jmallett 56248d9da8 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

140 lines
4.4 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* Interface to Core, IO and DDR Clock.
*
* <hr>$Revision: 45089 $<hr>
*/
#ifndef __CVMX_CLOCK_H__
#define __CVMX_CLOCK_H__
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-lmcx-defs.h>
#else
#include "cvmx.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* Enumeration of different Clocks in Octeon.
*/
typedef enum{
CVMX_CLOCK_RCLK, /**< Clock used by cores, coherent bus and L2 cache. */
CVMX_CLOCK_SCLK, /**< Clock used by IO blocks. */
CVMX_CLOCK_DDR, /**< Clock used by DRAM */
CVMX_CLOCK_CORE, /**< Alias for CVMX_CLOCK_RCLK */
CVMX_CLOCK_TIM, /**< Alias for CVMX_CLOCK_SCLK */
CVMX_CLOCK_IPD, /**< Alias for CVMX_CLOCK_SCLK */
} cvmx_clock_t;
/**
* Get cycle count based on the clock type.
*
* @param clock - Enumeration of the clock type.
* @return - Get the number of cycles executed so far.
*/
static inline uint64_t cvmx_clock_get_count(cvmx_clock_t clock)
{
switch(clock)
{
case CVMX_CLOCK_RCLK:
case CVMX_CLOCK_CORE:
{
#ifndef __mips__
return cvmx_read_csr(CVMX_IPD_CLK_COUNT);
#elif defined(CVMX_ABI_O32)
uint32_t tmp_low, tmp_hi;
asm volatile (
" .set push \n"
" .set mips64r2 \n"
" .set noreorder \n"
" rdhwr %[tmpl], $31 \n"
" dsrl %[tmph], %[tmpl], 32 \n"
" sll %[tmpl], 0 \n"
" sll %[tmph], 0 \n"
" .set pop \n"
: [tmpl] "=&r" (tmp_low), [tmph] "=&r" (tmp_hi) : );
return(((uint64_t)tmp_hi << 32) + tmp_low);
#else
uint64_t cycle;
CVMX_RDHWR(cycle, 31);
return(cycle);
#endif
}
case CVMX_CLOCK_SCLK:
case CVMX_CLOCK_TIM:
case CVMX_CLOCK_IPD:
return cvmx_read_csr(CVMX_IPD_CLK_COUNT);
case CVMX_CLOCK_DDR:
if (OCTEON_IS_MODEL(OCTEON_CN6XXX) || OCTEON_IS_MODEL(OCTEON_CNF7XXX))
return cvmx_read_csr(CVMX_LMCX_DCLK_CNT(0));
else
return ((cvmx_read_csr(CVMX_LMCX_DCLK_CNT_HI(0)) << 32) | cvmx_read_csr(CVMX_LMCX_DCLK_CNT_LO(0)));
}
cvmx_dprintf("cvmx_clock_get_count: Unknown clock type\n");
return 0;
}
extern uint64_t cvmx_clock_get_rate(cvmx_clock_t clock);
#ifdef __cplusplus
}
#endif
#endif /* __CVMX_CLOCK_H__ */