KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
1600 lines
42 KiB
C
1600 lines
42 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2004, 2005,
|
|
* Bosko Milekic <bmilekic@FreeBSD.org>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_param.h"
|
|
#include "opt_kern_tls.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/domainset.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
/*
|
|
* In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
|
|
* Zones.
|
|
*
|
|
* Mbuf Clusters (2K, contiguous) are allocated from the Cluster
|
|
* Zone. The Zone can be capped at kern.ipc.nmbclusters, if the
|
|
* administrator so desires.
|
|
*
|
|
* Mbufs are allocated from a UMA Master Zone called the Mbuf
|
|
* Zone.
|
|
*
|
|
* Additionally, FreeBSD provides a Packet Zone, which it
|
|
* configures as a Secondary Zone to the Mbuf Master Zone,
|
|
* thus sharing backend Slab kegs with the Mbuf Master Zone.
|
|
*
|
|
* Thus common-case allocations and locking are simplified:
|
|
*
|
|
* m_clget() m_getcl()
|
|
* | |
|
|
* | .------------>[(Packet Cache)] m_get(), m_gethdr()
|
|
* | | [ Packet ] |
|
|
* [(Cluster Cache)] [ Secondary ] [ (Mbuf Cache) ]
|
|
* [ Cluster Zone ] [ Zone ] [ Mbuf Master Zone ]
|
|
* | \________ |
|
|
* [ Cluster Keg ] \ /
|
|
* | [ Mbuf Keg ]
|
|
* [ Cluster Slabs ] |
|
|
* | [ Mbuf Slabs ]
|
|
* \____________(VM)_________________/
|
|
*
|
|
*
|
|
* Whenever an object is allocated with uma_zalloc() out of
|
|
* one of the Zones its _ctor_ function is executed. The same
|
|
* for any deallocation through uma_zfree() the _dtor_ function
|
|
* is executed.
|
|
*
|
|
* Caches are per-CPU and are filled from the Master Zone.
|
|
*
|
|
* Whenever an object is allocated from the underlying global
|
|
* memory pool it gets pre-initialized with the _zinit_ functions.
|
|
* When the Keg's are overfull objects get decommissioned with
|
|
* _zfini_ functions and free'd back to the global memory pool.
|
|
*
|
|
*/
|
|
|
|
int nmbufs; /* limits number of mbufs */
|
|
int nmbclusters; /* limits number of mbuf clusters */
|
|
int nmbjumbop; /* limits number of page size jumbo clusters */
|
|
int nmbjumbo9; /* limits number of 9k jumbo clusters */
|
|
int nmbjumbo16; /* limits number of 16k jumbo clusters */
|
|
|
|
bool mb_use_ext_pgs; /* use EXT_PGS mbufs for sendfile & TLS */
|
|
SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN,
|
|
&mb_use_ext_pgs, 0,
|
|
"Use unmapped mbufs for sendfile(2) and TLS offload");
|
|
|
|
static quad_t maxmbufmem; /* overall real memory limit for all mbufs */
|
|
|
|
SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
|
|
"Maximum real memory allocatable to various mbuf types");
|
|
|
|
static counter_u64_t snd_tag_count;
|
|
SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
|
|
&snd_tag_count, "# of active mbuf send tags");
|
|
|
|
/*
|
|
* tunable_mbinit() has to be run before any mbuf allocations are done.
|
|
*/
|
|
static void
|
|
tunable_mbinit(void *dummy)
|
|
{
|
|
quad_t realmem;
|
|
|
|
/*
|
|
* The default limit for all mbuf related memory is 1/2 of all
|
|
* available kernel memory (physical or kmem).
|
|
* At most it can be 3/4 of available kernel memory.
|
|
*/
|
|
realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
|
|
maxmbufmem = realmem / 2;
|
|
TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
|
|
if (maxmbufmem > realmem / 4 * 3)
|
|
maxmbufmem = realmem / 4 * 3;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
|
|
if (nmbclusters == 0)
|
|
nmbclusters = maxmbufmem / MCLBYTES / 4;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
|
|
if (nmbjumbop == 0)
|
|
nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
|
|
if (nmbjumbo9 == 0)
|
|
nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
|
|
if (nmbjumbo16 == 0)
|
|
nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
|
|
|
|
/*
|
|
* We need at least as many mbufs as we have clusters of
|
|
* the various types added together.
|
|
*/
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
|
|
if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
|
|
nmbufs = lmax(maxmbufmem / MSIZE / 5,
|
|
nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
|
|
}
|
|
SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
|
|
|
|
static int
|
|
sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbclusters;
|
|
|
|
newnmbclusters = nmbclusters;
|
|
error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
|
|
if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
|
|
if (newnmbclusters > nmbclusters &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbclusters = newnmbclusters;
|
|
nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
|
|
EVENTHANDLER_INVOKE(nmbclusters_change);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT|CTLFLAG_RW,
|
|
&nmbclusters, 0, sysctl_nmbclusters, "IU",
|
|
"Maximum number of mbuf clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbjumbop;
|
|
|
|
newnmbjumbop = nmbjumbop;
|
|
error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
|
|
if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
|
|
if (newnmbjumbop > nmbjumbop &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbjumbop = newnmbjumbop;
|
|
nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT|CTLFLAG_RW,
|
|
&nmbjumbop, 0, sysctl_nmbjumbop, "IU",
|
|
"Maximum number of mbuf page size jumbo clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbjumbo9;
|
|
|
|
newnmbjumbo9 = nmbjumbo9;
|
|
error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
|
|
if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
|
|
if (newnmbjumbo9 > nmbjumbo9 &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbjumbo9 = newnmbjumbo9;
|
|
nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT|CTLFLAG_RW,
|
|
&nmbjumbo9, 0, sysctl_nmbjumbo9, "IU",
|
|
"Maximum number of mbuf 9k jumbo clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbjumbo16;
|
|
|
|
newnmbjumbo16 = nmbjumbo16;
|
|
error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
|
|
if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
|
|
if (newnmbjumbo16 > nmbjumbo16 &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbjumbo16 = newnmbjumbo16;
|
|
nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT|CTLFLAG_RW,
|
|
&nmbjumbo16, 0, sysctl_nmbjumbo16, "IU",
|
|
"Maximum number of mbuf 16k jumbo clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbufs;
|
|
|
|
newnmbufs = nmbufs;
|
|
error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
|
|
if (error == 0 && req->newptr && newnmbufs != nmbufs) {
|
|
if (newnmbufs > nmbufs) {
|
|
nmbufs = newnmbufs;
|
|
nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
|
|
EVENTHANDLER_INVOKE(nmbufs_change);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT|CTLFLAG_RW,
|
|
&nmbufs, 0, sysctl_nmbufs, "IU",
|
|
"Maximum number of mbufs allowed");
|
|
|
|
/*
|
|
* Zones from which we allocate.
|
|
*/
|
|
uma_zone_t zone_mbuf;
|
|
uma_zone_t zone_clust;
|
|
uma_zone_t zone_pack;
|
|
uma_zone_t zone_jumbop;
|
|
uma_zone_t zone_jumbo9;
|
|
uma_zone_t zone_jumbo16;
|
|
uma_zone_t zone_extpgs;
|
|
|
|
/*
|
|
* Local prototypes.
|
|
*/
|
|
static int mb_ctor_mbuf(void *, int, void *, int);
|
|
static int mb_ctor_clust(void *, int, void *, int);
|
|
static int mb_ctor_pack(void *, int, void *, int);
|
|
static void mb_dtor_mbuf(void *, int, void *);
|
|
static void mb_dtor_pack(void *, int, void *);
|
|
static int mb_zinit_pack(void *, int, int);
|
|
static void mb_zfini_pack(void *, int);
|
|
static void mb_reclaim(uma_zone_t, int);
|
|
static void *mbuf_jumbo_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
|
|
|
|
/* Ensure that MSIZE is a power of 2. */
|
|
CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
|
|
|
|
_Static_assert(sizeof(struct mbuf_ext_pgs) == 256,
|
|
"mbuf_ext_pgs size mismatch");
|
|
|
|
/*
|
|
* Initialize FreeBSD Network buffer allocation.
|
|
*/
|
|
static void
|
|
mbuf_init(void *dummy)
|
|
{
|
|
|
|
/*
|
|
* Configure UMA zones for Mbufs, Clusters, and Packets.
|
|
*/
|
|
zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
|
|
mb_ctor_mbuf, mb_dtor_mbuf,
|
|
#ifdef INVARIANTS
|
|
trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL,
|
|
#endif
|
|
MSIZE - 1, UMA_ZONE_MAXBUCKET);
|
|
if (nmbufs > 0)
|
|
nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
|
|
uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
|
|
uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
|
|
|
|
zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
|
|
mb_ctor_clust,
|
|
#ifdef INVARIANTS
|
|
trash_dtor, trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, 0);
|
|
if (nmbclusters > 0)
|
|
nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
|
|
uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
|
|
uma_zone_set_maxaction(zone_clust, mb_reclaim);
|
|
|
|
zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
|
|
mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
|
|
|
|
/* Make jumbo frame zone too. Page size, 9k and 16k. */
|
|
zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
|
|
mb_ctor_clust,
|
|
#ifdef INVARIANTS
|
|
trash_dtor, trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, 0);
|
|
if (nmbjumbop > 0)
|
|
nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
|
|
uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
|
|
uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
|
|
|
|
zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
|
|
mb_ctor_clust,
|
|
#ifdef INVARIANTS
|
|
trash_dtor, trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, 0);
|
|
uma_zone_set_allocf(zone_jumbo9, mbuf_jumbo_alloc);
|
|
if (nmbjumbo9 > 0)
|
|
nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
|
|
uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
|
|
uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
|
|
|
|
zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
|
|
mb_ctor_clust,
|
|
#ifdef INVARIANTS
|
|
trash_dtor, trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, 0);
|
|
uma_zone_set_allocf(zone_jumbo16, mbuf_jumbo_alloc);
|
|
if (nmbjumbo16 > 0)
|
|
nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
|
|
uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
|
|
uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
|
|
|
|
zone_extpgs = uma_zcreate(MBUF_EXTPGS_MEM_NAME,
|
|
sizeof(struct mbuf_ext_pgs),
|
|
#ifdef INVARIANTS
|
|
trash_ctor, trash_dtor, trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_CACHE, 0);
|
|
|
|
/*
|
|
* Hook event handler for low-memory situation, used to
|
|
* drain protocols and push data back to the caches (UMA
|
|
* later pushes it back to VM).
|
|
*/
|
|
EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
|
|
EVENTHANDLER_PRI_FIRST);
|
|
|
|
snd_tag_count = counter_u64_alloc(M_WAITOK);
|
|
}
|
|
SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
|
|
|
|
#ifdef NETDUMP
|
|
/*
|
|
* netdump makes use of a pre-allocated pool of mbufs and clusters. When
|
|
* netdump is configured, we initialize a set of UMA cache zones which return
|
|
* items from this pool. At panic-time, the regular UMA zone pointers are
|
|
* overwritten with those of the cache zones so that drivers may allocate and
|
|
* free mbufs and clusters without attempting to allocate physical memory.
|
|
*
|
|
* We keep mbufs and clusters in a pair of mbuf queues. In particular, for
|
|
* the purpose of caching clusters, we treat them as mbufs.
|
|
*/
|
|
static struct mbufq nd_mbufq =
|
|
{ STAILQ_HEAD_INITIALIZER(nd_mbufq.mq_head), 0, INT_MAX };
|
|
static struct mbufq nd_clustq =
|
|
{ STAILQ_HEAD_INITIALIZER(nd_clustq.mq_head), 0, INT_MAX };
|
|
|
|
static int nd_clsize;
|
|
static uma_zone_t nd_zone_mbuf;
|
|
static uma_zone_t nd_zone_clust;
|
|
static uma_zone_t nd_zone_pack;
|
|
|
|
static int
|
|
nd_buf_import(void *arg, void **store, int count, int domain __unused,
|
|
int flags)
|
|
{
|
|
struct mbufq *q;
|
|
struct mbuf *m;
|
|
int i;
|
|
|
|
q = arg;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = mbufq_dequeue(q);
|
|
if (m == NULL)
|
|
break;
|
|
trash_init(m, q == &nd_mbufq ? MSIZE : nd_clsize, flags);
|
|
store[i] = m;
|
|
}
|
|
KASSERT((flags & M_WAITOK) == 0 || i == count,
|
|
("%s: ran out of pre-allocated mbufs", __func__));
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
nd_buf_release(void *arg, void **store, int count)
|
|
{
|
|
struct mbufq *q;
|
|
struct mbuf *m;
|
|
int i;
|
|
|
|
q = arg;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = store[i];
|
|
(void)mbufq_enqueue(q, m);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nd_pack_import(void *arg __unused, void **store, int count, int domain __unused,
|
|
int flags __unused)
|
|
{
|
|
struct mbuf *m;
|
|
void *clust;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = m_get(MT_DATA, M_NOWAIT);
|
|
if (m == NULL)
|
|
break;
|
|
clust = uma_zalloc(nd_zone_clust, M_NOWAIT);
|
|
if (clust == NULL) {
|
|
m_free(m);
|
|
break;
|
|
}
|
|
mb_ctor_clust(clust, nd_clsize, m, 0);
|
|
store[i] = m;
|
|
}
|
|
KASSERT((flags & M_WAITOK) == 0 || i == count,
|
|
("%s: ran out of pre-allocated mbufs", __func__));
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
nd_pack_release(void *arg __unused, void **store, int count)
|
|
{
|
|
struct mbuf *m;
|
|
void *clust;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = store[i];
|
|
clust = m->m_ext.ext_buf;
|
|
uma_zfree(nd_zone_clust, clust);
|
|
uma_zfree(nd_zone_mbuf, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free the pre-allocated mbufs and clusters reserved for netdump, and destroy
|
|
* the corresponding UMA cache zones.
|
|
*/
|
|
void
|
|
netdump_mbuf_drain(void)
|
|
{
|
|
struct mbuf *m;
|
|
void *item;
|
|
|
|
if (nd_zone_mbuf != NULL) {
|
|
uma_zdestroy(nd_zone_mbuf);
|
|
nd_zone_mbuf = NULL;
|
|
}
|
|
if (nd_zone_clust != NULL) {
|
|
uma_zdestroy(nd_zone_clust);
|
|
nd_zone_clust = NULL;
|
|
}
|
|
if (nd_zone_pack != NULL) {
|
|
uma_zdestroy(nd_zone_pack);
|
|
nd_zone_pack = NULL;
|
|
}
|
|
|
|
while ((m = mbufq_dequeue(&nd_mbufq)) != NULL)
|
|
m_free(m);
|
|
while ((item = mbufq_dequeue(&nd_clustq)) != NULL)
|
|
uma_zfree(m_getzone(nd_clsize), item);
|
|
}
|
|
|
|
/*
|
|
* Callback invoked immediately prior to starting a netdump.
|
|
*/
|
|
void
|
|
netdump_mbuf_dump(void)
|
|
{
|
|
|
|
/*
|
|
* All cluster zones return buffers of the size requested by the
|
|
* drivers. It's up to the driver to reinitialize the zones if the
|
|
* MTU of a netdump-enabled interface changes.
|
|
*/
|
|
printf("netdump: overwriting mbuf zone pointers\n");
|
|
zone_mbuf = nd_zone_mbuf;
|
|
zone_clust = nd_zone_clust;
|
|
zone_pack = nd_zone_pack;
|
|
zone_jumbop = nd_zone_clust;
|
|
zone_jumbo9 = nd_zone_clust;
|
|
zone_jumbo16 = nd_zone_clust;
|
|
}
|
|
|
|
/*
|
|
* Reinitialize the netdump mbuf+cluster pool and cache zones.
|
|
*/
|
|
void
|
|
netdump_mbuf_reinit(int nmbuf, int nclust, int clsize)
|
|
{
|
|
struct mbuf *m;
|
|
void *item;
|
|
|
|
netdump_mbuf_drain();
|
|
|
|
nd_clsize = clsize;
|
|
|
|
nd_zone_mbuf = uma_zcache_create("netdump_" MBUF_MEM_NAME,
|
|
MSIZE, mb_ctor_mbuf, mb_dtor_mbuf,
|
|
#ifdef INVARIANTS
|
|
trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL,
|
|
#endif
|
|
nd_buf_import, nd_buf_release,
|
|
&nd_mbufq, UMA_ZONE_NOBUCKET);
|
|
|
|
nd_zone_clust = uma_zcache_create("netdump_" MBUF_CLUSTER_MEM_NAME,
|
|
clsize, mb_ctor_clust,
|
|
#ifdef INVARIANTS
|
|
trash_dtor, trash_init, trash_fini,
|
|
#else
|
|
NULL, NULL, NULL,
|
|
#endif
|
|
nd_buf_import, nd_buf_release,
|
|
&nd_clustq, UMA_ZONE_NOBUCKET);
|
|
|
|
nd_zone_pack = uma_zcache_create("netdump_" MBUF_PACKET_MEM_NAME,
|
|
MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
|
|
nd_pack_import, nd_pack_release,
|
|
NULL, UMA_ZONE_NOBUCKET);
|
|
|
|
while (nmbuf-- > 0) {
|
|
m = m_get(MT_DATA, M_WAITOK);
|
|
uma_zfree(nd_zone_mbuf, m);
|
|
}
|
|
while (nclust-- > 0) {
|
|
item = uma_zalloc(m_getzone(nd_clsize), M_WAITOK);
|
|
uma_zfree(nd_zone_clust, item);
|
|
}
|
|
}
|
|
#endif /* NETDUMP */
|
|
|
|
/*
|
|
* UMA backend page allocator for the jumbo frame zones.
|
|
*
|
|
* Allocates kernel virtual memory that is backed by contiguous physical
|
|
* pages.
|
|
*/
|
|
static void *
|
|
mbuf_jumbo_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
|
|
int wait)
|
|
{
|
|
|
|
/* Inform UMA that this allocator uses kernel_map/object. */
|
|
*flags = UMA_SLAB_KERNEL;
|
|
return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
|
|
bytes, wait, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
|
|
VM_MEMATTR_DEFAULT));
|
|
}
|
|
|
|
/*
|
|
* Constructor for Mbuf master zone.
|
|
*
|
|
* The 'arg' pointer points to a mb_args structure which
|
|
* contains call-specific information required to support the
|
|
* mbuf allocation API. See mbuf.h.
|
|
*/
|
|
static int
|
|
mb_ctor_mbuf(void *mem, int size, void *arg, int how)
|
|
{
|
|
struct mbuf *m;
|
|
struct mb_args *args;
|
|
int error;
|
|
int flags;
|
|
short type;
|
|
|
|
#ifdef INVARIANTS
|
|
trash_ctor(mem, size, arg, how);
|
|
#endif
|
|
args = (struct mb_args *)arg;
|
|
type = args->type;
|
|
|
|
/*
|
|
* The mbuf is initialized later. The caller has the
|
|
* responsibility to set up any MAC labels too.
|
|
*/
|
|
if (type == MT_NOINIT)
|
|
return (0);
|
|
|
|
m = (struct mbuf *)mem;
|
|
flags = args->flags;
|
|
MPASS((flags & M_NOFREE) == 0);
|
|
|
|
error = m_init(m, how, type, flags);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The Mbuf master zone destructor.
|
|
*/
|
|
static void
|
|
mb_dtor_mbuf(void *mem, int size, void *arg)
|
|
{
|
|
struct mbuf *m;
|
|
unsigned long flags;
|
|
|
|
m = (struct mbuf *)mem;
|
|
flags = (unsigned long)arg;
|
|
|
|
KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
|
|
if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
|
|
m_tag_delete_chain(m, NULL);
|
|
#ifdef INVARIANTS
|
|
trash_dtor(mem, size, arg);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The Mbuf Packet zone destructor.
|
|
*/
|
|
static void
|
|
mb_dtor_pack(void *mem, int size, void *arg)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)mem;
|
|
if ((m->m_flags & M_PKTHDR) != 0)
|
|
m_tag_delete_chain(m, NULL);
|
|
|
|
/* Make sure we've got a clean cluster back. */
|
|
KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
|
|
KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
|
|
KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
|
|
KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
|
|
KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
|
|
KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
|
|
KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
|
|
#ifdef INVARIANTS
|
|
trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
|
|
#endif
|
|
/*
|
|
* If there are processes blocked on zone_clust, waiting for pages
|
|
* to be freed up, * cause them to be woken up by draining the
|
|
* packet zone. We are exposed to a race here * (in the check for
|
|
* the UMA_ZFLAG_FULL) where we might miss the flag set, but that
|
|
* is deliberate. We don't want to acquire the zone lock for every
|
|
* mbuf free.
|
|
*/
|
|
if (uma_zone_exhausted_nolock(zone_clust))
|
|
zone_drain(zone_pack);
|
|
}
|
|
|
|
/*
|
|
* The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
|
|
*
|
|
* Here the 'arg' pointer points to the Mbuf which we
|
|
* are configuring cluster storage for. If 'arg' is
|
|
* empty we allocate just the cluster without setting
|
|
* the mbuf to it. See mbuf.h.
|
|
*/
|
|
static int
|
|
mb_ctor_clust(void *mem, int size, void *arg, int how)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
#ifdef INVARIANTS
|
|
trash_ctor(mem, size, arg, how);
|
|
#endif
|
|
m = (struct mbuf *)arg;
|
|
if (m != NULL) {
|
|
m->m_ext.ext_buf = (char *)mem;
|
|
m->m_data = m->m_ext.ext_buf;
|
|
m->m_flags |= M_EXT;
|
|
m->m_ext.ext_free = NULL;
|
|
m->m_ext.ext_arg1 = NULL;
|
|
m->m_ext.ext_arg2 = NULL;
|
|
m->m_ext.ext_size = size;
|
|
m->m_ext.ext_type = m_gettype(size);
|
|
m->m_ext.ext_flags = EXT_FLAG_EMBREF;
|
|
m->m_ext.ext_count = 1;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The Packet secondary zone's init routine, executed on the
|
|
* object's transition from mbuf keg slab to zone cache.
|
|
*/
|
|
static int
|
|
mb_zinit_pack(void *mem, int size, int how)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)mem; /* m is virgin. */
|
|
if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
|
|
m->m_ext.ext_buf == NULL)
|
|
return (ENOMEM);
|
|
m->m_ext.ext_type = EXT_PACKET; /* Override. */
|
|
#ifdef INVARIANTS
|
|
trash_init(m->m_ext.ext_buf, MCLBYTES, how);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The Packet secondary zone's fini routine, executed on the
|
|
* object's transition from zone cache to keg slab.
|
|
*/
|
|
static void
|
|
mb_zfini_pack(void *mem, int size)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)mem;
|
|
#ifdef INVARIANTS
|
|
trash_fini(m->m_ext.ext_buf, MCLBYTES);
|
|
#endif
|
|
uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
|
|
#ifdef INVARIANTS
|
|
trash_dtor(mem, size, NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The "packet" keg constructor.
|
|
*/
|
|
static int
|
|
mb_ctor_pack(void *mem, int size, void *arg, int how)
|
|
{
|
|
struct mbuf *m;
|
|
struct mb_args *args;
|
|
int error, flags;
|
|
short type;
|
|
|
|
m = (struct mbuf *)mem;
|
|
args = (struct mb_args *)arg;
|
|
flags = args->flags;
|
|
type = args->type;
|
|
MPASS((flags & M_NOFREE) == 0);
|
|
|
|
#ifdef INVARIANTS
|
|
trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
|
|
#endif
|
|
|
|
error = m_init(m, how, type, flags);
|
|
|
|
/* m_ext is already initialized. */
|
|
m->m_data = m->m_ext.ext_buf;
|
|
m->m_flags = (flags | M_EXT);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This is the protocol drain routine. Called by UMA whenever any of the
|
|
* mbuf zones is closed to its limit.
|
|
*
|
|
* No locks should be held when this is called. The drain routines have to
|
|
* presently acquire some locks which raises the possibility of lock order
|
|
* reversal.
|
|
*/
|
|
static void
|
|
mb_reclaim(uma_zone_t zone __unused, int pending __unused)
|
|
{
|
|
struct domain *dp;
|
|
struct protosw *pr;
|
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
|
|
|
|
for (dp = domains; dp != NULL; dp = dp->dom_next)
|
|
for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
|
|
if (pr->pr_drain != NULL)
|
|
(*pr->pr_drain)();
|
|
}
|
|
|
|
/*
|
|
* Free "count" units of I/O from an mbuf chain. They could be held
|
|
* in EXT_PGS or just as a normal mbuf. This code is intended to be
|
|
* called in an error path (I/O error, closed connection, etc).
|
|
*/
|
|
void
|
|
mb_free_notready(struct mbuf *m, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count && m != NULL; i++) {
|
|
if ((m->m_flags & M_EXT) != 0 &&
|
|
m->m_ext.ext_type == EXT_PGS) {
|
|
m->m_ext.ext_pgs->nrdy--;
|
|
if (m->m_ext.ext_pgs->nrdy != 0)
|
|
continue;
|
|
}
|
|
m = m_free(m);
|
|
}
|
|
KASSERT(i == count, ("Removed only %d items from %p", i, m));
|
|
}
|
|
|
|
/*
|
|
* Compress an unmapped mbuf into a simple mbuf when it holds a small
|
|
* amount of data. This is used as a DOS defense to avoid having
|
|
* small packets tie up wired pages, an ext_pgs structure, and an
|
|
* mbuf. Since this converts the existing mbuf in place, it can only
|
|
* be used if there are no other references to 'm'.
|
|
*/
|
|
int
|
|
mb_unmapped_compress(struct mbuf *m)
|
|
{
|
|
volatile u_int *refcnt;
|
|
struct mbuf m_temp;
|
|
|
|
/*
|
|
* Assert that 'm' does not have a packet header. If 'm' had
|
|
* a packet header, it would only be able to hold MHLEN bytes
|
|
* and m_data would have to be initialized differently.
|
|
*/
|
|
KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXT) &&
|
|
m->m_ext.ext_type == EXT_PGS,
|
|
("%s: m %p !M_EXT or !EXT_PGS or M_PKTHDR", __func__, m));
|
|
KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
|
|
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
}
|
|
|
|
if (*refcnt != 1)
|
|
return (EBUSY);
|
|
|
|
/*
|
|
* Copy mbuf header and m_ext portion of 'm' to 'm_temp' to
|
|
* create a "fake" EXT_PGS mbuf that can be used with
|
|
* m_copydata() as well as the ext_free callback.
|
|
*/
|
|
memcpy(&m_temp, m, offsetof(struct mbuf, m_ext) + sizeof (m->m_ext));
|
|
m_temp.m_next = NULL;
|
|
m_temp.m_nextpkt = NULL;
|
|
|
|
/* Turn 'm' into a "normal" mbuf. */
|
|
m->m_flags &= ~(M_EXT | M_RDONLY | M_NOMAP);
|
|
m->m_data = m->m_dat;
|
|
|
|
/* Copy data from template's ext_pgs. */
|
|
m_copydata(&m_temp, 0, m_temp.m_len, mtod(m, caddr_t));
|
|
|
|
/* Free the backing pages. */
|
|
m_temp.m_ext.ext_free(&m_temp);
|
|
|
|
/* Finally, free the ext_pgs struct. */
|
|
uma_zfree(zone_extpgs, m_temp.m_ext.ext_pgs);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* These next few routines are used to permit downgrading an unmapped
|
|
* mbuf to a chain of mapped mbufs. This is used when an interface
|
|
* doesn't supported unmapped mbufs or if checksums need to be
|
|
* computed in software.
|
|
*
|
|
* Each unmapped mbuf is converted to a chain of mbufs. First, any
|
|
* TLS header data is stored in a regular mbuf. Second, each page of
|
|
* unmapped data is stored in an mbuf with an EXT_SFBUF external
|
|
* cluster. These mbufs use an sf_buf to provide a valid KVA for the
|
|
* associated physical page. They also hold a reference on the
|
|
* original EXT_PGS mbuf to ensure the physical page doesn't go away.
|
|
* Finally, any TLS trailer data is stored in a regular mbuf.
|
|
*
|
|
* mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
|
|
* mbufs. It frees the associated sf_buf and releases its reference
|
|
* on the original EXT_PGS mbuf.
|
|
*
|
|
* _mb_unmapped_to_ext() is a helper function that converts a single
|
|
* unmapped mbuf into a chain of mbufs.
|
|
*
|
|
* mb_unmapped_to_ext() is the public function that walks an mbuf
|
|
* chain converting any unmapped mbufs to mapped mbufs. It returns
|
|
* the new chain of unmapped mbufs on success. On failure it frees
|
|
* the original mbuf chain and returns NULL.
|
|
*/
|
|
static void
|
|
mb_unmapped_free_mext(struct mbuf *m)
|
|
{
|
|
struct sf_buf *sf;
|
|
struct mbuf *old_m;
|
|
|
|
sf = m->m_ext.ext_arg1;
|
|
sf_buf_free(sf);
|
|
|
|
/* Drop the reference on the backing EXT_PGS mbuf. */
|
|
old_m = m->m_ext.ext_arg2;
|
|
mb_free_ext(old_m);
|
|
}
|
|
|
|
static struct mbuf *
|
|
_mb_unmapped_to_ext(struct mbuf *m)
|
|
{
|
|
struct mbuf_ext_pgs *ext_pgs;
|
|
struct mbuf *m_new, *top, *prev, *mref;
|
|
struct sf_buf *sf;
|
|
vm_page_t pg;
|
|
int i, len, off, pglen, pgoff, seglen, segoff;
|
|
volatile u_int *refcnt;
|
|
u_int ref_inc = 0;
|
|
|
|
MBUF_EXT_PGS_ASSERT(m);
|
|
ext_pgs = m->m_ext.ext_pgs;
|
|
len = m->m_len;
|
|
KASSERT(ext_pgs->tls == NULL, ("%s: can't convert TLS mbuf %p",
|
|
__func__, m));
|
|
|
|
/* See if this is the mbuf that holds the embedded refcount. */
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
mref = m;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
|
|
}
|
|
|
|
/* Skip over any data removed from the front. */
|
|
off = mtod(m, vm_offset_t);
|
|
|
|
top = NULL;
|
|
if (ext_pgs->hdr_len != 0) {
|
|
if (off >= ext_pgs->hdr_len) {
|
|
off -= ext_pgs->hdr_len;
|
|
} else {
|
|
seglen = ext_pgs->hdr_len - off;
|
|
segoff = off;
|
|
seglen = min(seglen, len);
|
|
off = 0;
|
|
len -= seglen;
|
|
m_new = m_get(M_NOWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
goto fail;
|
|
m_new->m_len = seglen;
|
|
prev = top = m_new;
|
|
memcpy(mtod(m_new, void *), &ext_pgs->hdr[segoff],
|
|
seglen);
|
|
}
|
|
}
|
|
pgoff = ext_pgs->first_pg_off;
|
|
for (i = 0; i < ext_pgs->npgs && len > 0; i++) {
|
|
pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff);
|
|
if (off >= pglen) {
|
|
off -= pglen;
|
|
pgoff = 0;
|
|
continue;
|
|
}
|
|
seglen = pglen - off;
|
|
segoff = pgoff + off;
|
|
off = 0;
|
|
seglen = min(seglen, len);
|
|
len -= seglen;
|
|
|
|
pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]);
|
|
m_new = m_get(M_NOWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
goto fail;
|
|
if (top == NULL) {
|
|
top = prev = m_new;
|
|
} else {
|
|
prev->m_next = m_new;
|
|
prev = m_new;
|
|
}
|
|
sf = sf_buf_alloc(pg, SFB_NOWAIT);
|
|
if (sf == NULL)
|
|
goto fail;
|
|
|
|
ref_inc++;
|
|
m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
|
|
mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
|
|
m_new->m_data += segoff;
|
|
m_new->m_len = seglen;
|
|
|
|
pgoff = 0;
|
|
};
|
|
if (len != 0) {
|
|
KASSERT((off + len) <= ext_pgs->trail_len,
|
|
("off + len > trail (%d + %d > %d)", off, len,
|
|
ext_pgs->trail_len));
|
|
m_new = m_get(M_NOWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
goto fail;
|
|
if (top == NULL)
|
|
top = m_new;
|
|
else
|
|
prev->m_next = m_new;
|
|
m_new->m_len = len;
|
|
memcpy(mtod(m_new, void *), &ext_pgs->trail[off], len);
|
|
}
|
|
|
|
if (ref_inc != 0) {
|
|
/*
|
|
* Obtain an additional reference on the old mbuf for
|
|
* each created EXT_SFBUF mbuf. They will be dropped
|
|
* in mb_unmapped_free_mext().
|
|
*/
|
|
if (*refcnt == 1)
|
|
*refcnt += ref_inc;
|
|
else
|
|
atomic_add_int(refcnt, ref_inc);
|
|
}
|
|
m_free(m);
|
|
return (top);
|
|
|
|
fail:
|
|
if (ref_inc != 0) {
|
|
/*
|
|
* Obtain an additional reference on the old mbuf for
|
|
* each created EXT_SFBUF mbuf. They will be
|
|
* immediately dropped when these mbufs are freed
|
|
* below.
|
|
*/
|
|
if (*refcnt == 1)
|
|
*refcnt += ref_inc;
|
|
else
|
|
atomic_add_int(refcnt, ref_inc);
|
|
}
|
|
m_free(m);
|
|
m_freem(top);
|
|
return (NULL);
|
|
}
|
|
|
|
struct mbuf *
|
|
mb_unmapped_to_ext(struct mbuf *top)
|
|
{
|
|
struct mbuf *m, *next, *prev = NULL;
|
|
|
|
prev = NULL;
|
|
for (m = top; m != NULL; m = next) {
|
|
/* m might be freed, so cache the next pointer. */
|
|
next = m->m_next;
|
|
if (m->m_flags & M_NOMAP) {
|
|
if (prev != NULL) {
|
|
/*
|
|
* Remove 'm' from the new chain so
|
|
* that the 'top' chain terminates
|
|
* before 'm' in case 'top' is freed
|
|
* due to an error.
|
|
*/
|
|
prev->m_next = NULL;
|
|
}
|
|
m = _mb_unmapped_to_ext(m);
|
|
if (m == NULL) {
|
|
m_freem(top);
|
|
m_freem(next);
|
|
return (NULL);
|
|
}
|
|
if (prev == NULL) {
|
|
top = m;
|
|
} else {
|
|
prev->m_next = m;
|
|
}
|
|
|
|
/*
|
|
* Replaced one mbuf with a chain, so we must
|
|
* find the end of chain.
|
|
*/
|
|
prev = m_last(m);
|
|
} else {
|
|
if (prev != NULL) {
|
|
prev->m_next = m;
|
|
}
|
|
prev = m;
|
|
}
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Allocate an empty EXT_PGS mbuf. The ext_free routine is
|
|
* responsible for freeing any pages backing this mbuf when it is
|
|
* freed.
|
|
*/
|
|
struct mbuf *
|
|
mb_alloc_ext_pgs(int how, bool pkthdr, m_ext_free_t ext_free)
|
|
{
|
|
struct mbuf *m;
|
|
struct mbuf_ext_pgs *ext_pgs;
|
|
|
|
if (pkthdr)
|
|
m = m_gethdr(how, MT_DATA);
|
|
else
|
|
m = m_get(how, MT_DATA);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
ext_pgs = uma_zalloc(zone_extpgs, how);
|
|
if (ext_pgs == NULL) {
|
|
m_free(m);
|
|
return (NULL);
|
|
}
|
|
ext_pgs->npgs = 0;
|
|
ext_pgs->nrdy = 0;
|
|
ext_pgs->first_pg_off = 0;
|
|
ext_pgs->last_pg_len = 0;
|
|
ext_pgs->hdr_len = 0;
|
|
ext_pgs->trail_len = 0;
|
|
ext_pgs->tls = NULL;
|
|
ext_pgs->so = NULL;
|
|
m->m_data = NULL;
|
|
m->m_flags |= (M_EXT | M_RDONLY | M_NOMAP);
|
|
m->m_ext.ext_type = EXT_PGS;
|
|
m->m_ext.ext_flags = EXT_FLAG_EMBREF;
|
|
m->m_ext.ext_count = 1;
|
|
m->m_ext.ext_pgs = ext_pgs;
|
|
m->m_ext.ext_size = 0;
|
|
m->m_ext.ext_free = ext_free;
|
|
return (m);
|
|
}
|
|
|
|
#ifdef INVARIANT_SUPPORT
|
|
void
|
|
mb_ext_pgs_check(struct mbuf_ext_pgs *ext_pgs)
|
|
{
|
|
|
|
/*
|
|
* NB: This expects a non-empty buffer (npgs > 0 and
|
|
* last_pg_len > 0).
|
|
*/
|
|
KASSERT(ext_pgs->npgs > 0,
|
|
("ext_pgs with no valid pages: %p", ext_pgs));
|
|
KASSERT(ext_pgs->npgs <= nitems(ext_pgs->pa),
|
|
("ext_pgs with too many pages: %p", ext_pgs));
|
|
KASSERT(ext_pgs->nrdy <= ext_pgs->npgs,
|
|
("ext_pgs with too many ready pages: %p", ext_pgs));
|
|
KASSERT(ext_pgs->first_pg_off < PAGE_SIZE,
|
|
("ext_pgs with too large page offset: %p", ext_pgs));
|
|
KASSERT(ext_pgs->last_pg_len > 0,
|
|
("ext_pgs with zero last page length: %p", ext_pgs));
|
|
KASSERT(ext_pgs->last_pg_len <= PAGE_SIZE,
|
|
("ext_pgs with too large last page length: %p", ext_pgs));
|
|
if (ext_pgs->npgs == 1) {
|
|
KASSERT(ext_pgs->first_pg_off + ext_pgs->last_pg_len <=
|
|
PAGE_SIZE, ("ext_pgs with single page too large: %p",
|
|
ext_pgs));
|
|
}
|
|
KASSERT(ext_pgs->hdr_len <= sizeof(ext_pgs->hdr),
|
|
("ext_pgs with too large header length: %p", ext_pgs));
|
|
KASSERT(ext_pgs->trail_len <= sizeof(ext_pgs->trail),
|
|
("ext_pgs with too large header length: %p", ext_pgs));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Clean up after mbufs with M_EXT storage attached to them if the
|
|
* reference count hits 1.
|
|
*/
|
|
void
|
|
mb_free_ext(struct mbuf *m)
|
|
{
|
|
volatile u_int *refcnt;
|
|
struct mbuf *mref;
|
|
int freembuf;
|
|
|
|
KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
|
|
|
|
/* See if this is the mbuf that holds the embedded refcount. */
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
mref = m;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
|
|
}
|
|
|
|
/*
|
|
* Check if the header is embedded in the cluster. It is
|
|
* important that we can't touch any of the mbuf fields
|
|
* after we have freed the external storage, since mbuf
|
|
* could have been embedded in it. For now, the mbufs
|
|
* embedded into the cluster are always of type EXT_EXTREF,
|
|
* and for this type we won't free the mref.
|
|
*/
|
|
if (m->m_flags & M_NOFREE) {
|
|
freembuf = 0;
|
|
KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
|
|
m->m_ext.ext_type == EXT_RXRING,
|
|
("%s: no-free mbuf %p has wrong type", __func__, m));
|
|
} else
|
|
freembuf = 1;
|
|
|
|
/* Free attached storage if this mbuf is the only reference to it. */
|
|
if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
|
|
switch (m->m_ext.ext_type) {
|
|
case EXT_PACKET:
|
|
/* The packet zone is special. */
|
|
if (*refcnt == 0)
|
|
*refcnt = 1;
|
|
uma_zfree(zone_pack, mref);
|
|
break;
|
|
case EXT_CLUSTER:
|
|
uma_zfree(zone_clust, m->m_ext.ext_buf);
|
|
uma_zfree(zone_mbuf, mref);
|
|
break;
|
|
case EXT_JUMBOP:
|
|
uma_zfree(zone_jumbop, m->m_ext.ext_buf);
|
|
uma_zfree(zone_mbuf, mref);
|
|
break;
|
|
case EXT_JUMBO9:
|
|
uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
|
|
uma_zfree(zone_mbuf, mref);
|
|
break;
|
|
case EXT_JUMBO16:
|
|
uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
|
|
uma_zfree(zone_mbuf, mref);
|
|
break;
|
|
case EXT_PGS: {
|
|
#ifdef KERN_TLS
|
|
struct mbuf_ext_pgs *pgs;
|
|
struct ktls_session *tls;
|
|
#endif
|
|
|
|
KASSERT(mref->m_ext.ext_free != NULL,
|
|
("%s: ext_free not set", __func__));
|
|
mref->m_ext.ext_free(mref);
|
|
#ifdef KERN_TLS
|
|
pgs = mref->m_ext.ext_pgs;
|
|
tls = pgs->tls;
|
|
if (tls != NULL &&
|
|
!refcount_release_if_not_last(&tls->refcount))
|
|
ktls_enqueue_to_free(pgs);
|
|
else
|
|
#endif
|
|
uma_zfree(zone_extpgs, mref->m_ext.ext_pgs);
|
|
uma_zfree(zone_mbuf, mref);
|
|
break;
|
|
}
|
|
case EXT_SFBUF:
|
|
case EXT_NET_DRV:
|
|
case EXT_MOD_TYPE:
|
|
case EXT_DISPOSABLE:
|
|
KASSERT(mref->m_ext.ext_free != NULL,
|
|
("%s: ext_free not set", __func__));
|
|
mref->m_ext.ext_free(mref);
|
|
uma_zfree(zone_mbuf, mref);
|
|
break;
|
|
case EXT_EXTREF:
|
|
KASSERT(m->m_ext.ext_free != NULL,
|
|
("%s: ext_free not set", __func__));
|
|
m->m_ext.ext_free(m);
|
|
break;
|
|
case EXT_RXRING:
|
|
KASSERT(m->m_ext.ext_free == NULL,
|
|
("%s: ext_free is set", __func__));
|
|
break;
|
|
default:
|
|
KASSERT(m->m_ext.ext_type == 0,
|
|
("%s: unknown ext_type", __func__));
|
|
}
|
|
}
|
|
|
|
if (freembuf && m != mref)
|
|
uma_zfree(zone_mbuf, m);
|
|
}
|
|
|
|
/*
|
|
* Official mbuf(9) allocation KPI for stack and drivers:
|
|
*
|
|
* m_get() - a single mbuf without any attachments, sys/mbuf.h.
|
|
* m_gethdr() - a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
|
|
* m_getcl() - an mbuf + 2k cluster, sys/mbuf.h.
|
|
* m_clget() - attach cluster to already allocated mbuf.
|
|
* m_cljget() - attach jumbo cluster to already allocated mbuf.
|
|
* m_get2() - allocate minimum mbuf that would fit size argument.
|
|
* m_getm2() - allocate a chain of mbufs/clusters.
|
|
* m_extadd() - attach external cluster to mbuf.
|
|
*
|
|
* m_free() - free single mbuf with its tags and ext, sys/mbuf.h.
|
|
* m_freem() - free chain of mbufs.
|
|
*/
|
|
|
|
int
|
|
m_clget(struct mbuf *m, int how)
|
|
{
|
|
|
|
KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
|
|
__func__, m));
|
|
m->m_ext.ext_buf = (char *)NULL;
|
|
uma_zalloc_arg(zone_clust, m, how);
|
|
/*
|
|
* On a cluster allocation failure, drain the packet zone and retry,
|
|
* we might be able to loosen a few clusters up on the drain.
|
|
*/
|
|
if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
|
|
zone_drain(zone_pack);
|
|
uma_zalloc_arg(zone_clust, m, how);
|
|
}
|
|
MBUF_PROBE2(m__clget, m, how);
|
|
return (m->m_flags & M_EXT);
|
|
}
|
|
|
|
/*
|
|
* m_cljget() is different from m_clget() as it can allocate clusters without
|
|
* attaching them to an mbuf. In that case the return value is the pointer
|
|
* to the cluster of the requested size. If an mbuf was specified, it gets
|
|
* the cluster attached to it and the return value can be safely ignored.
|
|
* For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
|
|
*/
|
|
void *
|
|
m_cljget(struct mbuf *m, int how, int size)
|
|
{
|
|
uma_zone_t zone;
|
|
void *retval;
|
|
|
|
if (m != NULL) {
|
|
KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
|
|
__func__, m));
|
|
m->m_ext.ext_buf = NULL;
|
|
}
|
|
|
|
zone = m_getzone(size);
|
|
retval = uma_zalloc_arg(zone, m, how);
|
|
|
|
MBUF_PROBE4(m__cljget, m, how, size, retval);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* m_get2() allocates minimum mbuf that would fit "size" argument.
|
|
*/
|
|
struct mbuf *
|
|
m_get2(int size, int how, short type, int flags)
|
|
{
|
|
struct mb_args args;
|
|
struct mbuf *m, *n;
|
|
|
|
args.flags = flags;
|
|
args.type = type;
|
|
|
|
if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
|
|
return (uma_zalloc_arg(zone_mbuf, &args, how));
|
|
if (size <= MCLBYTES)
|
|
return (uma_zalloc_arg(zone_pack, &args, how));
|
|
|
|
if (size > MJUMPAGESIZE)
|
|
return (NULL);
|
|
|
|
m = uma_zalloc_arg(zone_mbuf, &args, how);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
n = uma_zalloc_arg(zone_jumbop, m, how);
|
|
if (n == NULL) {
|
|
uma_zfree(zone_mbuf, m);
|
|
return (NULL);
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* m_getjcl() returns an mbuf with a cluster of the specified size attached.
|
|
* For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
|
|
*/
|
|
struct mbuf *
|
|
m_getjcl(int how, short type, int flags, int size)
|
|
{
|
|
struct mb_args args;
|
|
struct mbuf *m, *n;
|
|
uma_zone_t zone;
|
|
|
|
if (size == MCLBYTES)
|
|
return m_getcl(how, type, flags);
|
|
|
|
args.flags = flags;
|
|
args.type = type;
|
|
|
|
m = uma_zalloc_arg(zone_mbuf, &args, how);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
zone = m_getzone(size);
|
|
n = uma_zalloc_arg(zone, m, how);
|
|
if (n == NULL) {
|
|
uma_zfree(zone_mbuf, m);
|
|
return (NULL);
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Allocate a given length worth of mbufs and/or clusters (whatever fits
|
|
* best) and return a pointer to the top of the allocated chain. If an
|
|
* existing mbuf chain is provided, then we will append the new chain
|
|
* to the existing one and return a pointer to the provided mbuf.
|
|
*/
|
|
struct mbuf *
|
|
m_getm2(struct mbuf *m, int len, int how, short type, int flags)
|
|
{
|
|
struct mbuf *mb, *nm = NULL, *mtail = NULL;
|
|
|
|
KASSERT(len >= 0, ("%s: len is < 0", __func__));
|
|
|
|
/* Validate flags. */
|
|
flags &= (M_PKTHDR | M_EOR);
|
|
|
|
/* Packet header mbuf must be first in chain. */
|
|
if ((flags & M_PKTHDR) && m != NULL)
|
|
flags &= ~M_PKTHDR;
|
|
|
|
/* Loop and append maximum sized mbufs to the chain tail. */
|
|
while (len > 0) {
|
|
if (len > MCLBYTES)
|
|
mb = m_getjcl(how, type, (flags & M_PKTHDR),
|
|
MJUMPAGESIZE);
|
|
else if (len >= MINCLSIZE)
|
|
mb = m_getcl(how, type, (flags & M_PKTHDR));
|
|
else if (flags & M_PKTHDR)
|
|
mb = m_gethdr(how, type);
|
|
else
|
|
mb = m_get(how, type);
|
|
|
|
/* Fail the whole operation if one mbuf can't be allocated. */
|
|
if (mb == NULL) {
|
|
if (nm != NULL)
|
|
m_freem(nm);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Book keeping. */
|
|
len -= M_SIZE(mb);
|
|
if (mtail != NULL)
|
|
mtail->m_next = mb;
|
|
else
|
|
nm = mb;
|
|
mtail = mb;
|
|
flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */
|
|
}
|
|
if (flags & M_EOR)
|
|
mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */
|
|
|
|
/* If mbuf was supplied, append new chain to the end of it. */
|
|
if (m != NULL) {
|
|
for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
|
|
;
|
|
mtail->m_next = nm;
|
|
mtail->m_flags &= ~M_EOR;
|
|
} else
|
|
m = nm;
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*-
|
|
* Configure a provided mbuf to refer to the provided external storage
|
|
* buffer and setup a reference count for said buffer.
|
|
*
|
|
* Arguments:
|
|
* mb The existing mbuf to which to attach the provided buffer.
|
|
* buf The address of the provided external storage buffer.
|
|
* size The size of the provided buffer.
|
|
* freef A pointer to a routine that is responsible for freeing the
|
|
* provided external storage buffer.
|
|
* args A pointer to an argument structure (of any type) to be passed
|
|
* to the provided freef routine (may be NULL).
|
|
* flags Any other flags to be passed to the provided mbuf.
|
|
* type The type that the external storage buffer should be
|
|
* labeled with.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*/
|
|
void
|
|
m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
|
|
void *arg1, void *arg2, int flags, int type)
|
|
{
|
|
|
|
KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
|
|
|
|
mb->m_flags |= (M_EXT | flags);
|
|
mb->m_ext.ext_buf = buf;
|
|
mb->m_data = mb->m_ext.ext_buf;
|
|
mb->m_ext.ext_size = size;
|
|
mb->m_ext.ext_free = freef;
|
|
mb->m_ext.ext_arg1 = arg1;
|
|
mb->m_ext.ext_arg2 = arg2;
|
|
mb->m_ext.ext_type = type;
|
|
|
|
if (type != EXT_EXTREF) {
|
|
mb->m_ext.ext_count = 1;
|
|
mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
|
|
} else
|
|
mb->m_ext.ext_flags = 0;
|
|
}
|
|
|
|
/*
|
|
* Free an entire chain of mbufs and associated external buffers, if
|
|
* applicable.
|
|
*/
|
|
void
|
|
m_freem(struct mbuf *mb)
|
|
{
|
|
|
|
MBUF_PROBE1(m__freem, mb);
|
|
while (mb != NULL)
|
|
mb = m_free(mb);
|
|
}
|
|
|
|
void
|
|
m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp)
|
|
{
|
|
|
|
if_ref(ifp);
|
|
mst->ifp = ifp;
|
|
refcount_init(&mst->refcount, 1);
|
|
counter_u64_add(snd_tag_count, 1);
|
|
}
|
|
|
|
void
|
|
m_snd_tag_destroy(struct m_snd_tag *mst)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = mst->ifp;
|
|
ifp->if_snd_tag_free(mst);
|
|
if_rele(ifp);
|
|
counter_u64_add(snd_tag_count, -1);
|
|
}
|