int
aac_rx_get_fwstatus(struct aac_softc *sc)
{
debug_called(3);
return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
}
/*
* Notify the controller of a change in a given queue
*/
static void
aac_sa_qnotify(struct aac_softc *sc, int qbit)
{
debug_called(3);
AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
}
static void
aac_rx_qnotify(struct aac_softc *sc, int qbit)
{
debug_called(3);
AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
}
/*
* Get the interrupt reason bits
*/
static int
aac_sa_get_istatus(struct aac_softc *sc)
{
debug_called(3);
return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
}
static int
aac_rx_get_istatus(struct aac_softc *sc)
{
debug_called(3);
return(AAC_GETREG4(sc, AAC_RX_ODBR));
}
/*
* Clear some interrupt reason bits
*/
static void
aac_sa_clear_istatus(struct aac_softc *sc, int mask)
{
debug_called(3);
AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
}
static void
aac_rx_clear_istatus(struct aac_softc *sc, int mask)
{
debug_called(3);
AAC_SETREG4(sc, AAC_RX_ODBR, mask);
}
/*
* Populate the mailbox and set the command word
*/
static void
aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
debug_called(4);
AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
}
static void
aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
debug_called(4);
AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
}
/*
* Fetch the immediate command status word
*/
static int
aac_sa_get_mailboxstatus(struct aac_softc *sc)
{
debug_called(4);
return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
}
static int
aac_rx_get_mailboxstatus(struct aac_softc *sc)
{
debug_called(4);
return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
}
/*
* Set/clear interrupt masks
*/
static void
aac_sa_set_interrupts(struct aac_softc *sc, int enable)
{
debug(2, "%sable interrupts", enable ? "en" : "dis");
if (enable) {
AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
} else {
AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
}
}
static void
aac_rx_set_interrupts(struct aac_softc *sc, int enable)
{
debug(2, "%sable interrupts", enable ? "en" : "dis");
if (enable) {
AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
} else {
AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
}
}
/*
* Debugging and Diagnostics
*/
/*
* Print some information about the controller.
*/
static void
aac_describe_controller(struct aac_softc *sc)
{
u_int8_t buf[AAC_FIB_DATASIZE]; /* XXX really a bit big
* for the stack */
u_int16_t bufsize;
struct aac_adapter_info *info;
u_int8_t arg;
debug_called(2);
arg = 0;
bufsize = sizeof(buf);
if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
&bufsize)) {
device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
return;
}
if (bufsize != sizeof(*info)) {
device_printf(sc->aac_dev,
"RequestAdapterInfo returned wrong data size "
"(%d != %d)\n", bufsize, sizeof(*info));
/*return;*/
}
info = (struct aac_adapter_info *)&buf[0];
device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
aac_describe_code(aac_cpu_variant, info->CpuVariant),
info->ClockSpeed, info->BufferMem / (1024 * 1024),
aac_describe_code(aac_battery_platform,
info->batteryPlatform));
/* save the kernel revision structure for later use */
sc->aac_revision = info->KernelRevision;
device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
info->KernelRevision.external.comp.major,
info->KernelRevision.external.comp.minor,
info->KernelRevision.external.comp.dash,
info->KernelRevision.buildNumber,
(u_int32_t)(info->SerialNumber & 0xffffff));
}
/*
* Look up a text description of a numeric error code and return a pointer to
* same.
*/
static char *
aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
{
int i;
for (i = 0; table[i].string != NULL; i++)
if (table[i].code == code)
return(table[i].string);
return(table[i + 1].string);
}
/*
* Management Interface
*/
static int
aac_open(dev_t dev, int flags, int fmt, struct thread *td)
{
struct aac_softc *sc;
debug_called(2);
sc = dev->si_drv1;
/* Check to make sure the device isn't already open */
if (sc->aac_state & AAC_STATE_OPEN) {
return EBUSY;
}
sc->aac_state |= AAC_STATE_OPEN;
return 0;
}
static int
aac_close(dev_t dev, int flags, int fmt, struct thread *td)
{
struct aac_softc *sc;
debug_called(2);
sc = dev->si_drv1;
/* Mark this unit as no longer open */
sc->aac_state &= ~AAC_STATE_OPEN;
return 0;
}
static int
aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
union aac_statrequest *as;
struct aac_softc *sc;
int error = 0;
int i;
debug_called(2);
as = (union aac_statrequest *)arg;
sc = dev->si_drv1;
switch (cmd) {
case AACIO_STATS:
switch (as->as_item) {
case AACQ_FREE:
case AACQ_BIO:
case AACQ_READY:
case AACQ_BUSY:
case AACQ_COMPLETE:
bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
sizeof(struct aac_qstat));
break;
default:
error = ENOENT;
break;
}
break;
case FSACTL_SENDFIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_SENDFIB:
debug(1, "FSACTL_SENDFIB");
error = aac_ioctl_sendfib(sc, arg);
break;
case FSACTL_AIF_THREAD:
case FSACTL_LNX_AIF_THREAD:
debug(1, "FSACTL_AIF_THREAD");
error = EINVAL;
break;
case FSACTL_OPEN_GET_ADAPTER_FIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
/*
* Pass the caller out an AdapterFibContext.
*
* Note that because we only support one opener, we
* basically ignore this. Set the caller's context to a magic
* number just in case.
*
* The Linux code hands the driver a pointer into kernel space,
* and then trusts it when the caller hands it back. Aiee!
* Here, we give it the proc pointer of the per-adapter aif
* thread. It's only used as a sanity check in other calls.
*/
i = (int)sc->aifthread;
error = copyout(&i, arg, sizeof(i));
break;
case FSACTL_GET_NEXT_ADAPTER_FIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
error = aac_getnext_aif(sc, arg);
break;
case FSACTL_CLOSE_GET_ADAPTER_FIB:
case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
/* don't do anything here */
break;
case FSACTL_MINIPORT_REV_CHECK:
arg = *(caddr_t*)arg;
case FSACTL_LNX_MINIPORT_REV_CHECK:
debug(1, "FSACTL_MINIPORT_REV_CHECK");
error = aac_rev_check(sc, arg);
break;
case FSACTL_QUERY_DISK:
arg = *(caddr_t*)arg;
case FSACTL_LNX_QUERY_DISK:
debug(1, "FSACTL_QUERY_DISK");
error = aac_query_disk(sc, arg);
break;
case FSACTL_DELETE_DISK:
case FSACTL_LNX_DELETE_DISK:
/*
* We don't trust the underland to tell us when to delete a
* container, rather we rely on an AIF coming from the
* controller
*/
error = 0;
break;
default:
device_printf(sc->aac_dev, "unsupported cmd 0x%lx\n", cmd);
error = EINVAL;
break;
}
return(error);
}
/*
* Send a FIB supplied from userspace
*/
static int
aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
{
struct aac_command *cm;
int size, error;
debug_called(2);
cm = NULL;
/*
* Get a command
*/
if (aac_alloc_command(sc, &cm)) {
error = EBUSY;
goto out;
}
/*
* Fetch the FIB header, then re-copy to get data as well.
*/
if ((error = copyin(ufib, cm->cm_fib,
sizeof(struct aac_fib_header))) != 0)
goto out;
size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
if (size > sizeof(struct aac_fib)) {
device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
size, sizeof(struct aac_fib));
size = sizeof(struct aac_fib);
}
if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
goto out;
cm->cm_fib->Header.Size = size;
cm->cm_timestamp = time_second;
/*
* Pass the FIB to the controller, wait for it to complete.
*/
if ((error = aac_wait_command(cm, 30)) != 0) /* XXX user timeout? */
goto out;
/*
* Copy the FIB and data back out to the caller.
*/
size = cm->cm_fib->Header.Size;
if (size > sizeof(struct aac_fib)) {
device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
size, sizeof(struct aac_fib));
size = sizeof(struct aac_fib);
}
error = copyout(cm->cm_fib, ufib, size);
out:
if (cm != NULL) {
aac_release_command(cm);
}
return(error);
}
/*
* Handle an AIF sent to us by the controller; queue it for later reference.
* If the queue fills up, then drop the older entries.
*/
static void
aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
{
struct aac_aif_command *aif;
struct aac_container *co, *co_next;
struct aac_mntinfo mi;
struct aac_mntinforesponse mir;
u_int16_t rsize;
int next, s, found;
int added = 0, i = 0;
debug_called(2);
aif = (struct aac_aif_command*)&fib->data[0];
aac_print_aif(sc, aif);
/* Is it an event that we should care about? */
switch (aif->command) {
case AifCmdEventNotify:
switch (aif->data.EN.type) {
case AifEnAddContainer:
case AifEnDeleteContainer:
/*
* A container was added or deleted, but the message
* doesn't tell us anything else! Re-enumerate the
* containers and sort things out.
*/
mi.Command = VM_NameServe;
mi.MntType = FT_FILESYS;
do {
/*
* Ask the controller for its containers one at
* a time.
* XXX What if the controller's list changes
* midway through this enumaration?
* XXX This should be done async.
*/
mi.MntCount = i;
rsize = sizeof(mir);
if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
sizeof(mi), &mir, &rsize)) {
debug(2, "Error probing container %d\n",
i);
continue;
}
if (rsize != sizeof(mir)) {
debug(2, "Container response size too "
"large\n");
continue;
}
/*
* Check the container against our list.
* co->co_found was already set to 0 in a
* previous run.
*/
if ((mir.Status == ST_OK) &&
(mir.MntTable[0].VolType != CT_NONE)) {
found = 0;
TAILQ_FOREACH(co,
&sc->aac_container_tqh,
co_link) {
if (co->co_mntobj.ObjectId ==
mir.MntTable[0].ObjectId) {
co->co_found = 1;
found = 1;
break;
}
}
/*
* If the container matched, continue
* in the list.
*/
if (found) {
i++;
continue;
}
/*
* This is a new container. Do all the
* appropriate things to set it up. */
aac_add_container(sc, &mir, 1);
added = 1;
}
i++;
} while ((i < mir.MntRespCount) &&
(i < AAC_MAX_CONTAINERS));
/*
* Go through our list of containers and see which ones
* were not marked 'found'. Since the controller didn't
* list them they must have been deleted. Do the
* appropriate steps to destroy the device. Also reset
* the co->co_found field.
*/
co = TAILQ_FIRST(&sc->aac_container_tqh);
while (co != NULL) {
if (co->co_found == 0) {
device_delete_child(sc->aac_dev,
co->co_disk);
co_next = TAILQ_NEXT(co, co_link);
AAC_LOCK_AQUIRE(&sc->
aac_container_lock);
TAILQ_REMOVE(&sc->aac_container_tqh, co,
co_link);
AAC_LOCK_RELEASE(&sc->
aac_container_lock);
FREE(co, M_AACBUF);
co = co_next;
} else {
co->co_found = 0;
co = TAILQ_NEXT(co, co_link);
}
}
/* Attach the newly created containers */
if (added)
bus_generic_attach(sc->aac_dev);
break;
default:
break;
}
default:
break;
}
/* Copy the AIF data to the AIF queue for ioctl retrieval */
s = splbio();
next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
if (next != sc->aac_aifq_tail) {
bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
sc->aac_aifq_head = next;
if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
wakeup(sc->aac_aifq);
}
splx(s);
return;
}
/*
* Linux Management Interface
* This is soon to be removed!
*/
#ifdef AAC_COMPAT_LINUX
#include <sys/proc.h>
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#include <compat/linux/linux_ioctl.h>
/* There are multiple ioctl number ranges that need to be handled */
#define AAC_LINUX_IOCTL_MIN 0x0000
#define AAC_LINUX_IOCTL_MAX 0x21ff
static linux_ioctl_function_t aac_linux_ioctl;
static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
AAC_LINUX_IOCTL_MIN,
AAC_LINUX_IOCTL_MAX};
SYSINIT (aac_register, SI_SUB_KLD, SI_ORDER_MIDDLE,
linux_ioctl_register_handler, &aac_handler);
SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
linux_ioctl_unregister_handler, &aac_handler);
MODULE_DEPEND(aac, linux, 1, 1, 1);
static int
aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
{
struct file *fp;
u_long cmd;
debug_called(2);
fp = td->td_proc->p_fd->fd_ofiles[args->fd];
cmd = args->cmd;
/*
* Pass the ioctl off to our standard handler.
*/
return(fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
}
#endif
/*
* Return the Revision of the driver to userspace and check to see if the
* userspace app is possibly compatible. This is extremely bogus since
* our driver doesn't follow Adaptec's versioning system. Cheat by just
* returning what the card reported.
*/
static int
aac_rev_check(struct aac_softc *sc, caddr_t udata)
{
struct aac_rev_check rev_check;
struct aac_rev_check_resp rev_check_resp;
int error = 0;
debug_called(2);
/*
* Copyin the revision struct from userspace
*/
if ((error = copyin(udata, (caddr_t)&rev_check,
sizeof(struct aac_rev_check))) != 0) {
return error;
}
debug(2, "Userland revision= %d\n",
rev_check.callingRevision.buildNumber);
/*
* Doctor up the response struct.
*/
rev_check_resp.possiblyCompatible = 1;
rev_check_resp.adapterSWRevision.external.ul =
sc->aac_revision.external.ul;
rev_check_resp.adapterSWRevision.buildNumber =
sc->aac_revision.buildNumber;
return(copyout((caddr_t)&rev_check_resp, udata,
sizeof(struct aac_rev_check_resp)));
}
/*
* Pass the caller the next AIF in their queue
*/
static int
aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
{
struct get_adapter_fib_ioctl agf;
int error, s;
debug_called(2);
if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
/*
* Check the magic number that we gave the caller.
*/
if (agf.AdapterFibContext != (int)sc->aifthread) {
error = EFAULT;
} else {
s = splbio();
error = aac_return_aif(sc, agf.AifFib);
if ((error == EAGAIN) && (agf.Wait)) {
sc->aac_state |= AAC_STATE_AIF_SLEEPER;
while (error == EAGAIN) {
error = tsleep(sc->aac_aifq, PRIBIO |
PCATCH, "aacaif", 0);
if (error == 0)
error = aac_return_aif(sc,
agf.AifFib);
}
sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
}
splx(s);
}
}
return(error);
}
/*
* Hand the next AIF off the top of the queue out to userspace.
*/
static int
aac_return_aif(struct aac_softc *sc, caddr_t uptr)
{
int error, s;
debug_called(2);
s = splbio();
if (sc->aac_aifq_tail == sc->aac_aifq_head) {
error = EAGAIN;
} else {
error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
sizeof(struct aac_aif_command));
if (error)
printf("aac_return_aif: copyout returned %d\n", error);
if (!error)
sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
AAC_AIFQ_LENGTH;
}
splx(s);
return(error);
}
/*
* Give the userland some information about the container. The AAC arch
* expects the driver to be a SCSI passthrough type driver, so it expects
* the containers to have b:t:l numbers. Fake it.
*/
static int
aac_query_disk(struct aac_softc *sc, caddr_t uptr)
{
struct aac_query_disk query_disk;
struct aac_container *co;
struct aac_disk *disk;
int error, id;
debug_called(2);
disk = NULL;
error = copyin(uptr, (caddr_t)&query_disk,
sizeof(struct aac_query_disk));
if (error)
return (error);
id = query_disk.ContainerNumber;
if (id == -1)
return (EINVAL);
AAC_LOCK_AQUIRE(&sc->aac_container_lock);
TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
if (co->co_mntobj.ObjectId == id)
break;
}
if (co == NULL) {
query_disk.Valid = 0;
query_disk.Locked = 0;
query_disk.Deleted = 1; /* XXX is this right? */
} else {
disk = device_get_softc(co->co_disk);
query_disk.Valid = 1;
query_disk.Locked =
(disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
query_disk.Deleted = 0;
query_disk.Bus = 0;
query_disk.Target = disk->unit;
query_disk.Lun = 0;
query_disk.UnMapped = 0;
bcopy(disk->ad_dev_t->si_name,
&query_disk.diskDeviceName[0], 10);
}
AAC_LOCK_RELEASE(&sc->aac_container_lock);
error = copyout((caddr_t)&query_disk, uptr,
sizeof(struct aac_query_disk));
return (error);
}