6703915ee7
When SCHEDULER_STOPPED() is true the mtx_owned() call may return an unexpected and thus meaningless result. So, in the code paths that can be reached when SCHEDULER_STOPPED() is true we need to protect the mtx_owned() calls with the SCHEDULER_STOPPED() checks and ensure that an appropriate branch is taken in each case. Reviewed by: hselasky MFC after: 3 months X-MFC after: r228424
3320 lines
82 KiB
C
3320 lines
82 KiB
C
/* $FreeBSD$ */
|
|
/*-
|
|
* Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/stdint.h>
|
|
#include <sys/stddef.h>
|
|
#include <sys/param.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/types.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/module.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <dev/usb/usb.h>
|
|
#include <dev/usb/usbdi.h>
|
|
#include <dev/usb/usbdi_util.h>
|
|
|
|
#define USB_DEBUG_VAR usb_debug
|
|
|
|
#include <dev/usb/usb_core.h>
|
|
#include <dev/usb/usb_busdma.h>
|
|
#include <dev/usb/usb_process.h>
|
|
#include <dev/usb/usb_transfer.h>
|
|
#include <dev/usb/usb_device.h>
|
|
#include <dev/usb/usb_debug.h>
|
|
#include <dev/usb/usb_util.h>
|
|
|
|
#include <dev/usb/usb_controller.h>
|
|
#include <dev/usb/usb_bus.h>
|
|
#include <dev/usb/usb_pf.h>
|
|
|
|
struct usb_std_packet_size {
|
|
struct {
|
|
uint16_t min; /* inclusive */
|
|
uint16_t max; /* inclusive */
|
|
} range;
|
|
|
|
uint16_t fixed[4];
|
|
};
|
|
|
|
static usb_callback_t usb_request_callback;
|
|
|
|
static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = {
|
|
|
|
/* This transfer is used for generic control endpoint transfers */
|
|
|
|
[0] = {
|
|
.type = UE_CONTROL,
|
|
.endpoint = 0x00, /* Control endpoint */
|
|
.direction = UE_DIR_ANY,
|
|
.bufsize = USB_EP0_BUFSIZE, /* bytes */
|
|
.flags = {.proxy_buffer = 1,},
|
|
.callback = &usb_request_callback,
|
|
.usb_mode = USB_MODE_DUAL, /* both modes */
|
|
},
|
|
|
|
/* This transfer is used for generic clear stall only */
|
|
|
|
[1] = {
|
|
.type = UE_CONTROL,
|
|
.endpoint = 0x00, /* Control pipe */
|
|
.direction = UE_DIR_ANY,
|
|
.bufsize = sizeof(struct usb_device_request),
|
|
.callback = &usb_do_clear_stall_callback,
|
|
.timeout = 1000, /* 1 second */
|
|
.interval = 50, /* 50ms */
|
|
.usb_mode = USB_MODE_HOST,
|
|
},
|
|
};
|
|
|
|
/* function prototypes */
|
|
|
|
static void usbd_update_max_frame_size(struct usb_xfer *);
|
|
static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t);
|
|
static void usbd_control_transfer_init(struct usb_xfer *);
|
|
static int usbd_setup_ctrl_transfer(struct usb_xfer *);
|
|
static void usb_callback_proc(struct usb_proc_msg *);
|
|
static void usbd_callback_ss_done_defer(struct usb_xfer *);
|
|
static void usbd_callback_wrapper(struct usb_xfer_queue *);
|
|
static void usbd_transfer_start_cb(void *);
|
|
static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *);
|
|
static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
|
|
uint8_t type, enum usb_dev_speed speed);
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usb_request_callback
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usb_request_callback(struct usb_xfer *xfer, usb_error_t error)
|
|
{
|
|
if (xfer->flags_int.usb_mode == USB_MODE_DEVICE)
|
|
usb_handle_request_callback(xfer, error);
|
|
else
|
|
usbd_do_request_callback(xfer, error);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_update_max_frame_size
|
|
*
|
|
* This function updates the maximum frame size, hence high speed USB
|
|
* can transfer multiple consecutive packets.
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usbd_update_max_frame_size(struct usb_xfer *xfer)
|
|
{
|
|
/* compute maximum frame size */
|
|
/* this computation should not overflow 16-bit */
|
|
/* max = 15 * 1024 */
|
|
|
|
xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_get_dma_delay
|
|
*
|
|
* The following function is called when we need to
|
|
* synchronize with DMA hardware.
|
|
*
|
|
* Returns:
|
|
* 0: no DMA delay required
|
|
* Else: milliseconds of DMA delay
|
|
*------------------------------------------------------------------------*/
|
|
usb_timeout_t
|
|
usbd_get_dma_delay(struct usb_device *udev)
|
|
{
|
|
struct usb_bus_methods *mtod;
|
|
uint32_t temp;
|
|
|
|
mtod = udev->bus->methods;
|
|
temp = 0;
|
|
|
|
if (mtod->get_dma_delay) {
|
|
(mtod->get_dma_delay) (udev, &temp);
|
|
/*
|
|
* Round up and convert to milliseconds. Note that we use
|
|
* 1024 milliseconds per second. to save a division.
|
|
*/
|
|
temp += 0x3FF;
|
|
temp /= 0x400;
|
|
}
|
|
return (temp);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_setup_sub_malloc
|
|
*
|
|
* This function will allocate one or more DMA'able memory chunks
|
|
* according to "size", "align" and "count" arguments. "ppc" is
|
|
* pointed to a linear array of USB page caches afterwards.
|
|
*
|
|
* Returns:
|
|
* 0: Success
|
|
* Else: Failure
|
|
*------------------------------------------------------------------------*/
|
|
#if USB_HAVE_BUSDMA
|
|
uint8_t
|
|
usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm,
|
|
struct usb_page_cache **ppc, usb_size_t size, usb_size_t align,
|
|
usb_size_t count)
|
|
{
|
|
struct usb_page_cache *pc;
|
|
struct usb_page *pg;
|
|
void *buf;
|
|
usb_size_t n_dma_pc;
|
|
usb_size_t n_obj;
|
|
usb_size_t x;
|
|
usb_size_t y;
|
|
usb_size_t r;
|
|
usb_size_t z;
|
|
|
|
USB_ASSERT(align > 1, ("Invalid alignment, 0x%08x\n",
|
|
align));
|
|
USB_ASSERT(size > 0, ("Invalid size = 0\n"));
|
|
|
|
if (count == 0) {
|
|
return (0); /* nothing to allocate */
|
|
}
|
|
/*
|
|
* Make sure that the size is aligned properly.
|
|
*/
|
|
size = -((-size) & (-align));
|
|
|
|
/*
|
|
* Try multi-allocation chunks to reduce the number of DMA
|
|
* allocations, hence DMA allocations are slow.
|
|
*/
|
|
if (size >= PAGE_SIZE) {
|
|
n_dma_pc = count;
|
|
n_obj = 1;
|
|
} else {
|
|
/* compute number of objects per page */
|
|
n_obj = (PAGE_SIZE / size);
|
|
/*
|
|
* Compute number of DMA chunks, rounded up
|
|
* to nearest one:
|
|
*/
|
|
n_dma_pc = ((count + n_obj - 1) / n_obj);
|
|
}
|
|
|
|
if (parm->buf == NULL) {
|
|
/* for the future */
|
|
parm->dma_page_ptr += n_dma_pc;
|
|
parm->dma_page_cache_ptr += n_dma_pc;
|
|
parm->dma_page_ptr += count;
|
|
parm->xfer_page_cache_ptr += count;
|
|
return (0);
|
|
}
|
|
for (x = 0; x != n_dma_pc; x++) {
|
|
/* need to initialize the page cache */
|
|
parm->dma_page_cache_ptr[x].tag_parent =
|
|
&parm->curr_xfer->xroot->dma_parent_tag;
|
|
}
|
|
for (x = 0; x != count; x++) {
|
|
/* need to initialize the page cache */
|
|
parm->xfer_page_cache_ptr[x].tag_parent =
|
|
&parm->curr_xfer->xroot->dma_parent_tag;
|
|
}
|
|
|
|
if (ppc) {
|
|
*ppc = parm->xfer_page_cache_ptr;
|
|
}
|
|
r = count; /* set remainder count */
|
|
z = n_obj * size; /* set allocation size */
|
|
pc = parm->xfer_page_cache_ptr;
|
|
pg = parm->dma_page_ptr;
|
|
|
|
for (x = 0; x != n_dma_pc; x++) {
|
|
|
|
if (r < n_obj) {
|
|
/* compute last remainder */
|
|
z = r * size;
|
|
n_obj = r;
|
|
}
|
|
if (usb_pc_alloc_mem(parm->dma_page_cache_ptr,
|
|
pg, z, align)) {
|
|
return (1); /* failure */
|
|
}
|
|
/* Set beginning of current buffer */
|
|
buf = parm->dma_page_cache_ptr->buffer;
|
|
/* Make room for one DMA page cache and one page */
|
|
parm->dma_page_cache_ptr++;
|
|
pg++;
|
|
|
|
for (y = 0; (y != n_obj); y++, r--, pc++, pg++) {
|
|
|
|
/* Load sub-chunk into DMA */
|
|
if (usb_pc_dmamap_create(pc, size)) {
|
|
return (1); /* failure */
|
|
}
|
|
pc->buffer = USB_ADD_BYTES(buf, y * size);
|
|
pc->page_start = pg;
|
|
|
|
mtx_lock(pc->tag_parent->mtx);
|
|
if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) {
|
|
mtx_unlock(pc->tag_parent->mtx);
|
|
return (1); /* failure */
|
|
}
|
|
mtx_unlock(pc->tag_parent->mtx);
|
|
}
|
|
}
|
|
|
|
parm->xfer_page_cache_ptr = pc;
|
|
parm->dma_page_ptr = pg;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_setup_sub - transfer setup subroutine
|
|
*
|
|
* This function must be called from the "xfer_setup" callback of the
|
|
* USB Host or Device controller driver when setting up an USB
|
|
* transfer. This function will setup correct packet sizes, buffer
|
|
* sizes, flags and more, that are stored in the "usb_xfer"
|
|
* structure.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_setup_sub(struct usb_setup_params *parm)
|
|
{
|
|
enum {
|
|
REQ_SIZE = 8,
|
|
MIN_PKT = 8,
|
|
};
|
|
struct usb_xfer *xfer = parm->curr_xfer;
|
|
const struct usb_config *setup = parm->curr_setup;
|
|
struct usb_endpoint_ss_comp_descriptor *ecomp;
|
|
struct usb_endpoint_descriptor *edesc;
|
|
struct usb_std_packet_size std_size;
|
|
usb_frcount_t n_frlengths;
|
|
usb_frcount_t n_frbuffers;
|
|
usb_frcount_t x;
|
|
uint8_t type;
|
|
uint8_t zmps;
|
|
|
|
/*
|
|
* Sanity check. The following parameters must be initialized before
|
|
* calling this function.
|
|
*/
|
|
if ((parm->hc_max_packet_size == 0) ||
|
|
(parm->hc_max_packet_count == 0) ||
|
|
(parm->hc_max_frame_size == 0)) {
|
|
parm->err = USB_ERR_INVAL;
|
|
goto done;
|
|
}
|
|
edesc = xfer->endpoint->edesc;
|
|
ecomp = xfer->endpoint->ecomp;
|
|
|
|
type = (edesc->bmAttributes & UE_XFERTYPE);
|
|
|
|
xfer->flags = setup->flags;
|
|
xfer->nframes = setup->frames;
|
|
xfer->timeout = setup->timeout;
|
|
xfer->callback = setup->callback;
|
|
xfer->interval = setup->interval;
|
|
xfer->endpointno = edesc->bEndpointAddress;
|
|
xfer->max_packet_size = UGETW(edesc->wMaxPacketSize);
|
|
xfer->max_packet_count = 1;
|
|
/* make a shadow copy: */
|
|
xfer->flags_int.usb_mode = parm->udev->flags.usb_mode;
|
|
|
|
parm->bufsize = setup->bufsize;
|
|
|
|
switch (parm->speed) {
|
|
case USB_SPEED_HIGH:
|
|
switch (type) {
|
|
case UE_ISOCHRONOUS:
|
|
case UE_INTERRUPT:
|
|
xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3;
|
|
|
|
/* check for invalid max packet count */
|
|
if (xfer->max_packet_count > 3)
|
|
xfer->max_packet_count = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
xfer->max_packet_size &= 0x7FF;
|
|
break;
|
|
case USB_SPEED_SUPER:
|
|
xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3;
|
|
|
|
if (ecomp != NULL)
|
|
xfer->max_packet_count += ecomp->bMaxBurst;
|
|
|
|
if ((xfer->max_packet_count == 0) ||
|
|
(xfer->max_packet_count > 16))
|
|
xfer->max_packet_count = 16;
|
|
|
|
switch (type) {
|
|
case UE_CONTROL:
|
|
xfer->max_packet_count = 1;
|
|
break;
|
|
case UE_ISOCHRONOUS:
|
|
if (ecomp != NULL) {
|
|
uint8_t mult;
|
|
|
|
mult = (ecomp->bmAttributes & 3) + 1;
|
|
if (mult > 3)
|
|
mult = 3;
|
|
|
|
xfer->max_packet_count *= mult;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
xfer->max_packet_size &= 0x7FF;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
/* range check "max_packet_count" */
|
|
|
|
if (xfer->max_packet_count > parm->hc_max_packet_count) {
|
|
xfer->max_packet_count = parm->hc_max_packet_count;
|
|
}
|
|
/* filter "wMaxPacketSize" according to HC capabilities */
|
|
|
|
if ((xfer->max_packet_size > parm->hc_max_packet_size) ||
|
|
(xfer->max_packet_size == 0)) {
|
|
xfer->max_packet_size = parm->hc_max_packet_size;
|
|
}
|
|
/* filter "wMaxPacketSize" according to standard sizes */
|
|
|
|
usbd_get_std_packet_size(&std_size, type, parm->speed);
|
|
|
|
if (std_size.range.min || std_size.range.max) {
|
|
|
|
if (xfer->max_packet_size < std_size.range.min) {
|
|
xfer->max_packet_size = std_size.range.min;
|
|
}
|
|
if (xfer->max_packet_size > std_size.range.max) {
|
|
xfer->max_packet_size = std_size.range.max;
|
|
}
|
|
} else {
|
|
|
|
if (xfer->max_packet_size >= std_size.fixed[3]) {
|
|
xfer->max_packet_size = std_size.fixed[3];
|
|
} else if (xfer->max_packet_size >= std_size.fixed[2]) {
|
|
xfer->max_packet_size = std_size.fixed[2];
|
|
} else if (xfer->max_packet_size >= std_size.fixed[1]) {
|
|
xfer->max_packet_size = std_size.fixed[1];
|
|
} else {
|
|
/* only one possibility left */
|
|
xfer->max_packet_size = std_size.fixed[0];
|
|
}
|
|
}
|
|
|
|
/* compute "max_frame_size" */
|
|
|
|
usbd_update_max_frame_size(xfer);
|
|
|
|
/* check interrupt interval and transfer pre-delay */
|
|
|
|
if (type == UE_ISOCHRONOUS) {
|
|
|
|
uint16_t frame_limit;
|
|
|
|
xfer->interval = 0; /* not used, must be zero */
|
|
xfer->flags_int.isochronous_xfr = 1; /* set flag */
|
|
|
|
if (xfer->timeout == 0) {
|
|
/*
|
|
* set a default timeout in
|
|
* case something goes wrong!
|
|
*/
|
|
xfer->timeout = 1000 / 4;
|
|
}
|
|
switch (parm->speed) {
|
|
case USB_SPEED_LOW:
|
|
case USB_SPEED_FULL:
|
|
frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER;
|
|
xfer->fps_shift = 0;
|
|
break;
|
|
default:
|
|
frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER;
|
|
xfer->fps_shift = edesc->bInterval;
|
|
if (xfer->fps_shift > 0)
|
|
xfer->fps_shift--;
|
|
if (xfer->fps_shift > 3)
|
|
xfer->fps_shift = 3;
|
|
if (xfer->flags.pre_scale_frames != 0)
|
|
xfer->nframes <<= (3 - xfer->fps_shift);
|
|
break;
|
|
}
|
|
|
|
if (xfer->nframes > frame_limit) {
|
|
/*
|
|
* this is not going to work
|
|
* cross hardware
|
|
*/
|
|
parm->err = USB_ERR_INVAL;
|
|
goto done;
|
|
}
|
|
if (xfer->nframes == 0) {
|
|
/*
|
|
* this is not a valid value
|
|
*/
|
|
parm->err = USB_ERR_ZERO_NFRAMES;
|
|
goto done;
|
|
}
|
|
} else {
|
|
|
|
/*
|
|
* If a value is specified use that else check the
|
|
* endpoint descriptor!
|
|
*/
|
|
if (type == UE_INTERRUPT) {
|
|
|
|
uint32_t temp;
|
|
|
|
if (xfer->interval == 0) {
|
|
|
|
xfer->interval = edesc->bInterval;
|
|
|
|
switch (parm->speed) {
|
|
case USB_SPEED_LOW:
|
|
case USB_SPEED_FULL:
|
|
break;
|
|
default:
|
|
/* 125us -> 1ms */
|
|
if (xfer->interval < 4)
|
|
xfer->interval = 1;
|
|
else if (xfer->interval > 16)
|
|
xfer->interval = (1 << (16 - 4));
|
|
else
|
|
xfer->interval =
|
|
(1 << (xfer->interval - 4));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (xfer->interval == 0) {
|
|
/*
|
|
* One millisecond is the smallest
|
|
* interval we support:
|
|
*/
|
|
xfer->interval = 1;
|
|
}
|
|
|
|
xfer->fps_shift = 0;
|
|
temp = 1;
|
|
|
|
while ((temp != 0) && (temp < xfer->interval)) {
|
|
xfer->fps_shift++;
|
|
temp *= 2;
|
|
}
|
|
|
|
switch (parm->speed) {
|
|
case USB_SPEED_LOW:
|
|
case USB_SPEED_FULL:
|
|
break;
|
|
default:
|
|
xfer->fps_shift += 3;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* NOTE: we do not allow "max_packet_size" or "max_frame_size"
|
|
* to be equal to zero when setting up USB transfers, hence
|
|
* this leads to alot of extra code in the USB kernel.
|
|
*/
|
|
|
|
if ((xfer->max_frame_size == 0) ||
|
|
(xfer->max_packet_size == 0)) {
|
|
|
|
zmps = 1;
|
|
|
|
if ((parm->bufsize <= MIN_PKT) &&
|
|
(type != UE_CONTROL) &&
|
|
(type != UE_BULK)) {
|
|
|
|
/* workaround */
|
|
xfer->max_packet_size = MIN_PKT;
|
|
xfer->max_packet_count = 1;
|
|
parm->bufsize = 0; /* automatic setup length */
|
|
usbd_update_max_frame_size(xfer);
|
|
|
|
} else {
|
|
parm->err = USB_ERR_ZERO_MAXP;
|
|
goto done;
|
|
}
|
|
|
|
} else {
|
|
zmps = 0;
|
|
}
|
|
|
|
/*
|
|
* check if we should setup a default
|
|
* length:
|
|
*/
|
|
|
|
if (parm->bufsize == 0) {
|
|
|
|
parm->bufsize = xfer->max_frame_size;
|
|
|
|
if (type == UE_ISOCHRONOUS) {
|
|
parm->bufsize *= xfer->nframes;
|
|
}
|
|
}
|
|
/*
|
|
* check if we are about to setup a proxy
|
|
* type of buffer:
|
|
*/
|
|
|
|
if (xfer->flags.proxy_buffer) {
|
|
|
|
/* round bufsize up */
|
|
|
|
parm->bufsize += (xfer->max_frame_size - 1);
|
|
|
|
if (parm->bufsize < xfer->max_frame_size) {
|
|
/* length wrapped around */
|
|
parm->err = USB_ERR_INVAL;
|
|
goto done;
|
|
}
|
|
/* subtract remainder */
|
|
|
|
parm->bufsize -= (parm->bufsize % xfer->max_frame_size);
|
|
|
|
/* add length of USB device request structure, if any */
|
|
|
|
if (type == UE_CONTROL) {
|
|
parm->bufsize += REQ_SIZE; /* SETUP message */
|
|
}
|
|
}
|
|
xfer->max_data_length = parm->bufsize;
|
|
|
|
/* Setup "n_frlengths" and "n_frbuffers" */
|
|
|
|
if (type == UE_ISOCHRONOUS) {
|
|
n_frlengths = xfer->nframes;
|
|
n_frbuffers = 1;
|
|
} else {
|
|
|
|
if (type == UE_CONTROL) {
|
|
xfer->flags_int.control_xfr = 1;
|
|
if (xfer->nframes == 0) {
|
|
if (parm->bufsize <= REQ_SIZE) {
|
|
/*
|
|
* there will never be any data
|
|
* stage
|
|
*/
|
|
xfer->nframes = 1;
|
|
} else {
|
|
xfer->nframes = 2;
|
|
}
|
|
}
|
|
} else {
|
|
if (xfer->nframes == 0) {
|
|
xfer->nframes = 1;
|
|
}
|
|
}
|
|
|
|
n_frlengths = xfer->nframes;
|
|
n_frbuffers = xfer->nframes;
|
|
}
|
|
|
|
/*
|
|
* check if we have room for the
|
|
* USB device request structure:
|
|
*/
|
|
|
|
if (type == UE_CONTROL) {
|
|
|
|
if (xfer->max_data_length < REQ_SIZE) {
|
|
/* length wrapped around or too small bufsize */
|
|
parm->err = USB_ERR_INVAL;
|
|
goto done;
|
|
}
|
|
xfer->max_data_length -= REQ_SIZE;
|
|
}
|
|
/*
|
|
* Setup "frlengths" and shadow "frlengths" for keeping the
|
|
* initial frame lengths when a USB transfer is complete. This
|
|
* information is useful when computing isochronous offsets.
|
|
*/
|
|
xfer->frlengths = parm->xfer_length_ptr;
|
|
parm->xfer_length_ptr += 2 * n_frlengths;
|
|
|
|
/* setup "frbuffers" */
|
|
xfer->frbuffers = parm->xfer_page_cache_ptr;
|
|
parm->xfer_page_cache_ptr += n_frbuffers;
|
|
|
|
/* initialize max frame count */
|
|
xfer->max_frame_count = xfer->nframes;
|
|
|
|
/*
|
|
* check if we need to setup
|
|
* a local buffer:
|
|
*/
|
|
|
|
if (!xfer->flags.ext_buffer) {
|
|
|
|
/* align data */
|
|
parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
if (parm->buf) {
|
|
|
|
xfer->local_buffer =
|
|
USB_ADD_BYTES(parm->buf, parm->size[0]);
|
|
|
|
usbd_xfer_set_frame_offset(xfer, 0, 0);
|
|
|
|
if ((type == UE_CONTROL) && (n_frbuffers > 1)) {
|
|
usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1);
|
|
}
|
|
}
|
|
parm->size[0] += parm->bufsize;
|
|
|
|
/* align data again */
|
|
parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
|
|
}
|
|
/*
|
|
* Compute maximum buffer size
|
|
*/
|
|
|
|
if (parm->bufsize_max < parm->bufsize) {
|
|
parm->bufsize_max = parm->bufsize;
|
|
}
|
|
#if USB_HAVE_BUSDMA
|
|
if (xfer->flags_int.bdma_enable) {
|
|
/*
|
|
* Setup "dma_page_ptr".
|
|
*
|
|
* Proof for formula below:
|
|
*
|
|
* Assume there are three USB frames having length "a", "b" and
|
|
* "c". These USB frames will at maximum need "z"
|
|
* "usb_page" structures. "z" is given by:
|
|
*
|
|
* z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) +
|
|
* ((c / USB_PAGE_SIZE) + 2);
|
|
*
|
|
* Constraining "a", "b" and "c" like this:
|
|
*
|
|
* (a + b + c) <= parm->bufsize
|
|
*
|
|
* We know that:
|
|
*
|
|
* z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2));
|
|
*
|
|
* Here is the general formula:
|
|
*/
|
|
xfer->dma_page_ptr = parm->dma_page_ptr;
|
|
parm->dma_page_ptr += (2 * n_frbuffers);
|
|
parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE);
|
|
}
|
|
#endif
|
|
if (zmps) {
|
|
/* correct maximum data length */
|
|
xfer->max_data_length = 0;
|
|
}
|
|
/* subtract USB frame remainder from "hc_max_frame_size" */
|
|
|
|
xfer->max_hc_frame_size =
|
|
(parm->hc_max_frame_size -
|
|
(parm->hc_max_frame_size % xfer->max_frame_size));
|
|
|
|
if (xfer->max_hc_frame_size == 0) {
|
|
parm->err = USB_ERR_INVAL;
|
|
goto done;
|
|
}
|
|
|
|
/* initialize frame buffers */
|
|
|
|
if (parm->buf) {
|
|
for (x = 0; x != n_frbuffers; x++) {
|
|
xfer->frbuffers[x].tag_parent =
|
|
&xfer->xroot->dma_parent_tag;
|
|
#if USB_HAVE_BUSDMA
|
|
if (xfer->flags_int.bdma_enable &&
|
|
(parm->bufsize_max > 0)) {
|
|
|
|
if (usb_pc_dmamap_create(
|
|
xfer->frbuffers + x,
|
|
parm->bufsize_max)) {
|
|
parm->err = USB_ERR_NOMEM;
|
|
goto done;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
done:
|
|
if (parm->err) {
|
|
/*
|
|
* Set some dummy values so that we avoid division by zero:
|
|
*/
|
|
xfer->max_hc_frame_size = 1;
|
|
xfer->max_frame_size = 1;
|
|
xfer->max_packet_size = 1;
|
|
xfer->max_data_length = 0;
|
|
xfer->nframes = 0;
|
|
xfer->max_frame_count = 0;
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_setup - setup an array of USB transfers
|
|
*
|
|
* NOTE: You must always call "usbd_transfer_unsetup" after calling
|
|
* "usbd_transfer_setup" if success was returned.
|
|
*
|
|
* The idea is that the USB device driver should pre-allocate all its
|
|
* transfers by one call to this function.
|
|
*
|
|
* Return values:
|
|
* 0: Success
|
|
* Else: Failure
|
|
*------------------------------------------------------------------------*/
|
|
usb_error_t
|
|
usbd_transfer_setup(struct usb_device *udev,
|
|
const uint8_t *ifaces, struct usb_xfer **ppxfer,
|
|
const struct usb_config *setup_start, uint16_t n_setup,
|
|
void *priv_sc, struct mtx *xfer_mtx)
|
|
{
|
|
struct usb_xfer dummy;
|
|
struct usb_setup_params parm;
|
|
const struct usb_config *setup_end = setup_start + n_setup;
|
|
const struct usb_config *setup;
|
|
struct usb_endpoint *ep;
|
|
struct usb_xfer_root *info;
|
|
struct usb_xfer *xfer;
|
|
void *buf = NULL;
|
|
uint16_t n;
|
|
uint16_t refcount;
|
|
|
|
parm.err = 0;
|
|
refcount = 0;
|
|
info = NULL;
|
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
"usbd_transfer_setup can sleep!");
|
|
|
|
/* do some checking first */
|
|
|
|
if (n_setup == 0) {
|
|
DPRINTFN(6, "setup array has zero length!\n");
|
|
return (USB_ERR_INVAL);
|
|
}
|
|
if (ifaces == 0) {
|
|
DPRINTFN(6, "ifaces array is NULL!\n");
|
|
return (USB_ERR_INVAL);
|
|
}
|
|
if (xfer_mtx == NULL) {
|
|
DPRINTFN(6, "using global lock\n");
|
|
xfer_mtx = &Giant;
|
|
}
|
|
/* sanity checks */
|
|
for (setup = setup_start, n = 0;
|
|
setup != setup_end; setup++, n++) {
|
|
if (setup->bufsize == (usb_frlength_t)-1) {
|
|
parm.err = USB_ERR_BAD_BUFSIZE;
|
|
DPRINTF("invalid bufsize\n");
|
|
}
|
|
if (setup->callback == NULL) {
|
|
parm.err = USB_ERR_NO_CALLBACK;
|
|
DPRINTF("no callback\n");
|
|
}
|
|
ppxfer[n] = NULL;
|
|
}
|
|
|
|
if (parm.err) {
|
|
goto done;
|
|
}
|
|
memset(&parm, 0, sizeof(parm));
|
|
|
|
parm.udev = udev;
|
|
parm.speed = usbd_get_speed(udev);
|
|
parm.hc_max_packet_count = 1;
|
|
|
|
if (parm.speed >= USB_SPEED_MAX) {
|
|
parm.err = USB_ERR_INVAL;
|
|
goto done;
|
|
}
|
|
/* setup all transfers */
|
|
|
|
while (1) {
|
|
|
|
if (buf) {
|
|
/*
|
|
* Initialize the "usb_xfer_root" structure,
|
|
* which is common for all our USB transfers.
|
|
*/
|
|
info = USB_ADD_BYTES(buf, 0);
|
|
|
|
info->memory_base = buf;
|
|
info->memory_size = parm.size[0];
|
|
|
|
#if USB_HAVE_BUSDMA
|
|
info->dma_page_cache_start = USB_ADD_BYTES(buf, parm.size[4]);
|
|
info->dma_page_cache_end = USB_ADD_BYTES(buf, parm.size[5]);
|
|
#endif
|
|
info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm.size[5]);
|
|
info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm.size[2]);
|
|
|
|
cv_init(&info->cv_drain, "WDRAIN");
|
|
|
|
info->xfer_mtx = xfer_mtx;
|
|
#if USB_HAVE_BUSDMA
|
|
usb_dma_tag_setup(&info->dma_parent_tag,
|
|
parm.dma_tag_p, udev->bus->dma_parent_tag[0].tag,
|
|
xfer_mtx, &usb_bdma_done_event, 32, parm.dma_tag_max);
|
|
#endif
|
|
|
|
info->bus = udev->bus;
|
|
info->udev = udev;
|
|
|
|
TAILQ_INIT(&info->done_q.head);
|
|
info->done_q.command = &usbd_callback_wrapper;
|
|
#if USB_HAVE_BUSDMA
|
|
TAILQ_INIT(&info->dma_q.head);
|
|
info->dma_q.command = &usb_bdma_work_loop;
|
|
#endif
|
|
info->done_m[0].hdr.pm_callback = &usb_callback_proc;
|
|
info->done_m[0].xroot = info;
|
|
info->done_m[1].hdr.pm_callback = &usb_callback_proc;
|
|
info->done_m[1].xroot = info;
|
|
|
|
/*
|
|
* In device side mode control endpoint
|
|
* requests need to run from a separate
|
|
* context, else there is a chance of
|
|
* deadlock!
|
|
*/
|
|
if (setup_start == usb_control_ep_cfg)
|
|
info->done_p =
|
|
&udev->bus->control_xfer_proc;
|
|
else if (xfer_mtx == &Giant)
|
|
info->done_p =
|
|
&udev->bus->giant_callback_proc;
|
|
else
|
|
info->done_p =
|
|
&udev->bus->non_giant_callback_proc;
|
|
}
|
|
/* reset sizes */
|
|
|
|
parm.size[0] = 0;
|
|
parm.buf = buf;
|
|
parm.size[0] += sizeof(info[0]);
|
|
|
|
for (setup = setup_start, n = 0;
|
|
setup != setup_end; setup++, n++) {
|
|
|
|
/* skip USB transfers without callbacks: */
|
|
if (setup->callback == NULL) {
|
|
continue;
|
|
}
|
|
/* see if there is a matching endpoint */
|
|
ep = usbd_get_endpoint(udev,
|
|
ifaces[setup->if_index], setup);
|
|
|
|
if ((ep == NULL) || (ep->methods == NULL)) {
|
|
if (setup->flags.no_pipe_ok)
|
|
continue;
|
|
if ((setup->usb_mode != USB_MODE_DUAL) &&
|
|
(setup->usb_mode != udev->flags.usb_mode))
|
|
continue;
|
|
parm.err = USB_ERR_NO_PIPE;
|
|
goto done;
|
|
}
|
|
|
|
/* align data properly */
|
|
parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
/* store current setup pointer */
|
|
parm.curr_setup = setup;
|
|
|
|
if (buf) {
|
|
/*
|
|
* Common initialization of the
|
|
* "usb_xfer" structure.
|
|
*/
|
|
xfer = USB_ADD_BYTES(buf, parm.size[0]);
|
|
xfer->address = udev->address;
|
|
xfer->priv_sc = priv_sc;
|
|
xfer->xroot = info;
|
|
|
|
usb_callout_init_mtx(&xfer->timeout_handle,
|
|
&udev->bus->bus_mtx, 0);
|
|
} else {
|
|
/*
|
|
* Setup a dummy xfer, hence we are
|
|
* writing to the "usb_xfer"
|
|
* structure pointed to by "xfer"
|
|
* before we have allocated any
|
|
* memory:
|
|
*/
|
|
xfer = &dummy;
|
|
memset(&dummy, 0, sizeof(dummy));
|
|
refcount++;
|
|
}
|
|
|
|
/* set transfer endpoint pointer */
|
|
xfer->endpoint = ep;
|
|
|
|
parm.size[0] += sizeof(xfer[0]);
|
|
parm.methods = xfer->endpoint->methods;
|
|
parm.curr_xfer = xfer;
|
|
|
|
/*
|
|
* Call the Host or Device controller transfer
|
|
* setup routine:
|
|
*/
|
|
(udev->bus->methods->xfer_setup) (&parm);
|
|
|
|
/* check for error */
|
|
if (parm.err)
|
|
goto done;
|
|
|
|
if (buf) {
|
|
/*
|
|
* Increment the endpoint refcount. This
|
|
* basically prevents setting a new
|
|
* configuration and alternate setting
|
|
* when USB transfers are in use on
|
|
* the given interface. Search the USB
|
|
* code for "endpoint->refcount_alloc" if you
|
|
* want more information.
|
|
*/
|
|
USB_BUS_LOCK(info->bus);
|
|
if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX)
|
|
parm.err = USB_ERR_INVAL;
|
|
|
|
xfer->endpoint->refcount_alloc++;
|
|
|
|
if (xfer->endpoint->refcount_alloc == 0)
|
|
panic("usbd_transfer_setup(): Refcount wrapped to zero\n");
|
|
USB_BUS_UNLOCK(info->bus);
|
|
|
|
/*
|
|
* Whenever we set ppxfer[] then we
|
|
* also need to increment the
|
|
* "setup_refcount":
|
|
*/
|
|
info->setup_refcount++;
|
|
|
|
/*
|
|
* Transfer is successfully setup and
|
|
* can be used:
|
|
*/
|
|
ppxfer[n] = xfer;
|
|
}
|
|
|
|
/* check for error */
|
|
if (parm.err)
|
|
goto done;
|
|
}
|
|
|
|
if (buf || parm.err) {
|
|
goto done;
|
|
}
|
|
if (refcount == 0) {
|
|
/* no transfers - nothing to do ! */
|
|
goto done;
|
|
}
|
|
/* align data properly */
|
|
parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
/* store offset temporarily */
|
|
parm.size[1] = parm.size[0];
|
|
|
|
/*
|
|
* The number of DMA tags required depends on
|
|
* the number of endpoints. The current estimate
|
|
* for maximum number of DMA tags per endpoint
|
|
* is two.
|
|
*/
|
|
parm.dma_tag_max += 2 * MIN(n_setup, USB_EP_MAX);
|
|
|
|
/*
|
|
* DMA tags for QH, TD, Data and more.
|
|
*/
|
|
parm.dma_tag_max += 8;
|
|
|
|
parm.dma_tag_p += parm.dma_tag_max;
|
|
|
|
parm.size[0] += ((uint8_t *)parm.dma_tag_p) -
|
|
((uint8_t *)0);
|
|
|
|
/* align data properly */
|
|
parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
/* store offset temporarily */
|
|
parm.size[3] = parm.size[0];
|
|
|
|
parm.size[0] += ((uint8_t *)parm.dma_page_ptr) -
|
|
((uint8_t *)0);
|
|
|
|
/* align data properly */
|
|
parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
/* store offset temporarily */
|
|
parm.size[4] = parm.size[0];
|
|
|
|
parm.size[0] += ((uint8_t *)parm.dma_page_cache_ptr) -
|
|
((uint8_t *)0);
|
|
|
|
/* store end offset temporarily */
|
|
parm.size[5] = parm.size[0];
|
|
|
|
parm.size[0] += ((uint8_t *)parm.xfer_page_cache_ptr) -
|
|
((uint8_t *)0);
|
|
|
|
/* store end offset temporarily */
|
|
|
|
parm.size[2] = parm.size[0];
|
|
|
|
/* align data properly */
|
|
parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
parm.size[6] = parm.size[0];
|
|
|
|
parm.size[0] += ((uint8_t *)parm.xfer_length_ptr) -
|
|
((uint8_t *)0);
|
|
|
|
/* align data properly */
|
|
parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
|
|
|
|
/* allocate zeroed memory */
|
|
buf = malloc(parm.size[0], M_USB, M_WAITOK | M_ZERO);
|
|
|
|
if (buf == NULL) {
|
|
parm.err = USB_ERR_NOMEM;
|
|
DPRINTFN(0, "cannot allocate memory block for "
|
|
"configuration (%d bytes)\n",
|
|
parm.size[0]);
|
|
goto done;
|
|
}
|
|
parm.dma_tag_p = USB_ADD_BYTES(buf, parm.size[1]);
|
|
parm.dma_page_ptr = USB_ADD_BYTES(buf, parm.size[3]);
|
|
parm.dma_page_cache_ptr = USB_ADD_BYTES(buf, parm.size[4]);
|
|
parm.xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm.size[5]);
|
|
parm.xfer_length_ptr = USB_ADD_BYTES(buf, parm.size[6]);
|
|
}
|
|
|
|
done:
|
|
if (buf) {
|
|
if (info->setup_refcount == 0) {
|
|
/*
|
|
* "usbd_transfer_unsetup_sub" will unlock
|
|
* the bus mutex before returning !
|
|
*/
|
|
USB_BUS_LOCK(info->bus);
|
|
|
|
/* something went wrong */
|
|
usbd_transfer_unsetup_sub(info, 0);
|
|
}
|
|
}
|
|
if (parm.err) {
|
|
usbd_transfer_unsetup(ppxfer, n_setup);
|
|
}
|
|
return (parm.err);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_unsetup_sub - factored out code
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay)
|
|
{
|
|
#if USB_HAVE_BUSDMA
|
|
struct usb_page_cache *pc;
|
|
#endif
|
|
|
|
USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED);
|
|
|
|
/* wait for any outstanding DMA operations */
|
|
|
|
if (needs_delay) {
|
|
usb_timeout_t temp;
|
|
temp = usbd_get_dma_delay(info->udev);
|
|
if (temp != 0) {
|
|
usb_pause_mtx(&info->bus->bus_mtx,
|
|
USB_MS_TO_TICKS(temp));
|
|
}
|
|
}
|
|
|
|
/* make sure that our done messages are not queued anywhere */
|
|
usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]);
|
|
|
|
USB_BUS_UNLOCK(info->bus);
|
|
|
|
#if USB_HAVE_BUSDMA
|
|
/* free DMA'able memory, if any */
|
|
pc = info->dma_page_cache_start;
|
|
while (pc != info->dma_page_cache_end) {
|
|
usb_pc_free_mem(pc);
|
|
pc++;
|
|
}
|
|
|
|
/* free DMA maps in all "xfer->frbuffers" */
|
|
pc = info->xfer_page_cache_start;
|
|
while (pc != info->xfer_page_cache_end) {
|
|
usb_pc_dmamap_destroy(pc);
|
|
pc++;
|
|
}
|
|
|
|
/* free all DMA tags */
|
|
usb_dma_tag_unsetup(&info->dma_parent_tag);
|
|
#endif
|
|
|
|
cv_destroy(&info->cv_drain);
|
|
|
|
/*
|
|
* free the "memory_base" last, hence the "info" structure is
|
|
* contained within the "memory_base"!
|
|
*/
|
|
free(info->memory_base, M_USB);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_unsetup - unsetup/free an array of USB transfers
|
|
*
|
|
* NOTE: All USB transfers in progress will get called back passing
|
|
* the error code "USB_ERR_CANCELLED" before this function
|
|
* returns.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup)
|
|
{
|
|
struct usb_xfer *xfer;
|
|
struct usb_xfer_root *info;
|
|
uint8_t needs_delay = 0;
|
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
"usbd_transfer_unsetup can sleep!");
|
|
|
|
while (n_setup--) {
|
|
xfer = pxfer[n_setup];
|
|
|
|
if (xfer == NULL)
|
|
continue;
|
|
|
|
info = xfer->xroot;
|
|
|
|
USB_XFER_LOCK(xfer);
|
|
USB_BUS_LOCK(info->bus);
|
|
|
|
/*
|
|
* HINT: when you start/stop a transfer, it might be a
|
|
* good idea to directly use the "pxfer[]" structure:
|
|
*
|
|
* usbd_transfer_start(sc->pxfer[0]);
|
|
* usbd_transfer_stop(sc->pxfer[0]);
|
|
*
|
|
* That way, if your code has many parts that will not
|
|
* stop running under the same lock, in other words
|
|
* "xfer_mtx", the usbd_transfer_start and
|
|
* usbd_transfer_stop functions will simply return
|
|
* when they detect a NULL pointer argument.
|
|
*
|
|
* To avoid any races we clear the "pxfer[]" pointer
|
|
* while holding the private mutex of the driver:
|
|
*/
|
|
pxfer[n_setup] = NULL;
|
|
|
|
USB_BUS_UNLOCK(info->bus);
|
|
USB_XFER_UNLOCK(xfer);
|
|
|
|
usbd_transfer_drain(xfer);
|
|
|
|
#if USB_HAVE_BUSDMA
|
|
if (xfer->flags_int.bdma_enable)
|
|
needs_delay = 1;
|
|
#endif
|
|
/*
|
|
* NOTE: default endpoint does not have an
|
|
* interface, even if endpoint->iface_index == 0
|
|
*/
|
|
USB_BUS_LOCK(info->bus);
|
|
xfer->endpoint->refcount_alloc--;
|
|
USB_BUS_UNLOCK(info->bus);
|
|
|
|
usb_callout_drain(&xfer->timeout_handle);
|
|
|
|
USB_BUS_LOCK(info->bus);
|
|
|
|
USB_ASSERT(info->setup_refcount != 0, ("Invalid setup "
|
|
"reference count\n"));
|
|
|
|
info->setup_refcount--;
|
|
|
|
if (info->setup_refcount == 0) {
|
|
usbd_transfer_unsetup_sub(info,
|
|
needs_delay);
|
|
} else {
|
|
USB_BUS_UNLOCK(info->bus);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_control_transfer_init - factored out code
|
|
*
|
|
* In USB Device Mode we have to wait for the SETUP packet which
|
|
* containst the "struct usb_device_request" structure, before we can
|
|
* transfer any data. In USB Host Mode we already have the SETUP
|
|
* packet at the moment the USB transfer is started. This leads us to
|
|
* having to setup the USB transfer at two different places in
|
|
* time. This function just contains factored out control transfer
|
|
* initialisation code, so that we don't duplicate the code.
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usbd_control_transfer_init(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_device_request req;
|
|
|
|
/* copy out the USB request header */
|
|
|
|
usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req));
|
|
|
|
/* setup remainder */
|
|
|
|
xfer->flags_int.control_rem = UGETW(req.wLength);
|
|
|
|
/* copy direction to endpoint variable */
|
|
|
|
xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT);
|
|
xfer->endpointno |=
|
|
(req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_setup_ctrl_transfer
|
|
*
|
|
* This function handles initialisation of control transfers. Control
|
|
* transfers are special in that regard that they can both transmit
|
|
* and receive data.
|
|
*
|
|
* Return values:
|
|
* 0: Success
|
|
* Else: Failure
|
|
*------------------------------------------------------------------------*/
|
|
static int
|
|
usbd_setup_ctrl_transfer(struct usb_xfer *xfer)
|
|
{
|
|
usb_frlength_t len;
|
|
|
|
/* Check for control endpoint stall */
|
|
if (xfer->flags.stall_pipe && xfer->flags_int.control_act) {
|
|
/* the control transfer is no longer active */
|
|
xfer->flags_int.control_stall = 1;
|
|
xfer->flags_int.control_act = 0;
|
|
} else {
|
|
/* don't stall control transfer by default */
|
|
xfer->flags_int.control_stall = 0;
|
|
}
|
|
|
|
/* Check for invalid number of frames */
|
|
if (xfer->nframes > 2) {
|
|
/*
|
|
* If you need to split a control transfer, you
|
|
* have to do one part at a time. Only with
|
|
* non-control transfers you can do multiple
|
|
* parts a time.
|
|
*/
|
|
DPRINTFN(0, "Too many frames: %u\n",
|
|
(unsigned int)xfer->nframes);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Check if there is a control
|
|
* transfer in progress:
|
|
*/
|
|
if (xfer->flags_int.control_act) {
|
|
|
|
if (xfer->flags_int.control_hdr) {
|
|
|
|
/* clear send header flag */
|
|
|
|
xfer->flags_int.control_hdr = 0;
|
|
|
|
/* setup control transfer */
|
|
if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
|
|
usbd_control_transfer_init(xfer);
|
|
}
|
|
}
|
|
/* get data length */
|
|
|
|
len = xfer->sumlen;
|
|
|
|
} else {
|
|
|
|
/* the size of the SETUP structure is hardcoded ! */
|
|
|
|
if (xfer->frlengths[0] != sizeof(struct usb_device_request)) {
|
|
DPRINTFN(0, "Wrong framelength %u != %zu\n",
|
|
xfer->frlengths[0], sizeof(struct
|
|
usb_device_request));
|
|
goto error;
|
|
}
|
|
/* check USB mode */
|
|
if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
|
|
|
|
/* check number of frames */
|
|
if (xfer->nframes != 1) {
|
|
/*
|
|
* We need to receive the setup
|
|
* message first so that we know the
|
|
* data direction!
|
|
*/
|
|
DPRINTF("Misconfigured transfer\n");
|
|
goto error;
|
|
}
|
|
/*
|
|
* Set a dummy "control_rem" value. This
|
|
* variable will be overwritten later by a
|
|
* call to "usbd_control_transfer_init()" !
|
|
*/
|
|
xfer->flags_int.control_rem = 0xFFFF;
|
|
} else {
|
|
|
|
/* setup "endpoint" and "control_rem" */
|
|
|
|
usbd_control_transfer_init(xfer);
|
|
}
|
|
|
|
/* set transfer-header flag */
|
|
|
|
xfer->flags_int.control_hdr = 1;
|
|
|
|
/* get data length */
|
|
|
|
len = (xfer->sumlen - sizeof(struct usb_device_request));
|
|
}
|
|
|
|
/* check if there is a length mismatch */
|
|
|
|
if (len > xfer->flags_int.control_rem) {
|
|
DPRINTFN(0, "Length (%d) greater than "
|
|
"remaining length (%d)\n", len,
|
|
xfer->flags_int.control_rem);
|
|
goto error;
|
|
}
|
|
/* check if we are doing a short transfer */
|
|
|
|
if (xfer->flags.force_short_xfer) {
|
|
xfer->flags_int.control_rem = 0;
|
|
} else {
|
|
if ((len != xfer->max_data_length) &&
|
|
(len != xfer->flags_int.control_rem) &&
|
|
(xfer->nframes != 1)) {
|
|
DPRINTFN(0, "Short control transfer without "
|
|
"force_short_xfer set\n");
|
|
goto error;
|
|
}
|
|
xfer->flags_int.control_rem -= len;
|
|
}
|
|
|
|
/* the status part is executed when "control_act" is 0 */
|
|
|
|
if ((xfer->flags_int.control_rem > 0) ||
|
|
(xfer->flags.manual_status)) {
|
|
/* don't execute the STATUS stage yet */
|
|
xfer->flags_int.control_act = 1;
|
|
|
|
/* sanity check */
|
|
if ((!xfer->flags_int.control_hdr) &&
|
|
(xfer->nframes == 1)) {
|
|
/*
|
|
* This is not a valid operation!
|
|
*/
|
|
DPRINTFN(0, "Invalid parameter "
|
|
"combination\n");
|
|
goto error;
|
|
}
|
|
} else {
|
|
/* time to execute the STATUS stage */
|
|
xfer->flags_int.control_act = 0;
|
|
}
|
|
return (0); /* success */
|
|
|
|
error:
|
|
return (1); /* failure */
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_submit - start USB hardware for the given transfer
|
|
*
|
|
* This function should only be called from the USB callback.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_submit(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_xfer_root *info;
|
|
struct usb_bus *bus;
|
|
usb_frcount_t x;
|
|
|
|
info = xfer->xroot;
|
|
bus = info->bus;
|
|
|
|
DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n",
|
|
xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ?
|
|
"read" : "write");
|
|
|
|
#ifdef USB_DEBUG
|
|
if (USB_DEBUG_VAR > 0) {
|
|
USB_BUS_LOCK(bus);
|
|
|
|
usb_dump_endpoint(xfer->endpoint);
|
|
|
|
USB_BUS_UNLOCK(bus);
|
|
}
|
|
#endif
|
|
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED);
|
|
|
|
/* Only open the USB transfer once! */
|
|
if (!xfer->flags_int.open) {
|
|
xfer->flags_int.open = 1;
|
|
|
|
DPRINTF("open\n");
|
|
|
|
USB_BUS_LOCK(bus);
|
|
(xfer->endpoint->methods->open) (xfer);
|
|
USB_BUS_UNLOCK(bus);
|
|
}
|
|
/* set "transferring" flag */
|
|
xfer->flags_int.transferring = 1;
|
|
|
|
#if USB_HAVE_POWERD
|
|
/* increment power reference */
|
|
usbd_transfer_power_ref(xfer, 1);
|
|
#endif
|
|
/*
|
|
* Check if the transfer is waiting on a queue, most
|
|
* frequently the "done_q":
|
|
*/
|
|
if (xfer->wait_queue) {
|
|
USB_BUS_LOCK(bus);
|
|
usbd_transfer_dequeue(xfer);
|
|
USB_BUS_UNLOCK(bus);
|
|
}
|
|
/* clear "did_dma_delay" flag */
|
|
xfer->flags_int.did_dma_delay = 0;
|
|
|
|
/* clear "did_close" flag */
|
|
xfer->flags_int.did_close = 0;
|
|
|
|
#if USB_HAVE_BUSDMA
|
|
/* clear "bdma_setup" flag */
|
|
xfer->flags_int.bdma_setup = 0;
|
|
#endif
|
|
/* by default we cannot cancel any USB transfer immediately */
|
|
xfer->flags_int.can_cancel_immed = 0;
|
|
|
|
/* clear lengths and frame counts by default */
|
|
xfer->sumlen = 0;
|
|
xfer->actlen = 0;
|
|
xfer->aframes = 0;
|
|
|
|
/* clear any previous errors */
|
|
xfer->error = 0;
|
|
|
|
/* Check if the device is still alive */
|
|
if (info->udev->state < USB_STATE_POWERED) {
|
|
USB_BUS_LOCK(bus);
|
|
/*
|
|
* Must return cancelled error code else
|
|
* device drivers can hang.
|
|
*/
|
|
usbd_transfer_done(xfer, USB_ERR_CANCELLED);
|
|
USB_BUS_UNLOCK(bus);
|
|
return;
|
|
}
|
|
|
|
/* sanity check */
|
|
if (xfer->nframes == 0) {
|
|
if (xfer->flags.stall_pipe) {
|
|
/*
|
|
* Special case - want to stall without transferring
|
|
* any data:
|
|
*/
|
|
DPRINTF("xfer=%p nframes=0: stall "
|
|
"or clear stall!\n", xfer);
|
|
USB_BUS_LOCK(bus);
|
|
xfer->flags_int.can_cancel_immed = 1;
|
|
/* start the transfer */
|
|
usb_command_wrapper(&xfer->endpoint->endpoint_q, xfer);
|
|
USB_BUS_UNLOCK(bus);
|
|
return;
|
|
}
|
|
USB_BUS_LOCK(bus);
|
|
usbd_transfer_done(xfer, USB_ERR_INVAL);
|
|
USB_BUS_UNLOCK(bus);
|
|
return;
|
|
}
|
|
/* compute some variables */
|
|
|
|
for (x = 0; x != xfer->nframes; x++) {
|
|
/* make a copy of the frlenghts[] */
|
|
xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x];
|
|
/* compute total transfer length */
|
|
xfer->sumlen += xfer->frlengths[x];
|
|
if (xfer->sumlen < xfer->frlengths[x]) {
|
|
/* length wrapped around */
|
|
USB_BUS_LOCK(bus);
|
|
usbd_transfer_done(xfer, USB_ERR_INVAL);
|
|
USB_BUS_UNLOCK(bus);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* clear some internal flags */
|
|
|
|
xfer->flags_int.short_xfer_ok = 0;
|
|
xfer->flags_int.short_frames_ok = 0;
|
|
|
|
/* check if this is a control transfer */
|
|
|
|
if (xfer->flags_int.control_xfr) {
|
|
|
|
if (usbd_setup_ctrl_transfer(xfer)) {
|
|
USB_BUS_LOCK(bus);
|
|
usbd_transfer_done(xfer, USB_ERR_STALLED);
|
|
USB_BUS_UNLOCK(bus);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* Setup filtered version of some transfer flags,
|
|
* in case of data read direction
|
|
*/
|
|
if (USB_GET_DATA_ISREAD(xfer)) {
|
|
|
|
if (xfer->flags.short_frames_ok) {
|
|
xfer->flags_int.short_xfer_ok = 1;
|
|
xfer->flags_int.short_frames_ok = 1;
|
|
} else if (xfer->flags.short_xfer_ok) {
|
|
xfer->flags_int.short_xfer_ok = 1;
|
|
|
|
/* check for control transfer */
|
|
if (xfer->flags_int.control_xfr) {
|
|
/*
|
|
* 1) Control transfers do not support
|
|
* reception of multiple short USB
|
|
* frames in host mode and device side
|
|
* mode, with exception of:
|
|
*
|
|
* 2) Due to sometimes buggy device
|
|
* side firmware we need to do a
|
|
* STATUS stage in case of short
|
|
* control transfers in USB host mode.
|
|
* The STATUS stage then becomes the
|
|
* "alt_next" to the DATA stage.
|
|
*/
|
|
xfer->flags_int.short_frames_ok = 1;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Check if BUS-DMA support is enabled and try to load virtual
|
|
* buffers into DMA, if any:
|
|
*/
|
|
#if USB_HAVE_BUSDMA
|
|
if (xfer->flags_int.bdma_enable) {
|
|
/* insert the USB transfer last in the BUS-DMA queue */
|
|
usb_command_wrapper(&xfer->xroot->dma_q, xfer);
|
|
return;
|
|
}
|
|
#endif
|
|
/*
|
|
* Enter the USB transfer into the Host Controller or
|
|
* Device Controller schedule:
|
|
*/
|
|
usbd_pipe_enter(xfer);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_pipe_enter - factored out code
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_pipe_enter(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_endpoint *ep;
|
|
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
|
|
ep = xfer->endpoint;
|
|
|
|
DPRINTF("enter\n");
|
|
|
|
/* enter the transfer */
|
|
(ep->methods->enter) (xfer);
|
|
|
|
xfer->flags_int.can_cancel_immed = 1;
|
|
|
|
/* check for transfer error */
|
|
if (xfer->error) {
|
|
/* some error has happened */
|
|
usbd_transfer_done(xfer, 0);
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
return;
|
|
}
|
|
|
|
/* start the transfer */
|
|
usb_command_wrapper(&ep->endpoint_q, xfer);
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_start - start an USB transfer
|
|
*
|
|
* NOTE: Calling this function more than one time will only
|
|
* result in a single transfer start, until the USB transfer
|
|
* completes.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_start(struct usb_xfer *xfer)
|
|
{
|
|
if (xfer == NULL) {
|
|
/* transfer is gone */
|
|
return;
|
|
}
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
|
|
/* mark the USB transfer started */
|
|
|
|
if (!xfer->flags_int.started) {
|
|
/* lock the BUS lock to avoid races updating flags_int */
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
xfer->flags_int.started = 1;
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
/* check if the USB transfer callback is already transferring */
|
|
|
|
if (xfer->flags_int.transferring) {
|
|
return;
|
|
}
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
/* call the USB transfer callback */
|
|
usbd_callback_ss_done_defer(xfer);
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_stop - stop an USB transfer
|
|
*
|
|
* NOTE: Calling this function more than one time will only
|
|
* result in a single transfer stop.
|
|
* NOTE: When this function returns it is not safe to free nor
|
|
* reuse any DMA buffers. See "usbd_transfer_drain()".
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_stop(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_endpoint *ep;
|
|
|
|
if (xfer == NULL) {
|
|
/* transfer is gone */
|
|
return;
|
|
}
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
|
|
/* check if the USB transfer was ever opened */
|
|
|
|
if (!xfer->flags_int.open) {
|
|
if (xfer->flags_int.started) {
|
|
/* nothing to do except clearing the "started" flag */
|
|
/* lock the BUS lock to avoid races updating flags_int */
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
xfer->flags_int.started = 0;
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
return;
|
|
}
|
|
/* try to stop the current USB transfer */
|
|
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
/* override any previous error */
|
|
xfer->error = USB_ERR_CANCELLED;
|
|
|
|
/*
|
|
* Clear "open" and "started" when both private and USB lock
|
|
* is locked so that we don't get a race updating "flags_int"
|
|
*/
|
|
xfer->flags_int.open = 0;
|
|
xfer->flags_int.started = 0;
|
|
|
|
/*
|
|
* Check if we can cancel the USB transfer immediately.
|
|
*/
|
|
if (xfer->flags_int.transferring) {
|
|
if (xfer->flags_int.can_cancel_immed &&
|
|
(!xfer->flags_int.did_close)) {
|
|
DPRINTF("close\n");
|
|
/*
|
|
* The following will lead to an USB_ERR_CANCELLED
|
|
* error code being passed to the USB callback.
|
|
*/
|
|
(xfer->endpoint->methods->close) (xfer);
|
|
/* only close once */
|
|
xfer->flags_int.did_close = 1;
|
|
} else {
|
|
/* need to wait for the next done callback */
|
|
}
|
|
} else {
|
|
DPRINTF("close\n");
|
|
|
|
/* close here and now */
|
|
(xfer->endpoint->methods->close) (xfer);
|
|
|
|
/*
|
|
* Any additional DMA delay is done by
|
|
* "usbd_transfer_unsetup()".
|
|
*/
|
|
|
|
/*
|
|
* Special case. Check if we need to restart a blocked
|
|
* endpoint.
|
|
*/
|
|
ep = xfer->endpoint;
|
|
|
|
/*
|
|
* If the current USB transfer is completing we need
|
|
* to start the next one:
|
|
*/
|
|
if (ep->endpoint_q.curr == xfer) {
|
|
usb_command_wrapper(&ep->endpoint_q, NULL);
|
|
}
|
|
}
|
|
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_pending
|
|
*
|
|
* This function will check if an USB transfer is pending which is a
|
|
* little bit complicated!
|
|
* Return values:
|
|
* 0: Not pending
|
|
* 1: Pending: The USB transfer will receive a callback in the future.
|
|
*------------------------------------------------------------------------*/
|
|
uint8_t
|
|
usbd_transfer_pending(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_xfer_root *info;
|
|
struct usb_xfer_queue *pq;
|
|
|
|
if (xfer == NULL) {
|
|
/* transfer is gone */
|
|
return (0);
|
|
}
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
|
|
if (xfer->flags_int.transferring) {
|
|
/* trivial case */
|
|
return (1);
|
|
}
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
if (xfer->wait_queue) {
|
|
/* we are waiting on a queue somewhere */
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
return (1);
|
|
}
|
|
info = xfer->xroot;
|
|
pq = &info->done_q;
|
|
|
|
if (pq->curr == xfer) {
|
|
/* we are currently scheduled for callback */
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
return (1);
|
|
}
|
|
/* we are not pending */
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
return (0);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_drain
|
|
*
|
|
* This function will stop the USB transfer and wait for any
|
|
* additional BUS-DMA and HW-DMA operations to complete. Buffers that
|
|
* are loaded into DMA can safely be freed or reused after that this
|
|
* function has returned.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_drain(struct usb_xfer *xfer)
|
|
{
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
"usbd_transfer_drain can sleep!");
|
|
|
|
if (xfer == NULL) {
|
|
/* transfer is gone */
|
|
return;
|
|
}
|
|
if (xfer->xroot->xfer_mtx != &Giant) {
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED);
|
|
}
|
|
USB_XFER_LOCK(xfer);
|
|
|
|
usbd_transfer_stop(xfer);
|
|
|
|
while (usbd_transfer_pending(xfer) ||
|
|
xfer->flags_int.doing_callback) {
|
|
|
|
/*
|
|
* It is allowed that the callback can drop its
|
|
* transfer mutex. In that case checking only
|
|
* "usbd_transfer_pending()" is not enough to tell if
|
|
* the USB transfer is fully drained. We also need to
|
|
* check the internal "doing_callback" flag.
|
|
*/
|
|
xfer->flags_int.draining = 1;
|
|
|
|
/*
|
|
* Wait until the current outstanding USB
|
|
* transfer is complete !
|
|
*/
|
|
cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx);
|
|
}
|
|
USB_XFER_UNLOCK(xfer);
|
|
}
|
|
|
|
struct usb_page_cache *
|
|
usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex)
|
|
{
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
return (&xfer->frbuffers[frindex]);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_xfer_get_fps_shift
|
|
*
|
|
* The following function is only useful for isochronous transfers. It
|
|
* returns how many times the frame execution rate has been shifted
|
|
* down.
|
|
*
|
|
* Return value:
|
|
* Success: 0..3
|
|
* Failure: 0
|
|
*------------------------------------------------------------------------*/
|
|
uint8_t
|
|
usbd_xfer_get_fps_shift(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->fps_shift);
|
|
}
|
|
|
|
usb_frlength_t
|
|
usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex)
|
|
{
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
return (xfer->frlengths[frindex]);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_xfer_set_frame_data
|
|
*
|
|
* This function sets the pointer of the buffer that should
|
|
* loaded directly into DMA for the given USB frame. Passing "ptr"
|
|
* equal to NULL while the corresponding "frlength" is greater
|
|
* than zero gives undefined results!
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
|
|
void *ptr, usb_frlength_t len)
|
|
{
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
/* set virtual address to load and length */
|
|
xfer->frbuffers[frindex].buffer = ptr;
|
|
usbd_xfer_set_frame_len(xfer, frindex, len);
|
|
}
|
|
|
|
void
|
|
usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
|
|
void **ptr, int *len)
|
|
{
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
if (ptr != NULL)
|
|
*ptr = xfer->frbuffers[frindex].buffer;
|
|
if (len != NULL)
|
|
*len = xfer->frlengths[frindex];
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_xfer_old_frame_length
|
|
*
|
|
* This function returns the framelength of the given frame at the
|
|
* time the transfer was submitted. This function can be used to
|
|
* compute the starting data pointer of the next isochronous frame
|
|
* when an isochronous transfer has completed.
|
|
*------------------------------------------------------------------------*/
|
|
usb_frlength_t
|
|
usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex)
|
|
{
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
return (xfer->frlengths[frindex + xfer->max_frame_count]);
|
|
}
|
|
|
|
void
|
|
usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes,
|
|
int *nframes)
|
|
{
|
|
if (actlen != NULL)
|
|
*actlen = xfer->actlen;
|
|
if (sumlen != NULL)
|
|
*sumlen = xfer->sumlen;
|
|
if (aframes != NULL)
|
|
*aframes = xfer->aframes;
|
|
if (nframes != NULL)
|
|
*nframes = xfer->nframes;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_xfer_set_frame_offset
|
|
*
|
|
* This function sets the frame data buffer offset relative to the beginning
|
|
* of the USB DMA buffer allocated for this USB transfer.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset,
|
|
usb_frcount_t frindex)
|
|
{
|
|
KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame "
|
|
"when the USB buffer is external\n"));
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
/* set virtual address to load */
|
|
xfer->frbuffers[frindex].buffer =
|
|
USB_ADD_BYTES(xfer->local_buffer, offset);
|
|
}
|
|
|
|
void
|
|
usbd_xfer_set_interval(struct usb_xfer *xfer, int i)
|
|
{
|
|
xfer->interval = i;
|
|
}
|
|
|
|
void
|
|
usbd_xfer_set_timeout(struct usb_xfer *xfer, int t)
|
|
{
|
|
xfer->timeout = t;
|
|
}
|
|
|
|
void
|
|
usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n)
|
|
{
|
|
xfer->nframes = n;
|
|
}
|
|
|
|
usb_frcount_t
|
|
usbd_xfer_max_frames(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->max_frame_count);
|
|
}
|
|
|
|
usb_frlength_t
|
|
usbd_xfer_max_len(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->max_data_length);
|
|
}
|
|
|
|
usb_frlength_t
|
|
usbd_xfer_max_framelen(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->max_frame_size);
|
|
}
|
|
|
|
void
|
|
usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex,
|
|
usb_frlength_t len)
|
|
{
|
|
KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
|
|
|
|
xfer->frlengths[frindex] = len;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usb_callback_proc - factored out code
|
|
*
|
|
* This function performs USB callbacks.
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usb_callback_proc(struct usb_proc_msg *_pm)
|
|
{
|
|
struct usb_done_msg *pm = (void *)_pm;
|
|
struct usb_xfer_root *info = pm->xroot;
|
|
|
|
/* Change locking order */
|
|
USB_BUS_UNLOCK(info->bus);
|
|
|
|
/*
|
|
* We exploit the fact that the mutex is the same for all
|
|
* callbacks that will be called from this thread:
|
|
*/
|
|
mtx_lock(info->xfer_mtx);
|
|
USB_BUS_LOCK(info->bus);
|
|
|
|
/* Continue where we lost track */
|
|
usb_command_wrapper(&info->done_q,
|
|
info->done_q.curr);
|
|
|
|
mtx_unlock(info->xfer_mtx);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_callback_ss_done_defer
|
|
*
|
|
* This function will defer the start, stop and done callback to the
|
|
* correct thread.
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usbd_callback_ss_done_defer(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_xfer_root *info = xfer->xroot;
|
|
struct usb_xfer_queue *pq = &info->done_q;
|
|
|
|
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
|
|
|
|
if (pq->curr != xfer) {
|
|
usbd_transfer_enqueue(pq, xfer);
|
|
}
|
|
if (!pq->recurse_1) {
|
|
|
|
/*
|
|
* We have to postpone the callback due to the fact we
|
|
* will have a Lock Order Reversal, LOR, if we try to
|
|
* proceed !
|
|
*/
|
|
if (usb_proc_msignal(info->done_p,
|
|
&info->done_m[0], &info->done_m[1])) {
|
|
/* ignore */
|
|
}
|
|
} else {
|
|
/* clear second recurse flag */
|
|
pq->recurse_2 = 0;
|
|
}
|
|
return;
|
|
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_callback_wrapper
|
|
*
|
|
* This is a wrapper for USB callbacks. This wrapper does some
|
|
* auto-magic things like figuring out if we can call the callback
|
|
* directly from the current context or if we need to wakeup the
|
|
* interrupt process.
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usbd_callback_wrapper(struct usb_xfer_queue *pq)
|
|
{
|
|
struct usb_xfer *xfer = pq->curr;
|
|
struct usb_xfer_root *info = xfer->xroot;
|
|
|
|
USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED);
|
|
if (!mtx_owned(info->xfer_mtx) && !SCHEDULER_STOPPED()) {
|
|
/*
|
|
* Cases that end up here:
|
|
*
|
|
* 5) HW interrupt done callback or other source.
|
|
*/
|
|
DPRINTFN(3, "case 5\n");
|
|
|
|
/*
|
|
* We have to postpone the callback due to the fact we
|
|
* will have a Lock Order Reversal, LOR, if we try to
|
|
* proceed !
|
|
*/
|
|
if (usb_proc_msignal(info->done_p,
|
|
&info->done_m[0], &info->done_m[1])) {
|
|
/* ignore */
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* Cases that end up here:
|
|
*
|
|
* 1) We are starting a transfer
|
|
* 2) We are prematurely calling back a transfer
|
|
* 3) We are stopping a transfer
|
|
* 4) We are doing an ordinary callback
|
|
*/
|
|
DPRINTFN(3, "case 1-4\n");
|
|
/* get next USB transfer in the queue */
|
|
info->done_q.curr = NULL;
|
|
|
|
/* set flag in case of drain */
|
|
xfer->flags_int.doing_callback = 1;
|
|
|
|
USB_BUS_UNLOCK(info->bus);
|
|
USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED);
|
|
|
|
/* set correct USB state for callback */
|
|
if (!xfer->flags_int.transferring) {
|
|
xfer->usb_state = USB_ST_SETUP;
|
|
if (!xfer->flags_int.started) {
|
|
/* we got stopped before we even got started */
|
|
USB_BUS_LOCK(info->bus);
|
|
goto done;
|
|
}
|
|
} else {
|
|
|
|
if (usbd_callback_wrapper_sub(xfer)) {
|
|
/* the callback has been deferred */
|
|
USB_BUS_LOCK(info->bus);
|
|
goto done;
|
|
}
|
|
#if USB_HAVE_POWERD
|
|
/* decrement power reference */
|
|
usbd_transfer_power_ref(xfer, -1);
|
|
#endif
|
|
xfer->flags_int.transferring = 0;
|
|
|
|
if (xfer->error) {
|
|
xfer->usb_state = USB_ST_ERROR;
|
|
} else {
|
|
/* set transferred state */
|
|
xfer->usb_state = USB_ST_TRANSFERRED;
|
|
#if USB_HAVE_BUSDMA
|
|
/* sync DMA memory, if any */
|
|
if (xfer->flags_int.bdma_enable &&
|
|
(!xfer->flags_int.bdma_no_post_sync)) {
|
|
usb_bdma_post_sync(xfer);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if USB_HAVE_PF
|
|
if (xfer->usb_state != USB_ST_SETUP)
|
|
usbpf_xfertap(xfer, USBPF_XFERTAP_DONE);
|
|
#endif
|
|
/* call processing routine */
|
|
(xfer->callback) (xfer, xfer->error);
|
|
|
|
/* pickup the USB mutex again */
|
|
USB_BUS_LOCK(info->bus);
|
|
|
|
/*
|
|
* Check if we got started after that we got cancelled, but
|
|
* before we managed to do the callback.
|
|
*/
|
|
if ((!xfer->flags_int.open) &&
|
|
(xfer->flags_int.started) &&
|
|
(xfer->usb_state == USB_ST_ERROR)) {
|
|
/* clear flag in case of drain */
|
|
xfer->flags_int.doing_callback = 0;
|
|
/* try to loop, but not recursivly */
|
|
usb_command_wrapper(&info->done_q, xfer);
|
|
return;
|
|
}
|
|
|
|
done:
|
|
/* clear flag in case of drain */
|
|
xfer->flags_int.doing_callback = 0;
|
|
|
|
/*
|
|
* Check if we are draining.
|
|
*/
|
|
if (xfer->flags_int.draining &&
|
|
(!xfer->flags_int.transferring)) {
|
|
/* "usbd_transfer_drain()" is waiting for end of transfer */
|
|
xfer->flags_int.draining = 0;
|
|
cv_broadcast(&info->cv_drain);
|
|
}
|
|
|
|
/* do the next callback, if any */
|
|
usb_command_wrapper(&info->done_q,
|
|
info->done_q.curr);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usb_dma_delay_done_cb
|
|
*
|
|
* This function is called when the DMA delay has been exectuded, and
|
|
* will make sure that the callback is called to complete the USB
|
|
* transfer. This code path is ususally only used when there is an USB
|
|
* error like USB_ERR_CANCELLED.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usb_dma_delay_done_cb(struct usb_xfer *xfer)
|
|
{
|
|
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
|
|
|
|
DPRINTFN(3, "Completed %p\n", xfer);
|
|
|
|
/* queue callback for execution, again */
|
|
usbd_transfer_done(xfer, 0);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_dequeue
|
|
*
|
|
* - This function is used to remove an USB transfer from a USB
|
|
* transfer queue.
|
|
*
|
|
* - This function can be called multiple times in a row.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_dequeue(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_xfer_queue *pq;
|
|
|
|
pq = xfer->wait_queue;
|
|
if (pq) {
|
|
TAILQ_REMOVE(&pq->head, xfer, wait_entry);
|
|
xfer->wait_queue = NULL;
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_enqueue
|
|
*
|
|
* - This function is used to insert an USB transfer into a USB *
|
|
* transfer queue.
|
|
*
|
|
* - This function can be called multiple times in a row.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
|
|
{
|
|
/*
|
|
* Insert the USB transfer into the queue, if it is not
|
|
* already on a USB transfer queue:
|
|
*/
|
|
if (xfer->wait_queue == NULL) {
|
|
xfer->wait_queue = pq;
|
|
TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry);
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_done
|
|
*
|
|
* - This function is used to remove an USB transfer from the busdma,
|
|
* pipe or interrupt queue.
|
|
*
|
|
* - This function is used to queue the USB transfer on the done
|
|
* queue.
|
|
*
|
|
* - This function is used to stop any USB transfer timeouts.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error)
|
|
{
|
|
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
|
|
|
|
DPRINTF("err=%s\n", usbd_errstr(error));
|
|
|
|
/*
|
|
* If we are not transferring then just return.
|
|
* This can happen during transfer cancel.
|
|
*/
|
|
if (!xfer->flags_int.transferring) {
|
|
DPRINTF("not transferring\n");
|
|
/* end of control transfer, if any */
|
|
xfer->flags_int.control_act = 0;
|
|
return;
|
|
}
|
|
/* only set transfer error if not already set */
|
|
if (!xfer->error) {
|
|
xfer->error = error;
|
|
}
|
|
/* stop any callouts */
|
|
usb_callout_stop(&xfer->timeout_handle);
|
|
|
|
/*
|
|
* If we are waiting on a queue, just remove the USB transfer
|
|
* from the queue, if any. We should have the required locks
|
|
* locked to do the remove when this function is called.
|
|
*/
|
|
usbd_transfer_dequeue(xfer);
|
|
|
|
#if USB_HAVE_BUSDMA
|
|
if (mtx_owned(xfer->xroot->xfer_mtx)) {
|
|
struct usb_xfer_queue *pq;
|
|
|
|
/*
|
|
* If the private USB lock is not locked, then we assume
|
|
* that the BUS-DMA load stage has been passed:
|
|
*/
|
|
pq = &xfer->xroot->dma_q;
|
|
|
|
if (pq->curr == xfer) {
|
|
/* start the next BUS-DMA load, if any */
|
|
usb_command_wrapper(pq, NULL);
|
|
}
|
|
}
|
|
#endif
|
|
/* keep some statistics */
|
|
if (xfer->error) {
|
|
xfer->xroot->bus->stats_err.uds_requests
|
|
[xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
|
|
} else {
|
|
xfer->xroot->bus->stats_ok.uds_requests
|
|
[xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
|
|
}
|
|
|
|
/* call the USB transfer callback */
|
|
usbd_callback_ss_done_defer(xfer);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_start_cb
|
|
*
|
|
* This function is called to start the USB transfer when
|
|
* "xfer->interval" is greater than zero, and and the endpoint type is
|
|
* BULK or CONTROL.
|
|
*------------------------------------------------------------------------*/
|
|
static void
|
|
usbd_transfer_start_cb(void *arg)
|
|
{
|
|
struct usb_xfer *xfer = arg;
|
|
struct usb_endpoint *ep = xfer->endpoint;
|
|
|
|
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
|
|
|
|
DPRINTF("start\n");
|
|
|
|
#if USB_HAVE_PF
|
|
usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
|
|
#endif
|
|
/* start USB transfer, if no error */
|
|
if (xfer->error == 0)
|
|
(ep->methods->start) (xfer);
|
|
|
|
xfer->flags_int.can_cancel_immed = 1;
|
|
|
|
/* check for error */
|
|
if (xfer->error) {
|
|
/* some error has happened */
|
|
usbd_transfer_done(xfer, 0);
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_xfer_set_stall
|
|
*
|
|
* This function is used to set the stall flag outside the
|
|
* callback. This function is NULL safe.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_xfer_set_stall(struct usb_xfer *xfer)
|
|
{
|
|
if (xfer == NULL) {
|
|
/* tearing down */
|
|
return;
|
|
}
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
|
|
/* avoid any races by locking the USB mutex */
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
xfer->flags.stall_pipe = 1;
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
|
|
int
|
|
usbd_xfer_is_stalled(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->endpoint->is_stalled);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_clear_stall
|
|
*
|
|
* This function is used to clear the stall flag outside the
|
|
* callback. This function is NULL safe.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_clear_stall(struct usb_xfer *xfer)
|
|
{
|
|
if (xfer == NULL) {
|
|
/* tearing down */
|
|
return;
|
|
}
|
|
USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
|
|
|
|
/* avoid any races by locking the USB mutex */
|
|
USB_BUS_LOCK(xfer->xroot->bus);
|
|
|
|
xfer->flags.stall_pipe = 0;
|
|
|
|
USB_BUS_UNLOCK(xfer->xroot->bus);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_pipe_start
|
|
*
|
|
* This function is used to add an USB transfer to the pipe transfer list.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_pipe_start(struct usb_xfer_queue *pq)
|
|
{
|
|
struct usb_endpoint *ep;
|
|
struct usb_xfer *xfer;
|
|
uint8_t type;
|
|
|
|
xfer = pq->curr;
|
|
ep = xfer->endpoint;
|
|
|
|
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
|
|
|
|
/*
|
|
* If the endpoint is already stalled we do nothing !
|
|
*/
|
|
if (ep->is_stalled) {
|
|
return;
|
|
}
|
|
/*
|
|
* Check if we are supposed to stall the endpoint:
|
|
*/
|
|
if (xfer->flags.stall_pipe) {
|
|
struct usb_device *udev;
|
|
struct usb_xfer_root *info;
|
|
|
|
/* clear stall command */
|
|
xfer->flags.stall_pipe = 0;
|
|
|
|
/* get pointer to USB device */
|
|
info = xfer->xroot;
|
|
udev = info->udev;
|
|
|
|
/*
|
|
* Only stall BULK and INTERRUPT endpoints.
|
|
*/
|
|
type = (ep->edesc->bmAttributes & UE_XFERTYPE);
|
|
if ((type == UE_BULK) ||
|
|
(type == UE_INTERRUPT)) {
|
|
uint8_t did_stall;
|
|
|
|
did_stall = 1;
|
|
|
|
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
|
|
(udev->bus->methods->set_stall) (
|
|
udev, NULL, ep, &did_stall);
|
|
} else if (udev->ctrl_xfer[1]) {
|
|
info = udev->ctrl_xfer[1]->xroot;
|
|
usb_proc_msignal(
|
|
&info->bus->non_giant_callback_proc,
|
|
&udev->cs_msg[0], &udev->cs_msg[1]);
|
|
} else {
|
|
/* should not happen */
|
|
DPRINTFN(0, "No stall handler\n");
|
|
}
|
|
/*
|
|
* Check if we should stall. Some USB hardware
|
|
* handles set- and clear-stall in hardware.
|
|
*/
|
|
if (did_stall) {
|
|
/*
|
|
* The transfer will be continued when
|
|
* the clear-stall control endpoint
|
|
* message is received.
|
|
*/
|
|
ep->is_stalled = 1;
|
|
return;
|
|
}
|
|
} else if (type == UE_ISOCHRONOUS) {
|
|
|
|
/*
|
|
* Make sure any FIFO overflow or other FIFO
|
|
* error conditions go away by resetting the
|
|
* endpoint FIFO through the clear stall
|
|
* method.
|
|
*/
|
|
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
|
|
(udev->bus->methods->clear_stall) (udev, ep);
|
|
}
|
|
}
|
|
}
|
|
/* Set or clear stall complete - special case */
|
|
if (xfer->nframes == 0) {
|
|
/* we are complete */
|
|
xfer->aframes = 0;
|
|
usbd_transfer_done(xfer, 0);
|
|
return;
|
|
}
|
|
/*
|
|
* Handled cases:
|
|
*
|
|
* 1) Start the first transfer queued.
|
|
*
|
|
* 2) Re-start the current USB transfer.
|
|
*/
|
|
/*
|
|
* Check if there should be any
|
|
* pre transfer start delay:
|
|
*/
|
|
if (xfer->interval > 0) {
|
|
type = (ep->edesc->bmAttributes & UE_XFERTYPE);
|
|
if ((type == UE_BULK) ||
|
|
(type == UE_CONTROL)) {
|
|
usbd_transfer_timeout_ms(xfer,
|
|
&usbd_transfer_start_cb,
|
|
xfer->interval);
|
|
return;
|
|
}
|
|
}
|
|
DPRINTF("start\n");
|
|
|
|
#if USB_HAVE_PF
|
|
usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
|
|
#endif
|
|
/* start USB transfer, if no error */
|
|
if (xfer->error == 0)
|
|
(ep->methods->start) (xfer);
|
|
|
|
xfer->flags_int.can_cancel_immed = 1;
|
|
|
|
/* check for error */
|
|
if (xfer->error) {
|
|
/* some error has happened */
|
|
usbd_transfer_done(xfer, 0);
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_timeout_ms
|
|
*
|
|
* This function is used to setup a timeout on the given USB
|
|
* transfer. If the timeout has been deferred the callback given by
|
|
* "cb" will get called after "ms" milliseconds.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_timeout_ms(struct usb_xfer *xfer,
|
|
void (*cb) (void *arg), usb_timeout_t ms)
|
|
{
|
|
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
|
|
|
|
/* defer delay */
|
|
usb_callout_reset(&xfer->timeout_handle,
|
|
USB_MS_TO_TICKS(ms), cb, xfer);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_callback_wrapper_sub
|
|
*
|
|
* - This function will update variables in an USB transfer after
|
|
* that the USB transfer is complete.
|
|
*
|
|
* - This function is used to start the next USB transfer on the
|
|
* ep transfer queue, if any.
|
|
*
|
|
* NOTE: In some special cases the USB transfer will not be removed from
|
|
* the pipe queue, but remain first. To enforce USB transfer removal call
|
|
* this function passing the error code "USB_ERR_CANCELLED".
|
|
*
|
|
* Return values:
|
|
* 0: Success.
|
|
* Else: The callback has been deferred.
|
|
*------------------------------------------------------------------------*/
|
|
static uint8_t
|
|
usbd_callback_wrapper_sub(struct usb_xfer *xfer)
|
|
{
|
|
struct usb_endpoint *ep;
|
|
struct usb_bus *bus;
|
|
usb_frcount_t x;
|
|
|
|
bus = xfer->xroot->bus;
|
|
|
|
if ((!xfer->flags_int.open) &&
|
|
(!xfer->flags_int.did_close)) {
|
|
DPRINTF("close\n");
|
|
USB_BUS_LOCK(bus);
|
|
(xfer->endpoint->methods->close) (xfer);
|
|
USB_BUS_UNLOCK(bus);
|
|
/* only close once */
|
|
xfer->flags_int.did_close = 1;
|
|
return (1); /* wait for new callback */
|
|
}
|
|
/*
|
|
* If we have a non-hardware induced error we
|
|
* need to do the DMA delay!
|
|
*/
|
|
if (xfer->error != 0 && !xfer->flags_int.did_dma_delay &&
|
|
(xfer->error == USB_ERR_CANCELLED ||
|
|
xfer->error == USB_ERR_TIMEOUT ||
|
|
bus->methods->start_dma_delay != NULL)) {
|
|
|
|
usb_timeout_t temp;
|
|
|
|
/* only delay once */
|
|
xfer->flags_int.did_dma_delay = 1;
|
|
|
|
/* we can not cancel this delay */
|
|
xfer->flags_int.can_cancel_immed = 0;
|
|
|
|
temp = usbd_get_dma_delay(xfer->xroot->udev);
|
|
|
|
DPRINTFN(3, "DMA delay, %u ms, "
|
|
"on %p\n", temp, xfer);
|
|
|
|
if (temp != 0) {
|
|
USB_BUS_LOCK(bus);
|
|
/*
|
|
* Some hardware solutions have dedicated
|
|
* events when it is safe to free DMA'ed
|
|
* memory. For the other hardware platforms we
|
|
* use a static delay.
|
|
*/
|
|
if (bus->methods->start_dma_delay != NULL) {
|
|
(bus->methods->start_dma_delay) (xfer);
|
|
} else {
|
|
usbd_transfer_timeout_ms(xfer,
|
|
(void *)&usb_dma_delay_done_cb, temp);
|
|
}
|
|
USB_BUS_UNLOCK(bus);
|
|
return (1); /* wait for new callback */
|
|
}
|
|
}
|
|
/* check actual number of frames */
|
|
if (xfer->aframes > xfer->nframes) {
|
|
if (xfer->error == 0) {
|
|
panic("%s: actual number of frames, %d, is "
|
|
"greater than initial number of frames, %d\n",
|
|
__FUNCTION__, xfer->aframes, xfer->nframes);
|
|
} else {
|
|
/* just set some valid value */
|
|
xfer->aframes = xfer->nframes;
|
|
}
|
|
}
|
|
/* compute actual length */
|
|
xfer->actlen = 0;
|
|
|
|
for (x = 0; x != xfer->aframes; x++) {
|
|
xfer->actlen += xfer->frlengths[x];
|
|
}
|
|
|
|
/*
|
|
* Frames that were not transferred get zero actual length in
|
|
* case the USB device driver does not check the actual number
|
|
* of frames transferred, "xfer->aframes":
|
|
*/
|
|
for (; x < xfer->nframes; x++) {
|
|
usbd_xfer_set_frame_len(xfer, x, 0);
|
|
}
|
|
|
|
/* check actual length */
|
|
if (xfer->actlen > xfer->sumlen) {
|
|
if (xfer->error == 0) {
|
|
panic("%s: actual length, %d, is greater than "
|
|
"initial length, %d\n",
|
|
__FUNCTION__, xfer->actlen, xfer->sumlen);
|
|
} else {
|
|
/* just set some valid value */
|
|
xfer->actlen = xfer->sumlen;
|
|
}
|
|
}
|
|
DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n",
|
|
xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen,
|
|
xfer->aframes, xfer->nframes);
|
|
|
|
if (xfer->error) {
|
|
/* end of control transfer, if any */
|
|
xfer->flags_int.control_act = 0;
|
|
|
|
/* check if we should block the execution queue */
|
|
if ((xfer->error != USB_ERR_CANCELLED) &&
|
|
(xfer->flags.pipe_bof)) {
|
|
DPRINTFN(2, "xfer=%p: Block On Failure "
|
|
"on endpoint=%p\n", xfer, xfer->endpoint);
|
|
goto done;
|
|
}
|
|
} else {
|
|
/* check for short transfers */
|
|
if (xfer->actlen < xfer->sumlen) {
|
|
|
|
/* end of control transfer, if any */
|
|
xfer->flags_int.control_act = 0;
|
|
|
|
if (!xfer->flags_int.short_xfer_ok) {
|
|
xfer->error = USB_ERR_SHORT_XFER;
|
|
if (xfer->flags.pipe_bof) {
|
|
DPRINTFN(2, "xfer=%p: Block On Failure on "
|
|
"Short Transfer on endpoint %p.\n",
|
|
xfer, xfer->endpoint);
|
|
goto done;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Check if we are in the middle of a
|
|
* control transfer:
|
|
*/
|
|
if (xfer->flags_int.control_act) {
|
|
DPRINTFN(5, "xfer=%p: Control transfer "
|
|
"active on endpoint=%p\n", xfer, xfer->endpoint);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
ep = xfer->endpoint;
|
|
|
|
/*
|
|
* If the current USB transfer is completing we need to start the
|
|
* next one:
|
|
*/
|
|
USB_BUS_LOCK(bus);
|
|
if (ep->endpoint_q.curr == xfer) {
|
|
usb_command_wrapper(&ep->endpoint_q, NULL);
|
|
|
|
if (ep->endpoint_q.curr || TAILQ_FIRST(&ep->endpoint_q.head)) {
|
|
/* there is another USB transfer waiting */
|
|
} else {
|
|
/* this is the last USB transfer */
|
|
/* clear isochronous sync flag */
|
|
xfer->endpoint->is_synced = 0;
|
|
}
|
|
}
|
|
USB_BUS_UNLOCK(bus);
|
|
done:
|
|
return (0);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usb_command_wrapper
|
|
*
|
|
* This function is used to execute commands non-recursivly on an USB
|
|
* transfer.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
|
|
{
|
|
if (xfer) {
|
|
/*
|
|
* If the transfer is not already processing,
|
|
* queue it!
|
|
*/
|
|
if (pq->curr != xfer) {
|
|
usbd_transfer_enqueue(pq, xfer);
|
|
if (pq->curr != NULL) {
|
|
/* something is already processing */
|
|
DPRINTFN(6, "busy %p\n", pq->curr);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
/* Get next element in queue */
|
|
pq->curr = NULL;
|
|
}
|
|
|
|
if (!pq->recurse_1) {
|
|
|
|
do {
|
|
|
|
/* set both recurse flags */
|
|
pq->recurse_1 = 1;
|
|
pq->recurse_2 = 1;
|
|
|
|
if (pq->curr == NULL) {
|
|
xfer = TAILQ_FIRST(&pq->head);
|
|
if (xfer) {
|
|
TAILQ_REMOVE(&pq->head, xfer,
|
|
wait_entry);
|
|
xfer->wait_queue = NULL;
|
|
pq->curr = xfer;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
DPRINTFN(6, "cb %p (enter)\n", pq->curr);
|
|
(pq->command) (pq);
|
|
DPRINTFN(6, "cb %p (leave)\n", pq->curr);
|
|
|
|
} while (!pq->recurse_2);
|
|
|
|
/* clear first recurse flag */
|
|
pq->recurse_1 = 0;
|
|
|
|
} else {
|
|
/* clear second recurse flag */
|
|
pq->recurse_2 = 0;
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_ctrl_transfer_setup
|
|
*
|
|
* This function is used to setup the default USB control endpoint
|
|
* transfer.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_ctrl_transfer_setup(struct usb_device *udev)
|
|
{
|
|
struct usb_xfer *xfer;
|
|
uint8_t no_resetup;
|
|
uint8_t iface_index;
|
|
|
|
/* check for root HUB */
|
|
if (udev->parent_hub == NULL)
|
|
return;
|
|
repeat:
|
|
|
|
xfer = udev->ctrl_xfer[0];
|
|
if (xfer) {
|
|
USB_XFER_LOCK(xfer);
|
|
no_resetup =
|
|
((xfer->address == udev->address) &&
|
|
(udev->ctrl_ep_desc.wMaxPacketSize[0] ==
|
|
udev->ddesc.bMaxPacketSize));
|
|
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
|
|
if (no_resetup) {
|
|
/*
|
|
* NOTE: checking "xfer->address" and
|
|
* starting the USB transfer must be
|
|
* atomic!
|
|
*/
|
|
usbd_transfer_start(xfer);
|
|
}
|
|
}
|
|
USB_XFER_UNLOCK(xfer);
|
|
} else {
|
|
no_resetup = 0;
|
|
}
|
|
|
|
if (no_resetup) {
|
|
/*
|
|
* All parameters are exactly the same like before.
|
|
* Just return.
|
|
*/
|
|
return;
|
|
}
|
|
/*
|
|
* Update wMaxPacketSize for the default control endpoint:
|
|
*/
|
|
udev->ctrl_ep_desc.wMaxPacketSize[0] =
|
|
udev->ddesc.bMaxPacketSize;
|
|
|
|
/*
|
|
* Unsetup any existing USB transfer:
|
|
*/
|
|
usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX);
|
|
|
|
/*
|
|
* Reset clear stall error counter.
|
|
*/
|
|
udev->clear_stall_errors = 0;
|
|
|
|
/*
|
|
* Try to setup a new USB transfer for the
|
|
* default control endpoint:
|
|
*/
|
|
iface_index = 0;
|
|
if (usbd_transfer_setup(udev, &iface_index,
|
|
udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL,
|
|
&udev->device_mtx)) {
|
|
DPRINTFN(0, "could not setup default "
|
|
"USB transfer\n");
|
|
} else {
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_clear_data_toggle - factored out code
|
|
*
|
|
* NOTE: the intention of this function is not to reset the hardware
|
|
* data toggle.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep)
|
|
{
|
|
USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED);
|
|
|
|
/* check that we have a valid case */
|
|
if (udev->flags.usb_mode == USB_MODE_HOST &&
|
|
udev->parent_hub != NULL &&
|
|
udev->bus->methods->clear_stall != NULL &&
|
|
ep->methods != NULL) {
|
|
(udev->bus->methods->clear_stall) (udev, ep);
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_clear_data_toggle - factored out code
|
|
*
|
|
* NOTE: the intention of this function is not to reset the hardware
|
|
* data toggle on the USB device side.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep)
|
|
{
|
|
DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep);
|
|
|
|
USB_BUS_LOCK(udev->bus);
|
|
ep->toggle_next = 0;
|
|
/* some hardware needs a callback to clear the data toggle */
|
|
usbd_clear_stall_locked(udev, ep);
|
|
USB_BUS_UNLOCK(udev->bus);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_clear_stall_callback - factored out clear stall callback
|
|
*
|
|
* Input parameters:
|
|
* xfer1: Clear Stall Control Transfer
|
|
* xfer2: Stalled USB Transfer
|
|
*
|
|
* This function is NULL safe.
|
|
*
|
|
* Return values:
|
|
* 0: In progress
|
|
* Else: Finished
|
|
*
|
|
* Clear stall config example:
|
|
*
|
|
* static const struct usb_config my_clearstall = {
|
|
* .type = UE_CONTROL,
|
|
* .endpoint = 0,
|
|
* .direction = UE_DIR_ANY,
|
|
* .interval = 50, //50 milliseconds
|
|
* .bufsize = sizeof(struct usb_device_request),
|
|
* .timeout = 1000, //1.000 seconds
|
|
* .callback = &my_clear_stall_callback, // **
|
|
* .usb_mode = USB_MODE_HOST,
|
|
* };
|
|
*
|
|
* ** "my_clear_stall_callback" calls "usbd_clear_stall_callback"
|
|
* passing the correct parameters.
|
|
*------------------------------------------------------------------------*/
|
|
uint8_t
|
|
usbd_clear_stall_callback(struct usb_xfer *xfer1,
|
|
struct usb_xfer *xfer2)
|
|
{
|
|
struct usb_device_request req;
|
|
|
|
if (xfer2 == NULL) {
|
|
/* looks like we are tearing down */
|
|
DPRINTF("NULL input parameter\n");
|
|
return (0);
|
|
}
|
|
USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED);
|
|
USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED);
|
|
|
|
switch (USB_GET_STATE(xfer1)) {
|
|
case USB_ST_SETUP:
|
|
|
|
/*
|
|
* pre-clear the data toggle to DATA0 ("umass.c" and
|
|
* "ata-usb.c" depends on this)
|
|
*/
|
|
|
|
usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint);
|
|
|
|
/* setup a clear-stall packet */
|
|
|
|
req.bmRequestType = UT_WRITE_ENDPOINT;
|
|
req.bRequest = UR_CLEAR_FEATURE;
|
|
USETW(req.wValue, UF_ENDPOINT_HALT);
|
|
req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress;
|
|
req.wIndex[1] = 0;
|
|
USETW(req.wLength, 0);
|
|
|
|
/*
|
|
* "usbd_transfer_setup_sub()" will ensure that
|
|
* we have sufficient room in the buffer for
|
|
* the request structure!
|
|
*/
|
|
|
|
/* copy in the transfer */
|
|
|
|
usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req));
|
|
|
|
/* set length */
|
|
xfer1->frlengths[0] = sizeof(req);
|
|
xfer1->nframes = 1;
|
|
|
|
usbd_transfer_submit(xfer1);
|
|
return (0);
|
|
|
|
case USB_ST_TRANSFERRED:
|
|
break;
|
|
|
|
default: /* Error */
|
|
if (xfer1->error == USB_ERR_CANCELLED) {
|
|
return (0);
|
|
}
|
|
break;
|
|
}
|
|
return (1); /* Clear Stall Finished */
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*
|
|
* usbd_transfer_poll
|
|
*
|
|
* The following function gets called from the USB keyboard driver and
|
|
* UMASS when the system has paniced.
|
|
*
|
|
* NOTE: It is currently not possible to resume normal operation on
|
|
* the USB controller which has been polled, due to clearing of the
|
|
* "up_dsleep" and "up_msleep" flags.
|
|
*------------------------------------------------------------------------*/
|
|
void
|
|
usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max)
|
|
{
|
|
struct usb_xfer *xfer;
|
|
struct usb_xfer_root *xroot;
|
|
struct usb_device *udev;
|
|
struct usb_proc_msg *pm;
|
|
uint16_t n;
|
|
uint16_t drop_bus;
|
|
uint16_t drop_xfer;
|
|
|
|
for (n = 0; n != max; n++) {
|
|
/* Extra checks to avoid panic */
|
|
xfer = ppxfer[n];
|
|
if (xfer == NULL)
|
|
continue; /* no USB transfer */
|
|
xroot = xfer->xroot;
|
|
if (xroot == NULL)
|
|
continue; /* no USB root */
|
|
udev = xroot->udev;
|
|
if (udev == NULL)
|
|
continue; /* no USB device */
|
|
if (udev->bus == NULL)
|
|
continue; /* no BUS structure */
|
|
if (udev->bus->methods == NULL)
|
|
continue; /* no BUS methods */
|
|
if (udev->bus->methods->xfer_poll == NULL)
|
|
continue; /* no poll method */
|
|
|
|
/* make sure that the BUS mutex is not locked */
|
|
drop_bus = 0;
|
|
while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) {
|
|
mtx_unlock(&xroot->udev->bus->bus_mtx);
|
|
drop_bus++;
|
|
}
|
|
|
|
/* make sure that the transfer mutex is not locked */
|
|
drop_xfer = 0;
|
|
while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) {
|
|
mtx_unlock(xroot->xfer_mtx);
|
|
drop_xfer++;
|
|
}
|
|
|
|
/* Make sure cv_signal() and cv_broadcast() is not called */
|
|
udev->bus->control_xfer_proc.up_msleep = 0;
|
|
udev->bus->explore_proc.up_msleep = 0;
|
|
udev->bus->giant_callback_proc.up_msleep = 0;
|
|
udev->bus->non_giant_callback_proc.up_msleep = 0;
|
|
|
|
/* poll USB hardware */
|
|
(udev->bus->methods->xfer_poll) (udev->bus);
|
|
|
|
USB_BUS_LOCK(xroot->bus);
|
|
|
|
/* check for clear stall */
|
|
if (udev->ctrl_xfer[1] != NULL) {
|
|
|
|
/* poll clear stall start */
|
|
pm = &udev->cs_msg[0].hdr;
|
|
(pm->pm_callback) (pm);
|
|
/* poll clear stall done thread */
|
|
pm = &udev->ctrl_xfer[1]->
|
|
xroot->done_m[0].hdr;
|
|
(pm->pm_callback) (pm);
|
|
}
|
|
|
|
/* poll done thread */
|
|
pm = &xroot->done_m[0].hdr;
|
|
(pm->pm_callback) (pm);
|
|
|
|
USB_BUS_UNLOCK(xroot->bus);
|
|
|
|
/* restore transfer mutex */
|
|
while (drop_xfer--)
|
|
mtx_lock(xroot->xfer_mtx);
|
|
|
|
/* restore BUS mutex */
|
|
while (drop_bus--)
|
|
mtx_lock(&xroot->udev->bus->bus_mtx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
|
|
uint8_t type, enum usb_dev_speed speed)
|
|
{
|
|
static const uint16_t intr_range_max[USB_SPEED_MAX] = {
|
|
[USB_SPEED_LOW] = 8,
|
|
[USB_SPEED_FULL] = 64,
|
|
[USB_SPEED_HIGH] = 1024,
|
|
[USB_SPEED_VARIABLE] = 1024,
|
|
[USB_SPEED_SUPER] = 1024,
|
|
};
|
|
|
|
static const uint16_t isoc_range_max[USB_SPEED_MAX] = {
|
|
[USB_SPEED_LOW] = 0, /* invalid */
|
|
[USB_SPEED_FULL] = 1023,
|
|
[USB_SPEED_HIGH] = 1024,
|
|
[USB_SPEED_VARIABLE] = 3584,
|
|
[USB_SPEED_SUPER] = 1024,
|
|
};
|
|
|
|
static const uint16_t control_min[USB_SPEED_MAX] = {
|
|
[USB_SPEED_LOW] = 8,
|
|
[USB_SPEED_FULL] = 8,
|
|
[USB_SPEED_HIGH] = 64,
|
|
[USB_SPEED_VARIABLE] = 512,
|
|
[USB_SPEED_SUPER] = 512,
|
|
};
|
|
|
|
static const uint16_t bulk_min[USB_SPEED_MAX] = {
|
|
[USB_SPEED_LOW] = 8,
|
|
[USB_SPEED_FULL] = 8,
|
|
[USB_SPEED_HIGH] = 512,
|
|
[USB_SPEED_VARIABLE] = 512,
|
|
[USB_SPEED_SUPER] = 1024,
|
|
};
|
|
|
|
uint16_t temp;
|
|
|
|
memset(ptr, 0, sizeof(*ptr));
|
|
|
|
switch (type) {
|
|
case UE_INTERRUPT:
|
|
ptr->range.max = intr_range_max[speed];
|
|
break;
|
|
case UE_ISOCHRONOUS:
|
|
ptr->range.max = isoc_range_max[speed];
|
|
break;
|
|
default:
|
|
if (type == UE_BULK)
|
|
temp = bulk_min[speed];
|
|
else /* UE_CONTROL */
|
|
temp = control_min[speed];
|
|
|
|
/* default is fixed */
|
|
ptr->fixed[0] = temp;
|
|
ptr->fixed[1] = temp;
|
|
ptr->fixed[2] = temp;
|
|
ptr->fixed[3] = temp;
|
|
|
|
if (speed == USB_SPEED_FULL) {
|
|
/* multiple sizes */
|
|
ptr->fixed[1] = 16;
|
|
ptr->fixed[2] = 32;
|
|
ptr->fixed[3] = 64;
|
|
}
|
|
if ((speed == USB_SPEED_VARIABLE) &&
|
|
(type == UE_BULK)) {
|
|
/* multiple sizes */
|
|
ptr->fixed[2] = 1024;
|
|
ptr->fixed[3] = 1536;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void *
|
|
usbd_xfer_softc(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->priv_sc);
|
|
}
|
|
|
|
void *
|
|
usbd_xfer_get_priv(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->priv_fifo);
|
|
}
|
|
|
|
void
|
|
usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr)
|
|
{
|
|
xfer->priv_fifo = ptr;
|
|
}
|
|
|
|
uint8_t
|
|
usbd_xfer_state(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->usb_state);
|
|
}
|
|
|
|
void
|
|
usbd_xfer_set_flag(struct usb_xfer *xfer, int flag)
|
|
{
|
|
switch (flag) {
|
|
case USB_FORCE_SHORT_XFER:
|
|
xfer->flags.force_short_xfer = 1;
|
|
break;
|
|
case USB_SHORT_XFER_OK:
|
|
xfer->flags.short_xfer_ok = 1;
|
|
break;
|
|
case USB_MULTI_SHORT_OK:
|
|
xfer->flags.short_frames_ok = 1;
|
|
break;
|
|
case USB_MANUAL_STATUS:
|
|
xfer->flags.manual_status = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag)
|
|
{
|
|
switch (flag) {
|
|
case USB_FORCE_SHORT_XFER:
|
|
xfer->flags.force_short_xfer = 0;
|
|
break;
|
|
case USB_SHORT_XFER_OK:
|
|
xfer->flags.short_xfer_ok = 0;
|
|
break;
|
|
case USB_MULTI_SHORT_OK:
|
|
xfer->flags.short_frames_ok = 0;
|
|
break;
|
|
case USB_MANUAL_STATUS:
|
|
xfer->flags.manual_status = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following function returns in milliseconds when the isochronous
|
|
* transfer was completed by the hardware. The returned value wraps
|
|
* around 65536 milliseconds.
|
|
*/
|
|
uint16_t
|
|
usbd_xfer_get_timestamp(struct usb_xfer *xfer)
|
|
{
|
|
return (xfer->isoc_time_complete);
|
|
}
|