freebsd-skq/sys/i386/include/cpufunc.h
fsmp e2310cdbcf Another round of lock pushdown.
Add a simplelock to deal with disable_intr()/enable_intr() as used in UP kernel.
UP kernel expects that this is enough to guarantee exclusive access to
regions of code bracketed by these 2 functions.
Add a simplelock to bracket clock accesses in clock.c: clock_lock.

Help from:	Bruce Evans <bde@zeta.org.au>
1997-08-30 08:08:10 +00:00

431 lines
10 KiB
C

/*-
* Copyright (c) 1993 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: cpufunc.h,v 1.69 1997/07/17 04:33:46 dyson Exp $
*/
/*
* Functions to provide access to special i386 instructions.
*/
#ifndef _MACHINE_CPUFUNC_H_
#define _MACHINE_CPUFUNC_H_
#include <sys/cdefs.h>
#include <sys/types.h>
#include <machine/lock.h>
#ifdef __GNUC__
static __inline void
breakpoint(void)
{
__asm __volatile("int $3");
}
static __inline void
disable_intr(void)
{
__asm __volatile("cli" : : : "memory");
MPINTR_LOCK();
}
static __inline void
enable_intr(void)
{
MPINTR_UNLOCK();
__asm __volatile("sti");
}
#define HAVE_INLINE_FFS
static __inline int
ffs(int mask)
{
int result;
/*
* bsfl turns out to be not all that slow on 486's. It can beaten
* using a binary search to reduce to 4 bits and then a table lookup,
* but only if the code is inlined and in the cache, and the code
* is quite large so inlining it probably busts the cache.
*
* Note that gcc-2's builtin ffs would be used if we didn't declare
* this inline or turn off the builtin. The builtin is faster but
* broken in gcc-2.4.5 and slower but working in gcc-2.5 and 2.6.
*/
__asm __volatile("testl %0,%0; je 1f; bsfl %0,%0; incl %0; 1:"
: "=r" (result) : "0" (mask));
return (result);
}
#define HAVE_INLINE_FLS
static __inline int
fls(int mask)
{
int result;
__asm __volatile("testl %0,%0; je 1f; bsrl %0,%0; incl %0; 1:"
: "=r" (result) : "0" (mask));
return (result);
}
#if __GNUC__ < 2
#define inb(port) inbv(port)
#define outb(port, data) outbv(port, data)
#else /* __GNUC >= 2 */
/*
* The following complications are to get around gcc not having a
* constraint letter for the range 0..255. We still put "d" in the
* constraint because "i" isn't a valid constraint when the port
* isn't constant. This only matters for -O0 because otherwise
* the non-working version gets optimized away.
*
* Use an expression-statement instead of a conditional expression
* because gcc-2.6.0 would promote the operands of the conditional
* and produce poor code for "if ((inb(var) & const1) == const2)".
*
* The unnecessary test `(port) < 0x10000' is to generate a warning if
* the `port' has type u_short or smaller. Such types are pessimal.
* This actually only works for signed types. The range check is
* careful to avoid generating warnings.
*/
#define inb(port) __extension__ ({ \
u_char _data; \
if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
&& (port) < 0x10000) \
_data = inbc(port); \
else \
_data = inbv(port); \
_data; })
#define outb(port, data) ( \
__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
&& (port) < 0x10000 \
? outbc(port, data) : outbv(port, data))
static __inline u_char
inbc(u_int port)
{
u_char data;
__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
return (data);
}
static __inline void
outbc(u_int port, u_char data)
{
__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
}
#endif /* __GNUC <= 2 */
static __inline u_char
inbv(u_int port)
{
u_char data;
/*
* We use %%dx and not %1 here because i/o is done at %dx and not at
* %edx, while gcc generates inferior code (movw instead of movl)
* if we tell it to load (u_short) port.
*/
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline u_long
inl(u_int port)
{
u_long data;
__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline void
insb(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insb"
: : "d" (port), "D" (addr), "c" (cnt)
: "di", "cx", "memory");
}
static __inline void
insw(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insw"
: : "d" (port), "D" (addr), "c" (cnt)
: "di", "cx", "memory");
}
static __inline void
insl(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insl"
: : "d" (port), "D" (addr), "c" (cnt)
: "di", "cx", "memory");
}
static __inline void
invd(void)
{
__asm __volatile("invd");
}
#ifdef KERNEL
#ifdef SMP
/*
* When using APIC IPI's, the inlining cost is prohibitive since the call
* executes into the IPI transmission system.
*/
void invlpg __P((u_int addr));
void invltlb __P((void));
#else /* !SMP */
static __inline void
invlpg(u_int addr)
{
__asm __volatile("invlpg (%0)" : : "r" (addr) : "memory");
}
static __inline void
invltlb(void)
{
u_long temp;
/*
* This should be implemented as load_cr3(rcr3()) when load_cr3()
* is inlined.
*/
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
: : "memory");
}
#endif /* SMP */
#endif /* KERNEL */
static __inline u_short
inw(u_int port)
{
u_short data;
__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline u_int
loadandclear(u_int *addr)
{
u_int result;
__asm __volatile("xorl %0,%0; xchgl %1,%0"
: "=&r" (result) : "m" (*addr));
return (result);
}
static __inline void
outbv(u_int port, u_char data)
{
u_char al;
/*
* Use an unnecessary assignment to help gcc's register allocator.
* This make a large difference for gcc-1.40 and a tiny difference
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
* best results. gcc-2.6.0 can't handle this.
*/
al = data;
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}
static __inline void
outl(u_int port, u_long data)
{
/*
* outl() and outw() aren't used much so we haven't looked at
* possible micro-optimizations such as the unnecessary
* assignment for them.
*/
__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
}
static __inline void
outsb(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsb"
: : "d" (port), "S" (addr), "c" (cnt)
: "si", "cx");
}
static __inline void
outsw(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsw"
: : "d" (port), "S" (addr), "c" (cnt)
: "si", "cx");
}
static __inline void
outsl(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsl"
: : "d" (port), "S" (addr), "c" (cnt)
: "si", "cx");
}
static __inline void
outw(u_int port, u_short data)
{
__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
}
static __inline u_long
rcr2(void)
{
u_long data;
__asm __volatile("movl %%cr2,%0" : "=r" (data));
return (data);
}
static __inline u_long
read_eflags(void)
{
u_long ef;
__asm __volatile("pushfl; popl %0" : "=r" (ef));
return (ef);
}
static __inline quad_t
rdmsr(u_int msr)
{
quad_t rv;
__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
return (rv);
}
static __inline quad_t
rdpmc(u_int pmc)
{
quad_t rv;
__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
return (rv);
}
static __inline quad_t
rdtsc(void)
{
quad_t rv;
__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
return (rv);
}
static __inline void
setbits(volatile unsigned *addr, u_int bits)
{
__asm __volatile(
#ifdef SMP
"lock; "
#endif
"orl %1,%0" : "=m" (*addr) : "ir" (bits));
}
static __inline void
wbinvd(void)
{
__asm __volatile("wbinvd");
}
static __inline void
write_eflags(u_long ef)
{
__asm __volatile("pushl %0; popfl" : : "r" (ef));
}
static __inline void
wrmsr(u_int msr, quad_t newval)
{
__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
}
#else /* !__GNUC__ */
int breakpoint __P((void));
void disable_intr __P((void));
void enable_intr __P((void));
u_char inb __P((u_int port));
u_long inl __P((u_int port));
void insb __P((u_int port, void *addr, size_t cnt));
void insl __P((u_int port, void *addr, size_t cnt));
void insw __P((u_int port, void *addr, size_t cnt));
void invd __P((void));
void invlpg __P((u_int addr));
void invltlb __P((void));
u_short inw __P((u_int port));
u_int loadandclear __P((u_int *addr));
void outb __P((u_int port, u_char data));
void outl __P((u_int port, u_long data));
void outsb __P((u_int port, void *addr, size_t cnt));
void outsl __P((u_int port, void *addr, size_t cnt));
void outsw __P((u_int port, void *addr, size_t cnt));
void outw __P((u_int port, u_short data));
u_long rcr2 __P((void));
quad_t rdmsr __P((u_int msr));
quad_t rdpmc __P((u_int pmc));
quad_t rdtsc __P((void));
u_long read_eflags __P((void));
void setbits __P((volatile unsigned *addr, u_int bits));
void wbinvd __P((void));
void write_eflags __P((u_long ef));
void wrmsr __P((u_int msr, quad_t newval));
#endif /* __GNUC__ */
void load_cr0 __P((u_long cr0));
void load_cr3 __P((u_long cr3));
void load_cr4 __P((u_long cr4));
void ltr __P((u_short sel));
u_int rcr0 __P((void));
u_long rcr3 __P((void));
u_long rcr4 __P((void));
#endif /* !_MACHINE_CPUFUNC_H_ */