freebsd-skq/sys/dev/txp/if_txp.c
Gleb Smirnoff 1fc35e9e38 - Provide txp_get_counter() to return counters that are not collected,
but taken from hardware.
- Mechanically convert to if_inc_counter() the rest of counters.
2014-09-24 11:58:23 +00:00

3019 lines
86 KiB
C

/* $OpenBSD: if_txp.c,v 1.48 2001/06/27 06:34:50 kjc Exp $ */
/*-
* Copyright (c) 2001
* Jason L. Wright <jason@thought.net>, Theo de Raadt, and
* Aaron Campbell <aaron@monkey.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Jason L. Wright,
* Theo de Raadt and Aaron Campbell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for 3c990 (Typhoon) Ethernet ASIC
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <dev/mii/mii.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/txp/if_txpreg.h>
#include <dev/txp/3c990img.h>
MODULE_DEPEND(txp, pci, 1, 1, 1);
MODULE_DEPEND(txp, ether, 1, 1, 1);
/*
* XXX Known Typhoon firmware issues.
*
* 1. It seems that firmware has Tx TCP/UDP checksum offloading bug.
* The firmware hangs when it's told to compute TCP/UDP checksum.
* I'm not sure whether the firmware requires special alignment to
* do checksum offloading but datasheet says nothing about that.
* 2. Datasheet says nothing for maximum number of fragmented
* descriptors supported. Experimentation shows up to 16 fragment
* descriptors are supported in the firmware. For TSO case, upper
* stack can send 64KB sized IP datagram plus link header size(
* ethernet header + VLAN tag) frame but controller can handle up
* to 64KB frame given that PAGE_SIZE is 4KB(i.e. 16 * PAGE_SIZE).
* Because frames that need TSO operation of hardware can be
* larger than 64KB I disabled TSO capability. TSO operation for
* less than or equal to 16 fragment descriptors works without
* problems, though.
* 3. VLAN hardware tag stripping is always enabled in the firmware
* even if it's explicitly told to not strip the tag. It's
* possible to add the tag back in Rx handler if VLAN hardware
* tag is not active but I didn't try that as it would be
* layering violation.
* 4. TXP_CMD_RECV_BUFFER_CONTROL does not work as expected in
* datasheet such that driver should handle the alignment
* restriction by copying received frame to align the frame on
* 32bit boundary on strict-alignment architectures. This adds a
* lot of CPU burden and it effectively reduce Rx performance on
* strict-alignment architectures(e.g. sparc64, arm and mips).
*
* Unfortunately it seems that 3Com have no longer interests in
* releasing fixed firmware so we may have to live with these bugs.
*/
#define TXP_CSUM_FEATURES (CSUM_IP)
/*
* Various supported device vendors/types and their names.
*/
static struct txp_type txp_devs[] = {
{ TXP_VENDORID_3COM, TXP_DEVICEID_3CR990_TX_95,
"3Com 3cR990-TX-95 Etherlink with 3XP Processor" },
{ TXP_VENDORID_3COM, TXP_DEVICEID_3CR990_TX_97,
"3Com 3cR990-TX-97 Etherlink with 3XP Processor" },
{ TXP_VENDORID_3COM, TXP_DEVICEID_3CR990B_TXM,
"3Com 3cR990B-TXM Etherlink with 3XP Processor" },
{ TXP_VENDORID_3COM, TXP_DEVICEID_3CR990_SRV_95,
"3Com 3cR990-SRV-95 Etherlink Server with 3XP Processor" },
{ TXP_VENDORID_3COM, TXP_DEVICEID_3CR990_SRV_97,
"3Com 3cR990-SRV-97 Etherlink Server with 3XP Processor" },
{ TXP_VENDORID_3COM, TXP_DEVICEID_3CR990B_SRV,
"3Com 3cR990B-SRV Etherlink Server with 3XP Processor" },
{ 0, 0, NULL }
};
static int txp_probe(device_t);
static int txp_attach(device_t);
static int txp_detach(device_t);
static int txp_shutdown(device_t);
static int txp_suspend(device_t);
static int txp_resume(device_t);
static int txp_intr(void *);
static void txp_int_task(void *, int);
static void txp_tick(void *);
static int txp_ioctl(struct ifnet *, u_long, caddr_t);
static uint64_t txp_get_counter(struct ifnet *, ift_counter);
static void txp_start(struct ifnet *);
static void txp_start_locked(struct ifnet *);
static int txp_encap(struct txp_softc *, struct txp_tx_ring *, struct mbuf **);
static void txp_stop(struct txp_softc *);
static void txp_init(void *);
static void txp_init_locked(struct txp_softc *);
static void txp_watchdog(struct txp_softc *);
static int txp_reset(struct txp_softc *);
static int txp_boot(struct txp_softc *, uint32_t);
static int txp_sleep(struct txp_softc *, int);
static int txp_wait(struct txp_softc *, uint32_t);
static int txp_download_fw(struct txp_softc *);
static int txp_download_fw_wait(struct txp_softc *);
static int txp_download_fw_section(struct txp_softc *,
struct txp_fw_section_header *, int);
static int txp_alloc_rings(struct txp_softc *);
static void txp_init_rings(struct txp_softc *);
static int txp_dma_alloc(struct txp_softc *, char *, bus_dma_tag_t *,
bus_size_t, bus_size_t, bus_dmamap_t *, void **, bus_size_t, bus_addr_t *);
static void txp_dma_free(struct txp_softc *, bus_dma_tag_t *, bus_dmamap_t,
void **, bus_addr_t *);
static void txp_free_rings(struct txp_softc *);
static int txp_rxring_fill(struct txp_softc *);
static void txp_rxring_empty(struct txp_softc *);
static void txp_set_filter(struct txp_softc *);
static int txp_cmd_desc_numfree(struct txp_softc *);
static int txp_command(struct txp_softc *, uint16_t, uint16_t, uint32_t,
uint32_t, uint16_t *, uint32_t *, uint32_t *, int);
static int txp_ext_command(struct txp_softc *, uint16_t, uint16_t,
uint32_t, uint32_t, struct txp_ext_desc *, uint8_t,
struct txp_rsp_desc **, int);
static int txp_response(struct txp_softc *, uint16_t, uint16_t,
struct txp_rsp_desc **);
static void txp_rsp_fixup(struct txp_softc *, struct txp_rsp_desc *,
struct txp_rsp_desc *);
static int txp_set_capabilities(struct txp_softc *);
static void txp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int txp_ifmedia_upd(struct ifnet *);
#ifdef TXP_DEBUG
static void txp_show_descriptor(void *);
#endif
static void txp_tx_reclaim(struct txp_softc *, struct txp_tx_ring *);
static void txp_rxbuf_reclaim(struct txp_softc *);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void txp_fixup_rx(struct mbuf *);
#endif
static int txp_rx_reclaim(struct txp_softc *, struct txp_rx_ring *, int);
static void txp_stats_save(struct txp_softc *);
static void txp_stats_update(struct txp_softc *, struct txp_rsp_desc *);
static void txp_sysctl_node(struct txp_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_txp_proc_limit(SYSCTL_HANDLER_ARGS);
static int prefer_iomap = 0;
TUNABLE_INT("hw.txp.prefer_iomap", &prefer_iomap);
static device_method_t txp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, txp_probe),
DEVMETHOD(device_attach, txp_attach),
DEVMETHOD(device_detach, txp_detach),
DEVMETHOD(device_shutdown, txp_shutdown),
DEVMETHOD(device_suspend, txp_suspend),
DEVMETHOD(device_resume, txp_resume),
{ NULL, NULL }
};
static driver_t txp_driver = {
"txp",
txp_methods,
sizeof(struct txp_softc)
};
static devclass_t txp_devclass;
DRIVER_MODULE(txp, pci, txp_driver, txp_devclass, 0, 0);
static int
txp_probe(device_t dev)
{
struct txp_type *t;
t = txp_devs;
while (t->txp_name != NULL) {
if ((pci_get_vendor(dev) == t->txp_vid) &&
(pci_get_device(dev) == t->txp_did)) {
device_set_desc(dev, t->txp_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static int
txp_attach(device_t dev)
{
struct txp_softc *sc;
struct ifnet *ifp;
struct txp_rsp_desc *rsp;
uint16_t p1;
uint32_t p2, reg;
int error = 0, pmc, rid;
uint8_t eaddr[ETHER_ADDR_LEN], *ver;
sc = device_get_softc(dev);
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0);
TASK_INIT(&sc->sc_int_task, 0, txp_int_task, sc);
TAILQ_INIT(&sc->sc_busy_list);
TAILQ_INIT(&sc->sc_free_list);
ifmedia_init(&sc->sc_ifmedia, 0, txp_ifmedia_upd, txp_ifmedia_sts);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
pci_enable_busmaster(dev);
/* Prefer memory space register mapping over IO space. */
if (prefer_iomap == 0) {
sc->sc_res_id = PCIR_BAR(1);
sc->sc_res_type = SYS_RES_MEMORY;
} else {
sc->sc_res_id = PCIR_BAR(0);
sc->sc_res_type = SYS_RES_IOPORT;
}
sc->sc_res = bus_alloc_resource_any(dev, sc->sc_res_type,
&sc->sc_res_id, RF_ACTIVE);
if (sc->sc_res == NULL && prefer_iomap == 0) {
sc->sc_res_id = PCIR_BAR(0);
sc->sc_res_type = SYS_RES_IOPORT;
sc->sc_res = bus_alloc_resource_any(dev, sc->sc_res_type,
&sc->sc_res_id, RF_ACTIVE);
}
if (sc->sc_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
ifmedia_removeall(&sc->sc_ifmedia);
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
/* Enable MWI. */
reg = pci_read_config(dev, PCIR_COMMAND, 2);
reg |= PCIM_CMD_MWRICEN;
pci_write_config(dev, PCIR_COMMAND, reg, 2);
/* Check cache line size. */
reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
reg <<= 4;
if (reg == 0 || (reg % 16) != 0)
device_printf(sc->sc_dev,
"invalid cache line size : %u\n", reg);
/* Allocate interrupt */
rid = 0;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
if ((error = txp_alloc_rings(sc)) != 0)
goto fail;
txp_init_rings(sc);
txp_sysctl_node(sc);
/* Reset controller and make it reload sleep image. */
if (txp_reset(sc) != 0) {
error = ENXIO;
goto fail;
}
/* Let controller boot from sleep image. */
if (txp_boot(sc, STAT_WAITING_FOR_HOST_REQUEST) != 0) {
device_printf(sc->sc_dev, "could not boot sleep image\n");
error = ENXIO;
goto fail;
}
/* Get station address. */
if (txp_command(sc, TXP_CMD_STATION_ADDRESS_READ, 0, 0, 0,
&p1, &p2, NULL, TXP_CMD_WAIT)) {
error = ENXIO;
goto fail;
}
p1 = le16toh(p1);
eaddr[0] = ((uint8_t *)&p1)[1];
eaddr[1] = ((uint8_t *)&p1)[0];
p2 = le32toh(p2);
eaddr[2] = ((uint8_t *)&p2)[3];
eaddr[3] = ((uint8_t *)&p2)[2];
eaddr[4] = ((uint8_t *)&p2)[1];
eaddr[5] = ((uint8_t *)&p2)[0];
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
/*
* Show sleep image version information which may help to
* diagnose sleep image specific issues.
*/
rsp = NULL;
if (txp_ext_command(sc, TXP_CMD_READ_VERSION, 0, 0, 0, NULL, 0,
&rsp, TXP_CMD_WAIT)) {
device_printf(dev, "can not read sleep image version\n");
error = ENXIO;
goto fail;
}
if (rsp->rsp_numdesc == 0) {
p2 = le32toh(rsp->rsp_par2) & 0xFFFF;
device_printf(dev, "Typhoon 1.0 sleep image (2000/%02u/%02u)\n",
p2 >> 8, p2 & 0xFF);
} else if (rsp->rsp_numdesc == 2) {
p2 = le32toh(rsp->rsp_par2);
ver = (uint8_t *)(rsp + 1);
/*
* Even if datasheet says the command returns a NULL
* terminated version string, explicitly terminate
* the string. Given that several bugs of firmware
* I can't trust this simple one.
*/
ver[25] = '\0';
device_printf(dev,
"Typhoon 1.1+ sleep image %02u.%03u.%03u %s\n",
p2 >> 24, (p2 >> 12) & 0xFFF, p2 & 0xFFF, ver);
} else {
p2 = le32toh(rsp->rsp_par2);
device_printf(dev,
"Unknown Typhoon sleep image version: %u:0x%08x\n",
rsp->rsp_numdesc, p2);
}
if (rsp != NULL)
free(rsp, M_DEVBUF);
sc->sc_xcvr = TXP_XCVR_AUTO;
txp_command(sc, TXP_CMD_XCVR_SELECT, TXP_XCVR_AUTO, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT);
ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_AUTO);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = txp_ioctl;
ifp->if_start = txp_start;
ifp->if_init = txp_init;
ifp->if_get_counter = txp_get_counter;
ifp->if_snd.ifq_drv_maxlen = TX_ENTRIES - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/*
* It's possible to read firmware's offload capability but
* we have not downloaded the firmware yet so announce
* working capability here. We're not interested in IPSec
* capability and due to the lots of firmware bug we can't
* advertise the whole capability anyway.
*/
ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM;
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
/* Enable all capabilities. */
ifp->if_capenable = ifp->if_capabilities;
ether_ifattach(ifp, eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer(s) we support long frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
WRITE_REG(sc, TXP_IER, TXP_INTR_NONE);
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
/* Create local taskq. */
sc->sc_tq = taskqueue_create_fast("txp_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->sc_tq);
if (sc->sc_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->sc_dev));
/* Put controller into sleep. */
if (txp_sleep(sc, 0) != 0) {
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
txp_intr, NULL, sc, &sc->sc_intrhand);
if (error != 0) {
ether_ifdetach(ifp);
device_printf(dev, "couldn't set up interrupt handler.\n");
goto fail;
}
return (0);
fail:
if (error != 0)
txp_detach(dev);
return (error);
}
static int
txp_detach(device_t dev)
{
struct txp_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->sc_ifp;
if (device_is_attached(dev)) {
TXP_LOCK(sc);
sc->sc_flags |= TXP_FLAG_DETACH;
txp_stop(sc);
TXP_UNLOCK(sc);
callout_drain(&sc->sc_tick);
taskqueue_drain(sc->sc_tq, &sc->sc_int_task);
ether_ifdetach(ifp);
}
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
ifmedia_removeall(&sc->sc_ifmedia);
if (sc->sc_intrhand != NULL)
bus_teardown_intr(dev, sc->sc_irq, sc->sc_intrhand);
if (sc->sc_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
if (sc->sc_res != NULL)
bus_release_resource(dev, sc->sc_res_type, sc->sc_res_id,
sc->sc_res);
if (sc->sc_ifp != NULL) {
if_free(sc->sc_ifp);
sc->sc_ifp = NULL;
}
txp_free_rings(sc);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static int
txp_reset(struct txp_softc *sc)
{
uint32_t r;
int i;
/* Disable interrupts. */
WRITE_REG(sc, TXP_IER, TXP_INTR_NONE);
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
/* Ack all pending interrupts. */
WRITE_REG(sc, TXP_ISR, TXP_INTR_ALL);
r = 0;
WRITE_REG(sc, TXP_SRR, TXP_SRR_ALL);
DELAY(1000);
WRITE_REG(sc, TXP_SRR, 0);
/* Should wait max 6 seconds. */
for (i = 0; i < 6000; i++) {
r = READ_REG(sc, TXP_A2H_0);
if (r == STAT_WAITING_FOR_HOST_REQUEST)
break;
DELAY(1000);
}
if (r != STAT_WAITING_FOR_HOST_REQUEST)
device_printf(sc->sc_dev, "reset hung\n");
WRITE_REG(sc, TXP_IER, TXP_INTR_NONE);
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
WRITE_REG(sc, TXP_ISR, TXP_INTR_ALL);
/*
* Give more time to complete loading sleep image before
* trying to boot from sleep image.
*/
DELAY(5000);
return (0);
}
static int
txp_boot(struct txp_softc *sc, uint32_t state)
{
/* See if it's waiting for boot, and try to boot it. */
if (txp_wait(sc, state) != 0) {
device_printf(sc->sc_dev, "not waiting for boot\n");
return (ENXIO);
}
WRITE_REG(sc, TXP_H2A_2, TXP_ADDR_HI(sc->sc_ldata.txp_boot_paddr));
TXP_BARRIER(sc, TXP_H2A_2, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_1, TXP_ADDR_LO(sc->sc_ldata.txp_boot_paddr));
TXP_BARRIER(sc, TXP_H2A_1, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_REGISTER_BOOT_RECORD);
TXP_BARRIER(sc, TXP_H2A_0, 4, BUS_SPACE_BARRIER_WRITE);
/* See if it booted. */
if (txp_wait(sc, STAT_RUNNING) != 0) {
device_printf(sc->sc_dev, "firmware not running\n");
return (ENXIO);
}
/* Clear TX and CMD ring write registers. */
WRITE_REG(sc, TXP_H2A_1, TXP_BOOTCMD_NULL);
TXP_BARRIER(sc, TXP_H2A_1, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_2, TXP_BOOTCMD_NULL);
TXP_BARRIER(sc, TXP_H2A_2, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_3, TXP_BOOTCMD_NULL);
TXP_BARRIER(sc, TXP_H2A_3, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_NULL);
TXP_BARRIER(sc, TXP_H2A_0, 4, BUS_SPACE_BARRIER_WRITE);
return (0);
}
static int
txp_download_fw(struct txp_softc *sc)
{
struct txp_fw_file_header *fileheader;
struct txp_fw_section_header *secthead;
int sect;
uint32_t error, ier, imr;
TXP_LOCK_ASSERT(sc);
error = 0;
ier = READ_REG(sc, TXP_IER);
WRITE_REG(sc, TXP_IER, ier | TXP_INT_A2H_0);
imr = READ_REG(sc, TXP_IMR);
WRITE_REG(sc, TXP_IMR, imr | TXP_INT_A2H_0);
if (txp_wait(sc, STAT_WAITING_FOR_HOST_REQUEST) != 0) {
device_printf(sc->sc_dev, "not waiting for host request\n");
error = ETIMEDOUT;
goto fail;
}
/* Ack the status. */
WRITE_REG(sc, TXP_ISR, TXP_INT_A2H_0);
fileheader = (struct txp_fw_file_header *)tc990image;
if (bcmp("TYPHOON", fileheader->magicid, sizeof(fileheader->magicid))) {
device_printf(sc->sc_dev, "firmware invalid magic\n");
goto fail;
}
/* Tell boot firmware to get ready for image. */
WRITE_REG(sc, TXP_H2A_1, le32toh(fileheader->addr));
TXP_BARRIER(sc, TXP_H2A_1, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_2, le32toh(fileheader->hmac[0]));
TXP_BARRIER(sc, TXP_H2A_2, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_3, le32toh(fileheader->hmac[1]));
TXP_BARRIER(sc, TXP_H2A_3, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_4, le32toh(fileheader->hmac[2]));
TXP_BARRIER(sc, TXP_H2A_4, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_5, le32toh(fileheader->hmac[3]));
TXP_BARRIER(sc, TXP_H2A_5, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_6, le32toh(fileheader->hmac[4]));
TXP_BARRIER(sc, TXP_H2A_6, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_RUNTIME_IMAGE);
TXP_BARRIER(sc, TXP_H2A_0, 4, BUS_SPACE_BARRIER_WRITE);
if (txp_download_fw_wait(sc)) {
device_printf(sc->sc_dev, "firmware wait failed, initial\n");
error = ETIMEDOUT;
goto fail;
}
secthead = (struct txp_fw_section_header *)(((uint8_t *)tc990image) +
sizeof(struct txp_fw_file_header));
for (sect = 0; sect < le32toh(fileheader->nsections); sect++) {
if ((error = txp_download_fw_section(sc, secthead, sect)) != 0)
goto fail;
secthead = (struct txp_fw_section_header *)
(((uint8_t *)secthead) + le32toh(secthead->nbytes) +
sizeof(*secthead));
}
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_DOWNLOAD_COMPLETE);
TXP_BARRIER(sc, TXP_H2A_0, 4, BUS_SPACE_BARRIER_WRITE);
if (txp_wait(sc, STAT_WAITING_FOR_BOOT) != 0) {
device_printf(sc->sc_dev, "not waiting for boot\n");
error = ETIMEDOUT;
goto fail;
}
fail:
WRITE_REG(sc, TXP_IER, ier);
WRITE_REG(sc, TXP_IMR, imr);
return (error);
}
static int
txp_download_fw_wait(struct txp_softc *sc)
{
uint32_t i;
TXP_LOCK_ASSERT(sc);
for (i = 0; i < TXP_TIMEOUT; i++) {
if ((READ_REG(sc, TXP_ISR) & TXP_INT_A2H_0) != 0)
break;
DELAY(50);
}
if (i == TXP_TIMEOUT) {
device_printf(sc->sc_dev, "firmware wait failed comm0\n");
return (ETIMEDOUT);
}
WRITE_REG(sc, TXP_ISR, TXP_INT_A2H_0);
if (READ_REG(sc, TXP_A2H_0) != STAT_WAITING_FOR_SEGMENT) {
device_printf(sc->sc_dev, "firmware not waiting for segment\n");
return (ETIMEDOUT);
}
return (0);
}
static int
txp_download_fw_section(struct txp_softc *sc,
struct txp_fw_section_header *sect, int sectnum)
{
bus_dma_tag_t sec_tag;
bus_dmamap_t sec_map;
bus_addr_t sec_paddr;
uint8_t *sec_buf;
int rseg, err = 0;
struct mbuf m;
uint16_t csum;
TXP_LOCK_ASSERT(sc);
/* Skip zero length sections. */
if (le32toh(sect->nbytes) == 0)
return (0);
/* Make sure we aren't past the end of the image. */
rseg = ((uint8_t *)sect) - ((uint8_t *)tc990image);
if (rseg >= sizeof(tc990image)) {
device_printf(sc->sc_dev,
"firmware invalid section address, section %d\n", sectnum);
return (EIO);
}
/* Make sure this section doesn't go past the end. */
rseg += le32toh(sect->nbytes);
if (rseg >= sizeof(tc990image)) {
device_printf(sc->sc_dev, "firmware truncated section %d\n",
sectnum);
return (EIO);
}
sec_tag = NULL;
sec_map = NULL;
sec_buf = NULL;
/* XXX */
TXP_UNLOCK(sc);
err = txp_dma_alloc(sc, "firmware sections", &sec_tag, sizeof(uint32_t),
0, &sec_map, (void **)&sec_buf, le32toh(sect->nbytes), &sec_paddr);
TXP_LOCK(sc);
if (err != 0)
goto bail;
bcopy(((uint8_t *)sect) + sizeof(*sect), sec_buf,
le32toh(sect->nbytes));
/*
* dummy up mbuf and verify section checksum
*/
m.m_type = MT_DATA;
m.m_next = m.m_nextpkt = NULL;
m.m_len = le32toh(sect->nbytes);
m.m_data = sec_buf;
m.m_flags = 0;
csum = in_cksum(&m, le32toh(sect->nbytes));
if (csum != sect->cksum) {
device_printf(sc->sc_dev,
"firmware section %d, bad cksum (expected 0x%x got 0x%x)\n",
sectnum, le16toh(sect->cksum), csum);
err = EIO;
goto bail;
}
bus_dmamap_sync(sec_tag, sec_map, BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, TXP_H2A_1, le32toh(sect->nbytes));
TXP_BARRIER(sc, TXP_H2A_1, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_2, le16toh(sect->cksum));
TXP_BARRIER(sc, TXP_H2A_2, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_3, le32toh(sect->addr));
TXP_BARRIER(sc, TXP_H2A_3, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_4, TXP_ADDR_HI(sec_paddr));
TXP_BARRIER(sc, TXP_H2A_4, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_5, TXP_ADDR_LO(sec_paddr));
TXP_BARRIER(sc, TXP_H2A_5, 4, BUS_SPACE_BARRIER_WRITE);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_SEGMENT_AVAILABLE);
TXP_BARRIER(sc, TXP_H2A_0, 4, BUS_SPACE_BARRIER_WRITE);
if (txp_download_fw_wait(sc)) {
device_printf(sc->sc_dev,
"firmware wait failed, section %d\n", sectnum);
err = ETIMEDOUT;
}
bus_dmamap_sync(sec_tag, sec_map, BUS_DMASYNC_POSTWRITE);
bail:
txp_dma_free(sc, &sec_tag, sec_map, (void **)&sec_buf, &sec_paddr);
return (err);
}
static int
txp_intr(void *vsc)
{
struct txp_softc *sc;
uint32_t status;
sc = vsc;
status = READ_REG(sc, TXP_ISR);
if ((status & TXP_INT_LATCH) == 0)
return (FILTER_STRAY);
WRITE_REG(sc, TXP_ISR, status);
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
taskqueue_enqueue(sc->sc_tq, &sc->sc_int_task);
return (FILTER_HANDLED);
}
static void
txp_int_task(void *arg, int pending)
{
struct txp_softc *sc;
struct ifnet *ifp;
struct txp_hostvar *hv;
uint32_t isr;
int more;
sc = (struct txp_softc *)arg;
TXP_LOCK(sc);
ifp = sc->sc_ifp;
hv = sc->sc_hostvar;
isr = READ_REG(sc, TXP_ISR);
if ((isr & TXP_INT_LATCH) != 0)
WRITE_REG(sc, TXP_ISR, isr);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
more = 0;
if ((*sc->sc_rxhir.r_roff) != (*sc->sc_rxhir.r_woff))
more += txp_rx_reclaim(sc, &sc->sc_rxhir,
sc->sc_process_limit);
if ((*sc->sc_rxlor.r_roff) != (*sc->sc_rxlor.r_woff))
more += txp_rx_reclaim(sc, &sc->sc_rxlor,
sc->sc_process_limit);
/*
* XXX
* It seems controller is not smart enough to handle
* FIFO overflow conditions under heavy network load.
* No matter how often new Rx buffers are passed to
* controller the situation didn't change. Maybe
* flow-control would be the only way to mitigate the
* issue but firmware does not have commands that
* control the threshold of emitting pause frames.
*/
if (hv->hv_rx_buf_write_idx == hv->hv_rx_buf_read_idx)
txp_rxbuf_reclaim(sc);
if (sc->sc_txhir.r_cnt && (sc->sc_txhir.r_cons !=
TXP_OFFSET2IDX(le32toh(*(sc->sc_txhir.r_off)))))
txp_tx_reclaim(sc, &sc->sc_txhir);
if (sc->sc_txlor.r_cnt && (sc->sc_txlor.r_cons !=
TXP_OFFSET2IDX(le32toh(*(sc->sc_txlor.r_off)))))
txp_tx_reclaim(sc, &sc->sc_txlor);
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
txp_start_locked(sc->sc_ifp);
if (more != 0 || READ_REG(sc, TXP_ISR & TXP_INT_LATCH) != 0) {
taskqueue_enqueue(sc->sc_tq, &sc->sc_int_task);
TXP_UNLOCK(sc);
return;
}
}
/* Re-enable interrupts. */
WRITE_REG(sc, TXP_IMR, TXP_INTR_NONE);
TXP_UNLOCK(sc);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
txp_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - (TXP_RXBUF_ALIGN - ETHER_ALIGN) / sizeof *src;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= TXP_RXBUF_ALIGN - ETHER_ALIGN;
}
#endif
static int
txp_rx_reclaim(struct txp_softc *sc, struct txp_rx_ring *r, int count)
{
struct ifnet *ifp;
struct txp_rx_desc *rxd;
struct mbuf *m;
struct txp_rx_swdesc *sd;
uint32_t roff, woff, rx_stat, prog;
TXP_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
bus_dmamap_sync(r->r_tag, r->r_map, BUS_DMASYNC_POSTREAD |
BUS_DMASYNC_POSTWRITE);
roff = le32toh(*r->r_roff);
woff = le32toh(*r->r_woff);
rxd = r->r_desc + roff / sizeof(struct txp_rx_desc);
for (prog = 0; roff != woff; prog++, count--) {
if (count <= 0)
break;
bcopy((u_long *)&rxd->rx_vaddrlo, &sd, sizeof(sd));
KASSERT(sd != NULL, ("%s: Rx desc ring corrupted", __func__));
bus_dmamap_sync(sc->sc_cdata.txp_rx_tag, sd->sd_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_cdata.txp_rx_tag, sd->sd_map);
m = sd->sd_mbuf;
KASSERT(m != NULL, ("%s: Rx buffer ring corrupted", __func__));
sd->sd_mbuf = NULL;
TAILQ_REMOVE(&sc->sc_busy_list, sd, sd_next);
TAILQ_INSERT_TAIL(&sc->sc_free_list, sd, sd_next);
if ((rxd->rx_flags & RX_FLAGS_ERROR) != 0) {
if (bootverbose)
device_printf(sc->sc_dev, "Rx error %u\n",
le32toh(rxd->rx_stat) & RX_ERROR_MASK);
m_freem(m);
goto next;
}
m->m_pkthdr.len = m->m_len = le16toh(rxd->rx_len);
m->m_pkthdr.rcvif = ifp;
#ifndef __NO_STRICT_ALIGNMENT
txp_fixup_rx(m);
#endif
rx_stat = le32toh(rxd->rx_stat);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((rx_stat & RX_STAT_IPCKSUMBAD) != 0)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
else if ((rx_stat & RX_STAT_IPCKSUMGOOD) != 0)
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED|CSUM_IP_VALID;
if ((rx_stat & RX_STAT_TCPCKSUMGOOD) != 0 ||
(rx_stat & RX_STAT_UDPCKSUMGOOD) != 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/*
* XXX
* Typhoon has a firmware bug that VLAN tag is always
* stripped out even if it is told to not remove the tag.
* Therefore don't check if_capenable here.
*/
if (/* (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && */
(rx_stat & RX_STAT_VLAN) != 0) {
m->m_pkthdr.ether_vtag =
bswap16((le32toh(rxd->rx_vlan) >> 16));
m->m_flags |= M_VLANTAG;
}
TXP_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
TXP_LOCK(sc);
next:
roff += sizeof(struct txp_rx_desc);
if (roff == (RX_ENTRIES * sizeof(struct txp_rx_desc))) {
roff = 0;
rxd = r->r_desc;
} else
rxd++;
prog++;
}
if (prog == 0)
return (0);
bus_dmamap_sync(r->r_tag, r->r_map, BUS_DMASYNC_PREREAD |
BUS_DMASYNC_PREWRITE);
*r->r_roff = le32toh(roff);
return (count > 0 ? 0 : EAGAIN);
}
static void
txp_rxbuf_reclaim(struct txp_softc *sc)
{
struct txp_hostvar *hv;
struct txp_rxbuf_desc *rbd;
struct txp_rx_swdesc *sd;
bus_dma_segment_t segs[1];
int nsegs, prod, prog;
uint32_t cons;
TXP_LOCK_ASSERT(sc);
hv = sc->sc_hostvar;
cons = TXP_OFFSET2IDX(le32toh(hv->hv_rx_buf_read_idx));
prod = sc->sc_rxbufprod;
TXP_DESC_INC(prod, RXBUF_ENTRIES);
if (prod == cons)
return;
bus_dmamap_sync(sc->sc_cdata.txp_rxbufs_tag,
sc->sc_cdata.txp_rxbufs_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prod != cons; prog++) {
sd = TAILQ_FIRST(&sc->sc_free_list);
if (sd == NULL)
break;
rbd = sc->sc_rxbufs + prod;
bcopy((u_long *)&rbd->rb_vaddrlo, &sd, sizeof(sd));
sd->sd_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (sd->sd_mbuf == NULL)
break;
sd->sd_mbuf->m_pkthdr.len = sd->sd_mbuf->m_len = MCLBYTES;
#ifndef __NO_STRICT_ALIGNMENT
m_adj(sd->sd_mbuf, TXP_RXBUF_ALIGN);
#endif
if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.txp_rx_tag,
sd->sd_map, sd->sd_mbuf, segs, &nsegs, 0) != 0) {
m_freem(sd->sd_mbuf);
sd->sd_mbuf = NULL;
break;
}
KASSERT(nsegs == 1, ("%s : %d segments returned!", __func__,
nsegs));
TAILQ_REMOVE(&sc->sc_free_list, sd, sd_next);
TAILQ_INSERT_TAIL(&sc->sc_busy_list, sd, sd_next);
bus_dmamap_sync(sc->sc_cdata.txp_rx_tag, sd->sd_map,
BUS_DMASYNC_PREREAD);
rbd->rb_paddrlo = htole32(TXP_ADDR_LO(segs[0].ds_addr));
rbd->rb_paddrhi = htole32(TXP_ADDR_HI(segs[0].ds_addr));
TXP_DESC_INC(prod, RXBUF_ENTRIES);
}
if (prog == 0)
return;
bus_dmamap_sync(sc->sc_cdata.txp_rxbufs_tag,
sc->sc_cdata.txp_rxbufs_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
prod = (prod + RXBUF_ENTRIES - 1) % RXBUF_ENTRIES;
sc->sc_rxbufprod = prod;
hv->hv_rx_buf_write_idx = htole32(TXP_IDX2OFFSET(prod));
}
/*
* Reclaim mbufs and entries from a transmit ring.
*/
static void
txp_tx_reclaim(struct txp_softc *sc, struct txp_tx_ring *r)
{
struct ifnet *ifp;
uint32_t idx;
uint32_t cons, cnt;
struct txp_tx_desc *txd;
struct txp_swdesc *sd;
TXP_LOCK_ASSERT(sc);
bus_dmamap_sync(r->r_tag, r->r_map, BUS_DMASYNC_POSTREAD |
BUS_DMASYNC_POSTWRITE);
ifp = sc->sc_ifp;
idx = TXP_OFFSET2IDX(le32toh(*(r->r_off)));
cons = r->r_cons;
cnt = r->r_cnt;
txd = r->r_desc + cons;
sd = sc->sc_txd + cons;
for (cnt = r->r_cnt; cons != idx && cnt > 0; cnt--) {
if ((txd->tx_flags & TX_FLAGS_TYPE_M) == TX_FLAGS_TYPE_DATA) {
if (sd->sd_mbuf != NULL) {
bus_dmamap_sync(sc->sc_cdata.txp_tx_tag,
sd->sd_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdata.txp_tx_tag,
sd->sd_map);
m_freem(sd->sd_mbuf);
sd->sd_mbuf = NULL;
txd->tx_addrlo = 0;
txd->tx_addrhi = 0;
txd->tx_flags = 0;
}
}
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (++cons == TX_ENTRIES) {
txd = r->r_desc;
cons = 0;
sd = sc->sc_txd;
} else {
txd++;
sd++;
}
}
bus_dmamap_sync(r->r_tag, r->r_map, BUS_DMASYNC_PREREAD |
BUS_DMASYNC_PREWRITE);
r->r_cons = cons;
r->r_cnt = cnt;
if (cnt == 0)
sc->sc_watchdog_timer = 0;
}
static int
txp_shutdown(device_t dev)
{
return (txp_suspend(dev));
}
static int
txp_suspend(device_t dev)
{
struct txp_softc *sc;
struct ifnet *ifp;
uint8_t *eaddr;
uint16_t p1;
uint32_t p2;
int pmc;
uint16_t pmstat;
sc = device_get_softc(dev);
TXP_LOCK(sc);
ifp = sc->sc_ifp;
txp_stop(sc);
txp_init_rings(sc);
/* Reset controller and make it reload sleep image. */
txp_reset(sc);
/* Let controller boot from sleep image. */
if (txp_boot(sc, STAT_WAITING_FOR_HOST_REQUEST) != 0)
device_printf(sc->sc_dev, "couldn't boot sleep image\n");
/* Set station address. */
eaddr = IF_LLADDR(sc->sc_ifp);
p1 = 0;
((uint8_t *)&p1)[1] = eaddr[0];
((uint8_t *)&p1)[0] = eaddr[1];
p1 = le16toh(p1);
((uint8_t *)&p2)[3] = eaddr[2];
((uint8_t *)&p2)[2] = eaddr[3];
((uint8_t *)&p2)[1] = eaddr[4];
((uint8_t *)&p2)[0] = eaddr[5];
p2 = le32toh(p2);
txp_command(sc, TXP_CMD_STATION_ADDRESS_WRITE, p1, p2, 0, NULL, NULL,
NULL, TXP_CMD_WAIT);
txp_set_filter(sc);
WRITE_REG(sc, TXP_IER, TXP_INTR_NONE);
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
txp_sleep(sc, sc->sc_ifp->if_capenable);
if (pci_find_cap(sc->sc_dev, PCIY_PMG, &pmc) == 0) {
/* Request PME. */
pmstat = pci_read_config(sc->sc_dev,
pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->sc_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
TXP_UNLOCK(sc);
return (0);
}
static int
txp_resume(device_t dev)
{
struct txp_softc *sc;
int pmc;
uint16_t pmstat;
sc = device_get_softc(dev);
TXP_LOCK(sc);
if (pci_find_cap(sc->sc_dev, PCIY_PMG, &pmc) == 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->sc_dev,
pmc + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->sc_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
if ((sc->sc_ifp->if_flags & IFF_UP) != 0)
txp_init_locked(sc);
TXP_UNLOCK(sc);
return (0);
}
struct txp_dmamap_arg {
bus_addr_t txp_busaddr;
};
static void
txp_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct txp_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct txp_dmamap_arg *)arg;
ctx->txp_busaddr = segs[0].ds_addr;
}
static int
txp_dma_alloc(struct txp_softc *sc, char *type, bus_dma_tag_t *tag,
bus_size_t alignment, bus_size_t boundary, bus_dmamap_t *map, void **buf,
bus_size_t size, bus_addr_t *paddr)
{
struct txp_dmamap_arg ctx;
int error;
/* Create DMA block tag. */
error = bus_dma_tag_create(
sc->sc_cdata.txp_parent_tag, /* parent */
alignment, boundary, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
tag);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create DMA tag for %s.\n", type);
return (error);
}
*paddr = 0;
/* Allocate DMA'able memory and load the DMA map. */
error = bus_dmamem_alloc(*tag, buf, BUS_DMA_WAITOK | BUS_DMA_ZERO |
BUS_DMA_COHERENT, map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate DMA'able memory for %s.\n", type);
return (error);
}
ctx.txp_busaddr = 0;
error = bus_dmamap_load(*tag, *map, *(uint8_t **)buf,
size, txp_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.txp_busaddr == 0) {
device_printf(sc->sc_dev,
"could not load DMA'able memory for %s.\n", type);
return (error);
}
*paddr = ctx.txp_busaddr;
return (0);
}
static void
txp_dma_free(struct txp_softc *sc, bus_dma_tag_t *tag, bus_dmamap_t map,
void **buf, bus_addr_t *paddr)
{
if (*tag != NULL) {
if (*paddr != 0)
bus_dmamap_unload(*tag, map);
if (buf != NULL)
bus_dmamem_free(*tag, *(uint8_t **)buf, map);
*(uint8_t **)buf = NULL;
*paddr = 0;
bus_dma_tag_destroy(*tag);
*tag = NULL;
}
}
static int
txp_alloc_rings(struct txp_softc *sc)
{
struct txp_boot_record *boot;
struct txp_ldata *ld;
struct txp_swdesc *txd;
struct txp_rxbuf_desc *rbd;
struct txp_rx_swdesc *sd;
int error, i;
ld = &sc->sc_ldata;
boot = ld->txp_boot;
/* boot record */
sc->sc_boot = boot;
/*
* Create parent ring/DMA block tag.
* Datasheet says that all ring addresses and descriptors
* support 64bits addressing. However the controller is
* known to have no support DAC so limit DMA address space
* to 32bits.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->sc_dev), /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.txp_parent_tag);
if (error != 0) {
device_printf(sc->sc_dev, "could not create parent DMA tag.\n");
return (error);
}
/* Boot record. */
error = txp_dma_alloc(sc, "boot record",
&sc->sc_cdata.txp_boot_tag, sizeof(uint32_t), 0,
&sc->sc_cdata.txp_boot_map, (void **)&sc->sc_ldata.txp_boot,
sizeof(struct txp_boot_record),
&sc->sc_ldata.txp_boot_paddr);
if (error != 0)
return (error);
boot = sc->sc_ldata.txp_boot;
sc->sc_boot = boot;
/* Host variables. */
error = txp_dma_alloc(sc, "host variables",
&sc->sc_cdata.txp_hostvar_tag, sizeof(uint32_t), 0,
&sc->sc_cdata.txp_hostvar_map, (void **)&sc->sc_ldata.txp_hostvar,
sizeof(struct txp_hostvar),
&sc->sc_ldata.txp_hostvar_paddr);
if (error != 0)
return (error);
boot->br_hostvar_lo =
htole32(TXP_ADDR_LO(sc->sc_ldata.txp_hostvar_paddr));
boot->br_hostvar_hi =
htole32(TXP_ADDR_HI(sc->sc_ldata.txp_hostvar_paddr));
sc->sc_hostvar = sc->sc_ldata.txp_hostvar;
/* Hi priority tx ring. */
error = txp_dma_alloc(sc, "hi priority tx ring",
&sc->sc_cdata.txp_txhiring_tag, sizeof(struct txp_tx_desc), 0,
&sc->sc_cdata.txp_txhiring_map, (void **)&sc->sc_ldata.txp_txhiring,
sizeof(struct txp_tx_desc) * TX_ENTRIES,
&sc->sc_ldata.txp_txhiring_paddr);
if (error != 0)
return (error);
boot->br_txhipri_lo =
htole32(TXP_ADDR_LO(sc->sc_ldata.txp_txhiring_paddr));
boot->br_txhipri_hi =
htole32(TXP_ADDR_HI(sc->sc_ldata.txp_txhiring_paddr));
boot->br_txhipri_siz =
htole32(TX_ENTRIES * sizeof(struct txp_tx_desc));
sc->sc_txhir.r_tag = sc->sc_cdata.txp_txhiring_tag;
sc->sc_txhir.r_map = sc->sc_cdata.txp_txhiring_map;
sc->sc_txhir.r_reg = TXP_H2A_1;
sc->sc_txhir.r_desc = sc->sc_ldata.txp_txhiring;
sc->sc_txhir.r_cons = sc->sc_txhir.r_prod = sc->sc_txhir.r_cnt = 0;
sc->sc_txhir.r_off = &sc->sc_hostvar->hv_tx_hi_desc_read_idx;
/* Low priority tx ring. */
error = txp_dma_alloc(sc, "low priority tx ring",
&sc->sc_cdata.txp_txloring_tag, sizeof(struct txp_tx_desc), 0,
&sc->sc_cdata.txp_txloring_map, (void **)&sc->sc_ldata.txp_txloring,
sizeof(struct txp_tx_desc) * TX_ENTRIES,
&sc->sc_ldata.txp_txloring_paddr);
if (error != 0)
return (error);
boot->br_txlopri_lo =
htole32(TXP_ADDR_LO(sc->sc_ldata.txp_txloring_paddr));
boot->br_txlopri_hi =
htole32(TXP_ADDR_HI(sc->sc_ldata.txp_txloring_paddr));
boot->br_txlopri_siz =
htole32(TX_ENTRIES * sizeof(struct txp_tx_desc));
sc->sc_txlor.r_tag = sc->sc_cdata.txp_txloring_tag;
sc->sc_txlor.r_map = sc->sc_cdata.txp_txloring_map;
sc->sc_txlor.r_reg = TXP_H2A_3;
sc->sc_txlor.r_desc = sc->sc_ldata.txp_txloring;
sc->sc_txlor.r_cons = sc->sc_txlor.r_prod = sc->sc_txlor.r_cnt = 0;
sc->sc_txlor.r_off = &sc->sc_hostvar->hv_tx_lo_desc_read_idx;
/* High priority rx ring. */
error = txp_dma_alloc(sc, "hi priority rx ring",
&sc->sc_cdata.txp_rxhiring_tag,
roundup(sizeof(struct txp_rx_desc), 16), 0,
&sc->sc_cdata.txp_rxhiring_map, (void **)&sc->sc_ldata.txp_rxhiring,
sizeof(struct txp_rx_desc) * RX_ENTRIES,
&sc->sc_ldata.txp_rxhiring_paddr);
if (error != 0)
return (error);
boot->br_rxhipri_lo =
htole32(TXP_ADDR_LO(sc->sc_ldata.txp_rxhiring_paddr));
boot->br_rxhipri_hi =
htole32(TXP_ADDR_HI(sc->sc_ldata.txp_rxhiring_paddr));
boot->br_rxhipri_siz =
htole32(RX_ENTRIES * sizeof(struct txp_rx_desc));
sc->sc_rxhir.r_tag = sc->sc_cdata.txp_rxhiring_tag;
sc->sc_rxhir.r_map = sc->sc_cdata.txp_rxhiring_map;
sc->sc_rxhir.r_desc = sc->sc_ldata.txp_rxhiring;
sc->sc_rxhir.r_roff = &sc->sc_hostvar->hv_rx_hi_read_idx;
sc->sc_rxhir.r_woff = &sc->sc_hostvar->hv_rx_hi_write_idx;
/* Low priority rx ring. */
error = txp_dma_alloc(sc, "low priority rx ring",
&sc->sc_cdata.txp_rxloring_tag,
roundup(sizeof(struct txp_rx_desc), 16), 0,
&sc->sc_cdata.txp_rxloring_map, (void **)&sc->sc_ldata.txp_rxloring,
sizeof(struct txp_rx_desc) * RX_ENTRIES,
&sc->sc_ldata.txp_rxloring_paddr);
if (error != 0)
return (error);
boot->br_rxlopri_lo =
htole32(TXP_ADDR_LO(sc->sc_ldata.txp_rxloring_paddr));
boot->br_rxlopri_hi =
htole32(TXP_ADDR_HI(sc->sc_ldata.txp_rxloring_paddr));
boot->br_rxlopri_siz =
htole32(RX_ENTRIES * sizeof(struct txp_rx_desc));
sc->sc_rxlor.r_tag = sc->sc_cdata.txp_rxloring_tag;
sc->sc_rxlor.r_map = sc->sc_cdata.txp_rxloring_map;
sc->sc_rxlor.r_desc = sc->sc_ldata.txp_rxloring;
sc->sc_rxlor.r_roff = &sc->sc_hostvar->hv_rx_lo_read_idx;
sc->sc_rxlor.r_woff = &sc->sc_hostvar->hv_rx_lo_write_idx;
/* Command ring. */
error = txp_dma_alloc(sc, "command ring",
&sc->sc_cdata.txp_cmdring_tag, sizeof(struct txp_cmd_desc), 0,
&sc->sc_cdata.txp_cmdring_map, (void **)&sc->sc_ldata.txp_cmdring,
sizeof(struct txp_cmd_desc) * CMD_ENTRIES,
&sc->sc_ldata.txp_cmdring_paddr);
if (error != 0)
return (error);
boot->br_cmd_lo = htole32(TXP_ADDR_LO(sc->sc_ldata.txp_cmdring_paddr));
boot->br_cmd_hi = htole32(TXP_ADDR_HI(sc->sc_ldata.txp_cmdring_paddr));
boot->br_cmd_siz = htole32(CMD_ENTRIES * sizeof(struct txp_cmd_desc));
sc->sc_cmdring.base = sc->sc_ldata.txp_cmdring;
sc->sc_cmdring.size = CMD_ENTRIES * sizeof(struct txp_cmd_desc);
sc->sc_cmdring.lastwrite = 0;
/* Response ring. */
error = txp_dma_alloc(sc, "response ring",
&sc->sc_cdata.txp_rspring_tag, sizeof(struct txp_rsp_desc), 0,
&sc->sc_cdata.txp_rspring_map, (void **)&sc->sc_ldata.txp_rspring,
sizeof(struct txp_rsp_desc) * RSP_ENTRIES,
&sc->sc_ldata.txp_rspring_paddr);
if (error != 0)
return (error);
boot->br_resp_lo = htole32(TXP_ADDR_LO(sc->sc_ldata.txp_rspring_paddr));
boot->br_resp_hi = htole32(TXP_ADDR_HI(sc->sc_ldata.txp_rspring_paddr));
boot->br_resp_siz = htole32(RSP_ENTRIES * sizeof(struct txp_rsp_desc));
sc->sc_rspring.base = sc->sc_ldata.txp_rspring;
sc->sc_rspring.size = RSP_ENTRIES * sizeof(struct txp_rsp_desc);
sc->sc_rspring.lastwrite = 0;
/* Receive buffer ring. */
error = txp_dma_alloc(sc, "receive buffer ring",
&sc->sc_cdata.txp_rxbufs_tag, sizeof(struct txp_rxbuf_desc), 0,
&sc->sc_cdata.txp_rxbufs_map, (void **)&sc->sc_ldata.txp_rxbufs,
sizeof(struct txp_rxbuf_desc) * RXBUF_ENTRIES,
&sc->sc_ldata.txp_rxbufs_paddr);
if (error != 0)
return (error);
boot->br_rxbuf_lo =
htole32(TXP_ADDR_LO(sc->sc_ldata.txp_rxbufs_paddr));
boot->br_rxbuf_hi =
htole32(TXP_ADDR_HI(sc->sc_ldata.txp_rxbufs_paddr));
boot->br_rxbuf_siz =
htole32(RXBUF_ENTRIES * sizeof(struct txp_rxbuf_desc));
sc->sc_rxbufs = sc->sc_ldata.txp_rxbufs;
/* Zero ring. */
error = txp_dma_alloc(sc, "zero buffer",
&sc->sc_cdata.txp_zero_tag, sizeof(uint32_t), 0,
&sc->sc_cdata.txp_zero_map, (void **)&sc->sc_ldata.txp_zero,
sizeof(uint32_t), &sc->sc_ldata.txp_zero_paddr);
if (error != 0)
return (error);
boot->br_zero_lo = htole32(TXP_ADDR_LO(sc->sc_ldata.txp_zero_paddr));
boot->br_zero_hi = htole32(TXP_ADDR_HI(sc->sc_ldata.txp_zero_paddr));
bus_dmamap_sync(sc->sc_cdata.txp_boot_tag, sc->sc_cdata.txp_boot_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Create Tx buffers. */
error = bus_dma_tag_create(
sc->sc_cdata.txp_parent_tag, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * TXP_MAXTXSEGS, /* maxsize */
TXP_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.txp_tx_tag);
if (error != 0) {
device_printf(sc->sc_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->sc_cdata.txp_parent_tag, /* parent */
TXP_RXBUF_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.txp_rx_tag);
if (error != 0) {
device_printf(sc->sc_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < TX_ENTRIES; i++) {
txd = &sc->sc_txd[i];
txd->sd_mbuf = NULL;
txd->sd_map = NULL;
error = bus_dmamap_create(sc->sc_cdata.txp_tx_tag, 0,
&txd->sd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
for (i = 0; i < RXBUF_ENTRIES; i++) {
sd = malloc(sizeof(struct txp_rx_swdesc), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (sd == NULL) {
error = ENOMEM;
goto fail;
}
/*
* The virtual address part of descriptor is not used
* by hardware so use that to save an ring entry. We
* need bcopy here otherwise the address wouldn't be
* valid on big-endian architectures.
*/
rbd = sc->sc_rxbufs + i;
bcopy(&sd, (u_long *)&rbd->rb_vaddrlo, sizeof(sd));
sd->sd_mbuf = NULL;
sd->sd_map = NULL;
error = bus_dmamap_create(sc->sc_cdata.txp_rx_tag, 0,
&sd->sd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create Rx dmamap.\n");
goto fail;
}
TAILQ_INSERT_TAIL(&sc->sc_free_list, sd, sd_next);
}
fail:
return (error);
}
static void
txp_init_rings(struct txp_softc *sc)
{
bzero(sc->sc_ldata.txp_hostvar, sizeof(struct txp_hostvar));
bzero(sc->sc_ldata.txp_zero, sizeof(uint32_t));
sc->sc_txhir.r_cons = 0;
sc->sc_txhir.r_prod = 0;
sc->sc_txhir.r_cnt = 0;
sc->sc_txlor.r_cons = 0;
sc->sc_txlor.r_prod = 0;
sc->sc_txlor.r_cnt = 0;
sc->sc_cmdring.lastwrite = 0;
sc->sc_rspring.lastwrite = 0;
sc->sc_rxbufprod = 0;
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
txp_wait(struct txp_softc *sc, uint32_t state)
{
uint32_t reg;
int i;
for (i = 0; i < TXP_TIMEOUT; i++) {
reg = READ_REG(sc, TXP_A2H_0);
if (reg == state)
break;
DELAY(50);
}
return (i == TXP_TIMEOUT ? ETIMEDOUT : 0);
}
static void
txp_free_rings(struct txp_softc *sc)
{
struct txp_swdesc *txd;
struct txp_rx_swdesc *sd;
int i;
/* Tx buffers. */
if (sc->sc_cdata.txp_tx_tag != NULL) {
for (i = 0; i < TX_ENTRIES; i++) {
txd = &sc->sc_txd[i];
if (txd->sd_map != NULL) {
bus_dmamap_destroy(sc->sc_cdata.txp_tx_tag,
txd->sd_map);
txd->sd_map = NULL;
}
}
bus_dma_tag_destroy(sc->sc_cdata.txp_tx_tag);
sc->sc_cdata.txp_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->sc_cdata.txp_rx_tag != NULL) {
if (sc->sc_rxbufs != NULL) {
KASSERT(TAILQ_FIRST(&sc->sc_busy_list) == NULL,
("%s : still have busy Rx buffers", __func__));
while ((sd = TAILQ_FIRST(&sc->sc_free_list)) != NULL) {
TAILQ_REMOVE(&sc->sc_free_list, sd, sd_next);
if (sd->sd_map != NULL) {
bus_dmamap_destroy(
sc->sc_cdata.txp_rx_tag,
sd->sd_map);
sd->sd_map = NULL;
}
free(sd, M_DEVBUF);
}
}
bus_dma_tag_destroy(sc->sc_cdata.txp_rx_tag);
sc->sc_cdata.txp_rx_tag = NULL;
}
/* Hi priority Tx ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_txhiring_tag,
sc->sc_cdata.txp_txhiring_map,
(void **)&sc->sc_ldata.txp_txhiring,
&sc->sc_ldata.txp_txhiring_paddr);
/* Low priority Tx ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_txloring_tag,
sc->sc_cdata.txp_txloring_map,
(void **)&sc->sc_ldata.txp_txloring,
&sc->sc_ldata.txp_txloring_paddr);
/* Hi priority Rx ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_rxhiring_tag,
sc->sc_cdata.txp_rxhiring_map,
(void **)&sc->sc_ldata.txp_rxhiring,
&sc->sc_ldata.txp_rxhiring_paddr);
/* Low priority Rx ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_rxloring_tag,
sc->sc_cdata.txp_rxloring_map,
(void **)&sc->sc_ldata.txp_rxloring,
&sc->sc_ldata.txp_rxloring_paddr);
/* Receive buffer ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_rxbufs_tag,
sc->sc_cdata.txp_rxbufs_map, (void **)&sc->sc_ldata.txp_rxbufs,
&sc->sc_ldata.txp_rxbufs_paddr);
/* Command ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_cmdring_tag,
sc->sc_cdata.txp_cmdring_map, (void **)&sc->sc_ldata.txp_cmdring,
&sc->sc_ldata.txp_cmdring_paddr);
/* Response ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_rspring_tag,
sc->sc_cdata.txp_rspring_map, (void **)&sc->sc_ldata.txp_rspring,
&sc->sc_ldata.txp_rspring_paddr);
/* Zero ring. */
txp_dma_free(sc, &sc->sc_cdata.txp_zero_tag,
sc->sc_cdata.txp_zero_map, (void **)&sc->sc_ldata.txp_zero,
&sc->sc_ldata.txp_zero_paddr);
/* Host variables. */
txp_dma_free(sc, &sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map, (void **)&sc->sc_ldata.txp_hostvar,
&sc->sc_ldata.txp_hostvar_paddr);
/* Boot record. */
txp_dma_free(sc, &sc->sc_cdata.txp_boot_tag,
sc->sc_cdata.txp_boot_map, (void **)&sc->sc_ldata.txp_boot,
&sc->sc_ldata.txp_boot_paddr);
if (sc->sc_cdata.txp_parent_tag != NULL) {
bus_dma_tag_destroy(sc->sc_cdata.txp_parent_tag);
sc->sc_cdata.txp_parent_tag = NULL;
}
}
static int
txp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct txp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int capenable, error = 0, mask;
switch(command) {
case SIOCSIFFLAGS:
TXP_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->sc_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
txp_set_filter(sc);
} else {
if ((sc->sc_flags & TXP_FLAG_DETACH) == 0)
txp_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
txp_stop(sc);
}
sc->sc_if_flags = ifp->if_flags;
TXP_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
TXP_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
txp_set_filter(sc);
TXP_UNLOCK(sc);
break;
case SIOCSIFCAP:
TXP_LOCK(sc);
capenable = ifp->if_capenable;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= TXP_CSUM_FEATURES;
else
ifp->if_hwassist &= ~TXP_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
if (capenable != ifp->if_capenable)
txp_set_capabilities(sc);
TXP_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_ifmedia, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
txp_rxring_fill(struct txp_softc *sc)
{
struct txp_rxbuf_desc *rbd;
struct txp_rx_swdesc *sd;
bus_dma_segment_t segs[1];
int error, i, nsegs;
TXP_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->sc_cdata.txp_rxbufs_tag,
sc->sc_cdata.txp_rxbufs_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = 0; i < RXBUF_ENTRIES; i++) {
sd = TAILQ_FIRST(&sc->sc_free_list);
if (sd == NULL)
return (ENOMEM);
rbd = sc->sc_rxbufs + i;
bcopy(&sd, (u_long *)&rbd->rb_vaddrlo, sizeof(sd));
KASSERT(sd->sd_mbuf == NULL,
("%s : Rx buffer ring corrupted", __func__));
sd->sd_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (sd->sd_mbuf == NULL)
return (ENOMEM);
sd->sd_mbuf->m_pkthdr.len = sd->sd_mbuf->m_len = MCLBYTES;
#ifndef __NO_STRICT_ALIGNMENT
m_adj(sd->sd_mbuf, TXP_RXBUF_ALIGN);
#endif
if ((error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.txp_rx_tag,
sd->sd_map, sd->sd_mbuf, segs, &nsegs, 0)) != 0) {
m_freem(sd->sd_mbuf);
sd->sd_mbuf = NULL;
return (error);
}
KASSERT(nsegs == 1, ("%s : %d segments returned!", __func__,
nsegs));
TAILQ_REMOVE(&sc->sc_free_list, sd, sd_next);
TAILQ_INSERT_TAIL(&sc->sc_busy_list, sd, sd_next);
bus_dmamap_sync(sc->sc_cdata.txp_rx_tag, sd->sd_map,
BUS_DMASYNC_PREREAD);
rbd->rb_paddrlo = htole32(TXP_ADDR_LO(segs[0].ds_addr));
rbd->rb_paddrhi = htole32(TXP_ADDR_HI(segs[0].ds_addr));
}
bus_dmamap_sync(sc->sc_cdata.txp_rxbufs_tag,
sc->sc_cdata.txp_rxbufs_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_rxbufprod = RXBUF_ENTRIES - 1;
sc->sc_hostvar->hv_rx_buf_write_idx =
htole32(TXP_IDX2OFFSET(RXBUF_ENTRIES - 1));
return (0);
}
static void
txp_rxring_empty(struct txp_softc *sc)
{
struct txp_rx_swdesc *sd;
int cnt;
TXP_LOCK_ASSERT(sc);
if (sc->sc_rxbufs == NULL)
return;
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Release allocated Rx buffers. */
cnt = 0;
while ((sd = TAILQ_FIRST(&sc->sc_busy_list)) != NULL) {
TAILQ_REMOVE(&sc->sc_busy_list, sd, sd_next);
KASSERT(sd->sd_mbuf != NULL,
("%s : Rx buffer ring corrupted", __func__));
bus_dmamap_sync(sc->sc_cdata.txp_rx_tag, sd->sd_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_cdata.txp_rx_tag, sd->sd_map);
m_freem(sd->sd_mbuf);
sd->sd_mbuf = NULL;
TAILQ_INSERT_TAIL(&sc->sc_free_list, sd, sd_next);
cnt++;
}
}
static void
txp_init(void *xsc)
{
struct txp_softc *sc;
sc = xsc;
TXP_LOCK(sc);
txp_init_locked(sc);
TXP_UNLOCK(sc);
}
static void
txp_init_locked(struct txp_softc *sc)
{
struct ifnet *ifp;
uint8_t *eaddr;
uint16_t p1;
uint32_t p2;
int error;
TXP_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Initialize ring structure. */
txp_init_rings(sc);
/* Wakeup controller. */
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_WAKEUP);
TXP_BARRIER(sc, TXP_H2A_0, 4, BUS_SPACE_BARRIER_WRITE);
/*
* It seems that earlier NV image can go back to online from
* wakeup command but newer ones require controller reset.
* So jut reset controller again.
*/
if (txp_reset(sc) != 0)
goto init_fail;
/* Download firmware. */
error = txp_download_fw(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not download firmware.\n");
goto init_fail;
}
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((error = txp_rxring_fill(sc)) != 0) {
device_printf(sc->sc_dev, "no memory for Rx buffers.\n");
goto init_fail;
}
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (txp_boot(sc, STAT_WAITING_FOR_BOOT) != 0) {
device_printf(sc->sc_dev, "could not boot firmware.\n");
goto init_fail;
}
/*
* Quite contrary to Typhoon T2 software functional specification,
* it seems that TXP_CMD_RECV_BUFFER_CONTROL command is not
* implemented in the firmware. This means driver should have to
* handle misaligned frames on alignment architectures. AFAIK this
* is the only controller manufactured by 3Com that has this stupid
* bug. 3Com should fix this.
*/
if (txp_command(sc, TXP_CMD_MAX_PKT_SIZE_WRITE, TXP_MAX_PKTLEN, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT) != 0)
goto init_fail;
/* Undocumented command(interrupt coalescing disable?) - From Linux. */
if (txp_command(sc, TXP_CMD_FILTER_DEFINE, 0, 0, 0, NULL, NULL, NULL,
TXP_CMD_NOWAIT) != 0)
goto init_fail;
/* Set station address. */
eaddr = IF_LLADDR(sc->sc_ifp);
p1 = 0;
((uint8_t *)&p1)[1] = eaddr[0];
((uint8_t *)&p1)[0] = eaddr[1];
p1 = le16toh(p1);
((uint8_t *)&p2)[3] = eaddr[2];
((uint8_t *)&p2)[2] = eaddr[3];
((uint8_t *)&p2)[1] = eaddr[4];
((uint8_t *)&p2)[0] = eaddr[5];
p2 = le32toh(p2);
if (txp_command(sc, TXP_CMD_STATION_ADDRESS_WRITE, p1, p2, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT) != 0)
goto init_fail;
txp_set_filter(sc);
txp_set_capabilities(sc);
if (txp_command(sc, TXP_CMD_CLEAR_STATISTICS, 0, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT))
goto init_fail;
if (txp_command(sc, TXP_CMD_XCVR_SELECT, sc->sc_xcvr, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT) != 0)
goto init_fail;
if (txp_command(sc, TXP_CMD_TX_ENABLE, 0, 0, 0, NULL, NULL, NULL,
TXP_CMD_NOWAIT) != 0)
goto init_fail;
if (txp_command(sc, TXP_CMD_RX_ENABLE, 0, 0, 0, NULL, NULL, NULL,
TXP_CMD_NOWAIT) != 0)
goto init_fail;
/* Ack all pending interrupts and enable interrupts. */
WRITE_REG(sc, TXP_ISR, TXP_INTR_ALL);
WRITE_REG(sc, TXP_IER, TXP_INTRS);
WRITE_REG(sc, TXP_IMR, TXP_INTR_NONE);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->sc_tick, hz, txp_tick, sc);
return;
init_fail:
txp_rxring_empty(sc);
txp_init_rings(sc);
txp_reset(sc);
WRITE_REG(sc, TXP_IMR, TXP_INTR_ALL);
}
static void
txp_tick(void *vsc)
{
struct txp_softc *sc;
struct ifnet *ifp;
struct txp_rsp_desc *rsp;
struct txp_ext_desc *ext;
int link;
sc = vsc;
TXP_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
txp_rxbuf_reclaim(sc);
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ifp = sc->sc_ifp;
rsp = NULL;
link = sc->sc_flags & TXP_FLAG_LINK;
if (txp_ext_command(sc, TXP_CMD_READ_STATISTICS, 0, 0, 0, NULL, 0,
&rsp, TXP_CMD_WAIT))
goto out;
if (rsp->rsp_numdesc != 6)
goto out;
txp_stats_update(sc, rsp);
if (link == 0 && (sc->sc_flags & TXP_FLAG_LINK) != 0) {
ext = (struct txp_ext_desc *)(rsp + 1);
/* Update baudrate with resolved speed. */
if ((ext[5].ext_2 & 0x02) != 0)
ifp->if_baudrate = IF_Mbps(100);
else
ifp->if_baudrate = IF_Mbps(10);
}
out:
if (rsp != NULL)
free(rsp, M_DEVBUF);
txp_watchdog(sc);
callout_reset(&sc->sc_tick, hz, txp_tick, sc);
}
static void
txp_start(struct ifnet *ifp)
{
struct txp_softc *sc;
sc = ifp->if_softc;
TXP_LOCK(sc);
txp_start_locked(ifp);
TXP_UNLOCK(sc);
}
static void
txp_start_locked(struct ifnet *ifp)
{
struct txp_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
TXP_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->sc_flags & TXP_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
* ATM only Hi-ring is used.
*/
if (txp_encap(sc, &sc->sc_txhir, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
/* Send queued frame. */
WRITE_REG(sc, sc->sc_txhir.r_reg,
TXP_IDX2OFFSET(sc->sc_txhir.r_prod));
}
if (enq > 0) {
/* Set a timeout in case the chip goes out to lunch. */
sc->sc_watchdog_timer = TXP_TX_TIMEOUT;
}
}
static int
txp_encap(struct txp_softc *sc, struct txp_tx_ring *r, struct mbuf **m_head)
{
struct txp_tx_desc *first_txd;
struct txp_frag_desc *fxd;
struct txp_swdesc *sd;
struct mbuf *m;
bus_dma_segment_t txsegs[TXP_MAXTXSEGS];
int error, i, nsegs;
TXP_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
m = *m_head;
first_txd = r->r_desc + r->r_prod;
sd = sc->sc_txd + r->r_prod;
error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.txp_tx_tag, sd->sd_map,
*m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, TXP_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.txp_tx_tag,
sd->sd_map, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (r->r_cnt + nsegs >= TX_ENTRIES - TXP_TXD_RESERVED) {
bus_dmamap_unload(sc->sc_cdata.txp_tx_tag, sd->sd_map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_cdata.txp_tx_tag, sd->sd_map,
BUS_DMASYNC_PREWRITE);
sd->sd_mbuf = m;
first_txd->tx_flags = TX_FLAGS_TYPE_DATA;
first_txd->tx_numdesc = 0;
first_txd->tx_addrlo = 0;
first_txd->tx_addrhi = 0;
first_txd->tx_totlen = 0;
first_txd->tx_pflags = 0;
r->r_cnt++;
TXP_DESC_INC(r->r_prod, TX_ENTRIES);
/* Configure Tx IP/TCP/UDP checksum offload. */
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
first_txd->tx_pflags |= htole32(TX_PFLAGS_IPCKSUM);
#ifdef notyet
/* XXX firmware bug. */
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
first_txd->tx_pflags |= htole32(TX_PFLAGS_TCPCKSUM);
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
first_txd->tx_pflags |= htole32(TX_PFLAGS_UDPCKSUM);
#endif
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0)
first_txd->tx_pflags |=
htole32(TX_PFLAGS_VLAN | TX_PFLAGS_PRIO |
(bswap16(m->m_pkthdr.ether_vtag) << TX_PFLAGS_VLANTAG_S));
for (i = 0; i < nsegs; i++) {
fxd = (struct txp_frag_desc *)(r->r_desc + r->r_prod);
fxd->frag_flags = FRAG_FLAGS_TYPE_FRAG | TX_FLAGS_VALID;
fxd->frag_rsvd1 = 0;
fxd->frag_len = htole16(txsegs[i].ds_len);
fxd->frag_addrhi = htole32(TXP_ADDR_HI(txsegs[i].ds_addr));
fxd->frag_addrlo = htole32(TXP_ADDR_LO(txsegs[i].ds_addr));
fxd->frag_rsvd2 = 0;
first_txd->tx_numdesc++;
r->r_cnt++;
TXP_DESC_INC(r->r_prod, TX_ENTRIES);
}
/* Lastly set valid flag. */
first_txd->tx_flags |= TX_FLAGS_VALID;
/* Sync descriptors. */
bus_dmamap_sync(r->r_tag, r->r_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Handle simple commands sent to the typhoon
*/
static int
txp_command(struct txp_softc *sc, uint16_t id, uint16_t in1, uint32_t in2,
uint32_t in3, uint16_t *out1, uint32_t *out2, uint32_t *out3, int wait)
{
struct txp_rsp_desc *rsp;
rsp = NULL;
if (txp_ext_command(sc, id, in1, in2, in3, NULL, 0, &rsp, wait) != 0) {
device_printf(sc->sc_dev, "command 0x%02x failed\n", id);
return (-1);
}
if (wait == TXP_CMD_NOWAIT)
return (0);
KASSERT(rsp != NULL, ("rsp is NULL!\n"));
if (out1 != NULL)
*out1 = le16toh(rsp->rsp_par1);
if (out2 != NULL)
*out2 = le32toh(rsp->rsp_par2);
if (out3 != NULL)
*out3 = le32toh(rsp->rsp_par3);
free(rsp, M_DEVBUF);
return (0);
}
static int
txp_ext_command(struct txp_softc *sc, uint16_t id, uint16_t in1, uint32_t in2,
uint32_t in3, struct txp_ext_desc *in_extp, uint8_t in_extn,
struct txp_rsp_desc **rspp, int wait)
{
struct txp_hostvar *hv;
struct txp_cmd_desc *cmd;
struct txp_ext_desc *ext;
uint32_t idx, i;
uint16_t seq;
int error;
error = 0;
hv = sc->sc_hostvar;
if (txp_cmd_desc_numfree(sc) < (in_extn + 1)) {
device_printf(sc->sc_dev,
"%s : out of free cmd descriptors for command 0x%02x\n",
__func__, id);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_cdata.txp_cmdring_tag,
sc->sc_cdata.txp_cmdring_map, BUS_DMASYNC_POSTWRITE);
idx = sc->sc_cmdring.lastwrite;
cmd = (struct txp_cmd_desc *)(((uint8_t *)sc->sc_cmdring.base) + idx);
bzero(cmd, sizeof(*cmd));
cmd->cmd_numdesc = in_extn;
seq = sc->sc_seq++;
cmd->cmd_seq = htole16(seq);
cmd->cmd_id = htole16(id);
cmd->cmd_par1 = htole16(in1);
cmd->cmd_par2 = htole32(in2);
cmd->cmd_par3 = htole32(in3);
cmd->cmd_flags = CMD_FLAGS_TYPE_CMD |
(wait == TXP_CMD_WAIT ? CMD_FLAGS_RESP : 0) | CMD_FLAGS_VALID;
idx += sizeof(struct txp_cmd_desc);
if (idx == sc->sc_cmdring.size)
idx = 0;
for (i = 0; i < in_extn; i++) {
ext = (struct txp_ext_desc *)(((uint8_t *)sc->sc_cmdring.base) + idx);
bcopy(in_extp, ext, sizeof(struct txp_ext_desc));
in_extp++;
idx += sizeof(struct txp_cmd_desc);
if (idx == sc->sc_cmdring.size)
idx = 0;
}
sc->sc_cmdring.lastwrite = idx;
bus_dmamap_sync(sc->sc_cdata.txp_cmdring_tag,
sc->sc_cdata.txp_cmdring_map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map, BUS_DMASYNC_PREREAD |
BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, TXP_H2A_2, sc->sc_cmdring.lastwrite);
TXP_BARRIER(sc, TXP_H2A_2, 4, BUS_SPACE_BARRIER_WRITE);
if (wait == TXP_CMD_NOWAIT)
return (0);
for (i = 0; i < TXP_TIMEOUT; i++) {
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map, BUS_DMASYNC_POSTREAD |
BUS_DMASYNC_POSTWRITE);
if (le32toh(hv->hv_resp_read_idx) !=
le32toh(hv->hv_resp_write_idx)) {
error = txp_response(sc, id, seq, rspp);
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (error != 0)
return (error);
if (*rspp != NULL)
break;
}
DELAY(50);
}
if (i == TXP_TIMEOUT) {
device_printf(sc->sc_dev, "command 0x%02x timedout\n", id);
error = ETIMEDOUT;
}
return (error);
}
static int
txp_response(struct txp_softc *sc, uint16_t id, uint16_t seq,
struct txp_rsp_desc **rspp)
{
struct txp_hostvar *hv;
struct txp_rsp_desc *rsp;
uint32_t ridx;
bus_dmamap_sync(sc->sc_cdata.txp_rspring_tag,
sc->sc_cdata.txp_rspring_map, BUS_DMASYNC_POSTREAD);
hv = sc->sc_hostvar;
ridx = le32toh(hv->hv_resp_read_idx);
while (ridx != le32toh(hv->hv_resp_write_idx)) {
rsp = (struct txp_rsp_desc *)(((uint8_t *)sc->sc_rspring.base) + ridx);
if (id == le16toh(rsp->rsp_id) &&
le16toh(rsp->rsp_seq) == seq) {
*rspp = (struct txp_rsp_desc *)malloc(
sizeof(struct txp_rsp_desc) * (rsp->rsp_numdesc + 1),
M_DEVBUF, M_NOWAIT);
if (*rspp == NULL) {
device_printf(sc->sc_dev,"%s : command 0x%02x "
"memory allocation failure\n",
__func__, id);
return (ENOMEM);
}
txp_rsp_fixup(sc, rsp, *rspp);
return (0);
}
if ((rsp->rsp_flags & RSP_FLAGS_ERROR) != 0) {
device_printf(sc->sc_dev,
"%s : command 0x%02x response error!\n", __func__,
le16toh(rsp->rsp_id));
txp_rsp_fixup(sc, rsp, NULL);
ridx = le32toh(hv->hv_resp_read_idx);
continue;
}
/*
* The following unsolicited responses are handled during
* processing of TXP_CMD_READ_STATISTICS which requires
* response. Driver abuses the command to detect media
* status change.
* TXP_CMD_FILTER_DEFINE is not an unsolicited response
* but we don't process response ring in interrupt handler
* so we have to ignore this command here, otherwise
* unknown command message would be printed.
*/
switch (le16toh(rsp->rsp_id)) {
case TXP_CMD_CYCLE_STATISTICS:
case TXP_CMD_FILTER_DEFINE:
break;
case TXP_CMD_MEDIA_STATUS_READ:
if ((le16toh(rsp->rsp_par1) & 0x0800) == 0) {
sc->sc_flags |= TXP_FLAG_LINK;
if_link_state_change(sc->sc_ifp,
LINK_STATE_UP);
} else {
sc->sc_flags &= ~TXP_FLAG_LINK;
if_link_state_change(sc->sc_ifp,
LINK_STATE_DOWN);
}
break;
case TXP_CMD_HELLO_RESPONSE:
/*
* Driver should repsond to hello message but
* TXP_CMD_READ_STATISTICS is issued for every
* hz, therefore there is no need to send an
* explicit command here.
*/
device_printf(sc->sc_dev, "%s : hello\n", __func__);
break;
default:
device_printf(sc->sc_dev,
"%s : unknown command 0x%02x\n", __func__,
le16toh(rsp->rsp_id));
}
txp_rsp_fixup(sc, rsp, NULL);
ridx = le32toh(hv->hv_resp_read_idx);
}
return (0);
}
static void
txp_rsp_fixup(struct txp_softc *sc, struct txp_rsp_desc *rsp,
struct txp_rsp_desc *dst)
{
struct txp_rsp_desc *src;
struct txp_hostvar *hv;
uint32_t i, ridx;
src = rsp;
hv = sc->sc_hostvar;
ridx = le32toh(hv->hv_resp_read_idx);
for (i = 0; i < rsp->rsp_numdesc + 1; i++) {
if (dst != NULL)
bcopy(src, dst++, sizeof(struct txp_rsp_desc));
ridx += sizeof(struct txp_rsp_desc);
if (ridx == sc->sc_rspring.size) {
src = sc->sc_rspring.base;
ridx = 0;
} else
src++;
sc->sc_rspring.lastwrite = ridx;
}
hv->hv_resp_read_idx = htole32(ridx);
}
static int
txp_cmd_desc_numfree(struct txp_softc *sc)
{
struct txp_hostvar *hv;
struct txp_boot_record *br;
uint32_t widx, ridx, nfree;
bus_dmamap_sync(sc->sc_cdata.txp_hostvar_tag,
sc->sc_cdata.txp_hostvar_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
hv = sc->sc_hostvar;
br = sc->sc_boot;
widx = sc->sc_cmdring.lastwrite;
ridx = le32toh(hv->hv_cmd_read_idx);
if (widx == ridx) {
/* Ring is completely free */
nfree = le32toh(br->br_cmd_siz) - sizeof(struct txp_cmd_desc);
} else {
if (widx > ridx)
nfree = le32toh(br->br_cmd_siz) -
(widx - ridx + sizeof(struct txp_cmd_desc));
else
nfree = ridx - widx - sizeof(struct txp_cmd_desc);
}
return (nfree / sizeof(struct txp_cmd_desc));
}
static int
txp_sleep(struct txp_softc *sc, int capenable)
{
uint16_t events;
int error;
events = 0;
if ((capenable & IFCAP_WOL_MAGIC) != 0)
events |= 0x01;
error = txp_command(sc, TXP_CMD_ENABLE_WAKEUP_EVENTS, events, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT);
if (error == 0) {
/* Goto sleep. */
error = txp_command(sc, TXP_CMD_GOTO_SLEEP, 0, 0, 0, NULL,
NULL, NULL, TXP_CMD_NOWAIT);
if (error == 0) {
error = txp_wait(sc, STAT_SLEEPING);
if (error != 0)
device_printf(sc->sc_dev,
"unable to enter into sleep\n");
}
}
return (error);
}
static void
txp_stop(struct txp_softc *sc)
{
struct ifnet *ifp;
TXP_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
WRITE_REG(sc, TXP_IER, TXP_INTR_NONE);
WRITE_REG(sc, TXP_ISR, TXP_INTR_ALL);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~TXP_FLAG_LINK;
callout_stop(&sc->sc_tick);
txp_command(sc, TXP_CMD_TX_DISABLE, 0, 0, 0, NULL, NULL, NULL,
TXP_CMD_NOWAIT);
txp_command(sc, TXP_CMD_RX_DISABLE, 0, 0, 0, NULL, NULL, NULL,
TXP_CMD_NOWAIT);
/* Save statistics for later use. */
txp_stats_save(sc);
/* Halt controller. */
txp_command(sc, TXP_CMD_HALT, 0, 0, 0, NULL, NULL, NULL,
TXP_CMD_NOWAIT);
if (txp_wait(sc, STAT_HALTED) != 0)
device_printf(sc->sc_dev, "controller halt timedout!\n");
/* Reclaim Tx/Rx buffers. */
if (sc->sc_txhir.r_cnt && (sc->sc_txhir.r_cons !=
TXP_OFFSET2IDX(le32toh(*(sc->sc_txhir.r_off)))))
txp_tx_reclaim(sc, &sc->sc_txhir);
if (sc->sc_txlor.r_cnt && (sc->sc_txlor.r_cons !=
TXP_OFFSET2IDX(le32toh(*(sc->sc_txlor.r_off)))))
txp_tx_reclaim(sc, &sc->sc_txlor);
txp_rxring_empty(sc);
txp_init_rings(sc);
/* Reset controller and make it reload sleep image. */
txp_reset(sc);
/* Let controller boot from sleep image. */
if (txp_boot(sc, STAT_WAITING_FOR_HOST_REQUEST) != 0)
device_printf(sc->sc_dev, "could not boot sleep image\n");
txp_sleep(sc, 0);
}
static void
txp_watchdog(struct txp_softc *sc)
{
struct ifnet *ifp;
TXP_LOCK_ASSERT(sc);
if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
return;
ifp = sc->sc_ifp;
if_printf(ifp, "watchdog timeout -- resetting\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
txp_stop(sc);
txp_init_locked(sc);
}
static int
txp_ifmedia_upd(struct ifnet *ifp)
{
struct txp_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_ifmedia;
uint16_t new_xcvr;
TXP_LOCK(sc);
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
TXP_UNLOCK(sc);
return (EINVAL);
}
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_10_T) {
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
new_xcvr = TXP_XCVR_10_FDX;
else
new_xcvr = TXP_XCVR_10_HDX;
} else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
new_xcvr = TXP_XCVR_100_FDX;
else
new_xcvr = TXP_XCVR_100_HDX;
} else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
new_xcvr = TXP_XCVR_AUTO;
} else {
TXP_UNLOCK(sc);
return (EINVAL);
}
/* nothing to do */
if (sc->sc_xcvr == new_xcvr) {
TXP_UNLOCK(sc);
return (0);
}
txp_command(sc, TXP_CMD_XCVR_SELECT, new_xcvr, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT);
sc->sc_xcvr = new_xcvr;
TXP_UNLOCK(sc);
return (0);
}
static void
txp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct txp_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_ifmedia;
uint16_t bmsr, bmcr, anar, anlpar;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
TXP_LOCK(sc);
/* Check whether firmware is running. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMSR, 0,
&bmsr, NULL, NULL, TXP_CMD_WAIT))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMSR, 0,
&bmsr, NULL, NULL, TXP_CMD_WAIT))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMCR, 0,
&bmcr, NULL, NULL, TXP_CMD_WAIT))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_ANLPAR, 0,
&anlpar, NULL, NULL, TXP_CMD_WAIT))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_ANAR, 0,
&anar, NULL, NULL, TXP_CMD_WAIT))
goto bail;
TXP_UNLOCK(sc);
if (bmsr & BMSR_LINK)
ifmr->ifm_status |= IFM_ACTIVE;
if (bmcr & BMCR_ISO) {
ifmr->ifm_active |= IFM_NONE;
ifmr->ifm_status = 0;
return;
}
if (bmcr & BMCR_LOOP)
ifmr->ifm_active |= IFM_LOOP;
if (bmcr & BMCR_AUTOEN) {
if ((bmsr & BMSR_ACOMP) == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
}
anlpar &= anar;
if (anlpar & ANLPAR_TX_FD)
ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
else if (anlpar & ANLPAR_T4)
ifmr->ifm_active |= IFM_100_T4;
else if (anlpar & ANLPAR_TX)
ifmr->ifm_active |= IFM_100_TX;
else if (anlpar & ANLPAR_10_FD)
ifmr->ifm_active |= IFM_10_T|IFM_FDX;
else if (anlpar & ANLPAR_10)
ifmr->ifm_active |= IFM_10_T;
else
ifmr->ifm_active |= IFM_NONE;
} else
ifmr->ifm_active = ifm->ifm_cur->ifm_media;
return;
bail:
TXP_UNLOCK(sc);
ifmr->ifm_active |= IFM_NONE;
ifmr->ifm_status &= ~IFM_AVALID;
}
#ifdef TXP_DEBUG
static void
txp_show_descriptor(void *d)
{
struct txp_cmd_desc *cmd = d;
struct txp_rsp_desc *rsp = d;
struct txp_tx_desc *txd = d;
struct txp_frag_desc *frgd = d;
switch (cmd->cmd_flags & CMD_FLAGS_TYPE_M) {
case CMD_FLAGS_TYPE_CMD:
/* command descriptor */
printf("[cmd flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n",
cmd->cmd_flags, cmd->cmd_numdesc, le16toh(cmd->cmd_id),
le16toh(cmd->cmd_seq), le16toh(cmd->cmd_par1),
le32toh(cmd->cmd_par2), le32toh(cmd->cmd_par3));
break;
case CMD_FLAGS_TYPE_RESP:
/* response descriptor */
printf("[rsp flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n",
rsp->rsp_flags, rsp->rsp_numdesc, le16toh(rsp->rsp_id),
le16toh(rsp->rsp_seq), le16toh(rsp->rsp_par1),
le32toh(rsp->rsp_par2), le32toh(rsp->rsp_par3));
break;
case CMD_FLAGS_TYPE_DATA:
/* data header (assuming tx for now) */
printf("[data flags 0x%x num %d totlen %d addr 0x%x/0x%x pflags 0x%x]",
txd->tx_flags, txd->tx_numdesc, le16toh(txd->tx_totlen),
le32toh(txd->tx_addrlo), le32toh(txd->tx_addrhi),
le32toh(txd->tx_pflags));
break;
case CMD_FLAGS_TYPE_FRAG:
/* fragment descriptor */
printf("[frag flags 0x%x rsvd1 0x%x len %d addr 0x%x/0x%x rsvd2 0x%x]",
frgd->frag_flags, frgd->frag_rsvd1, le16toh(frgd->frag_len),
le32toh(frgd->frag_addrlo), le32toh(frgd->frag_addrhi),
le32toh(frgd->frag_rsvd2));
break;
default:
printf("[unknown(%x) flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n",
cmd->cmd_flags & CMD_FLAGS_TYPE_M,
cmd->cmd_flags, cmd->cmd_numdesc, le16toh(cmd->cmd_id),
le16toh(cmd->cmd_seq), le16toh(cmd->cmd_par1),
le32toh(cmd->cmd_par2), le32toh(cmd->cmd_par3));
break;
}
}
#endif
static void
txp_set_filter(struct txp_softc *sc)
{
struct ifnet *ifp;
uint32_t crc, mchash[2];
uint16_t filter;
struct ifmultiaddr *ifma;
int mcnt;
TXP_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
filter = TXP_RXFILT_DIRECT;
if ((ifp->if_flags & IFF_BROADCAST) != 0)
filter |= TXP_RXFILT_BROADCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
filter |= TXP_RXFILT_ALLMULTI;
if ((ifp->if_flags & IFF_PROMISC) != 0)
filter = TXP_RXFILT_PROMISC;
goto setit;
}
mchash[0] = mchash[1] = 0;
mcnt = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
crc &= 0x3f;
mchash[crc >> 5] |= 1 << (crc & 0x1f);
mcnt++;
}
if_maddr_runlock(ifp);
if (mcnt > 0) {
filter |= TXP_RXFILT_HASHMULTI;
txp_command(sc, TXP_CMD_MCAST_HASH_MASK_WRITE, 2, mchash[0],
mchash[1], NULL, NULL, NULL, TXP_CMD_NOWAIT);
}
setit:
txp_command(sc, TXP_CMD_RX_FILTER_WRITE, filter, 0, 0,
NULL, NULL, NULL, TXP_CMD_NOWAIT);
}
static int
txp_set_capabilities(struct txp_softc *sc)
{
struct ifnet *ifp;
uint32_t rxcap, txcap;
TXP_LOCK_ASSERT(sc);
rxcap = txcap = 0;
ifp = sc->sc_ifp;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
if ((ifp->if_hwassist & CSUM_IP) != 0)
txcap |= OFFLOAD_IPCKSUM;
if ((ifp->if_hwassist & CSUM_TCP) != 0)
txcap |= OFFLOAD_TCPCKSUM;
if ((ifp->if_hwassist & CSUM_UDP) != 0)
txcap |= OFFLOAD_UDPCKSUM;
rxcap = txcap;
}
if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
rxcap &= ~(OFFLOAD_IPCKSUM | OFFLOAD_TCPCKSUM |
OFFLOAD_UDPCKSUM);
if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
rxcap |= OFFLOAD_VLAN;
txcap |= OFFLOAD_VLAN;
}
/* Tell firmware new offload configuration. */
return (txp_command(sc, TXP_CMD_OFFLOAD_WRITE, 0, txcap, rxcap, NULL,
NULL, NULL, TXP_CMD_NOWAIT));
}
static void
txp_stats_save(struct txp_softc *sc)
{
struct txp_rsp_desc *rsp;
TXP_LOCK_ASSERT(sc);
rsp = NULL;
if (txp_ext_command(sc, TXP_CMD_READ_STATISTICS, 0, 0, 0, NULL, 0,
&rsp, TXP_CMD_WAIT))
goto out;
if (rsp->rsp_numdesc != 6)
goto out;
txp_stats_update(sc, rsp);
out:
if (rsp != NULL)
free(rsp, M_DEVBUF);
bcopy(&sc->sc_stats, &sc->sc_ostats, sizeof(struct txp_hw_stats));
}
static void
txp_stats_update(struct txp_softc *sc, struct txp_rsp_desc *rsp)
{
struct txp_hw_stats *ostats, *stats;
struct txp_ext_desc *ext;
TXP_LOCK_ASSERT(sc);
ext = (struct txp_ext_desc *)(rsp + 1);
ostats = &sc->sc_ostats;
stats = &sc->sc_stats;
stats->tx_frames = ostats->tx_frames + le32toh(rsp->rsp_par2);
stats->tx_bytes = ostats->tx_bytes + (uint64_t)le32toh(rsp->rsp_par3) +
((uint64_t)le32toh(ext[0].ext_1) << 32);
stats->tx_deferred = ostats->tx_deferred + le32toh(ext[0].ext_2);
stats->tx_late_colls = ostats->tx_late_colls + le32toh(ext[0].ext_3);
stats->tx_colls = ostats->tx_colls + le32toh(ext[0].ext_4);
stats->tx_carrier_lost = ostats->tx_carrier_lost +
le32toh(ext[1].ext_1);
stats->tx_multi_colls = ostats->tx_multi_colls +
le32toh(ext[1].ext_2);
stats->tx_excess_colls = ostats->tx_excess_colls +
le32toh(ext[1].ext_3);
stats->tx_fifo_underruns = ostats->tx_fifo_underruns +
le32toh(ext[1].ext_4);
stats->tx_mcast_oflows = ostats->tx_mcast_oflows +
le32toh(ext[2].ext_1);
stats->tx_filtered = ostats->tx_filtered + le32toh(ext[2].ext_2);
stats->rx_frames = ostats->rx_frames + le32toh(ext[2].ext_3);
stats->rx_bytes = ostats->rx_bytes + (uint64_t)le32toh(ext[2].ext_4) +
((uint64_t)le32toh(ext[3].ext_1) << 32);
stats->rx_fifo_oflows = ostats->rx_fifo_oflows + le32toh(ext[3].ext_2);
stats->rx_badssd = ostats->rx_badssd + le32toh(ext[3].ext_3);
stats->rx_crcerrs = ostats->rx_crcerrs + le32toh(ext[3].ext_4);
stats->rx_lenerrs = ostats->rx_lenerrs + le32toh(ext[4].ext_1);
stats->rx_bcast_frames = ostats->rx_bcast_frames +
le32toh(ext[4].ext_2);
stats->rx_mcast_frames = ostats->rx_mcast_frames +
le32toh(ext[4].ext_3);
stats->rx_oflows = ostats->rx_oflows + le32toh(ext[4].ext_4);
stats->rx_filtered = ostats->rx_filtered + le32toh(ext[5].ext_1);
}
static uint64_t
txp_get_counter(struct ifnet *ifp, ift_counter cnt)
{
struct txp_softc *sc;
struct txp_hw_stats *stats;
sc = if_getsoftc(ifp);
stats = &sc->sc_stats;
switch (cnt) {
case IFCOUNTER_IERRORS:
return (stats->rx_fifo_oflows + stats->rx_badssd +
stats->rx_crcerrs + stats->rx_lenerrs + stats->rx_oflows);
case IFCOUNTER_OERRORS:
return (stats->tx_deferred + stats->tx_carrier_lost +
stats->tx_fifo_underruns + stats->tx_mcast_oflows);
case IFCOUNTER_COLLISIONS:
return (stats->tx_late_colls + stats->tx_multi_colls +
stats->tx_excess_colls);
case IFCOUNTER_OPACKETS:
return (stats->tx_frames);
case IFCOUNTER_IPACKETS:
return (stats->rx_frames);
default:
return (if_get_counter_default(ifp, cnt));
}
}
#define TXP_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#if __FreeBSD_version >= 900030
#define TXP_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
#elif __FreeBSD_version > 800000
#define TXP_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
#else
#define TXP_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
#endif
static void
txp_sysctl_node(struct txp_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct txp_hw_stats *stats;
int error;
stats = &sc->sc_stats;
ctx = device_get_sysctl_ctx(sc->sc_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
CTLTYPE_INT | CTLFLAG_RW, &sc->sc_process_limit, 0,
sysctl_hw_txp_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->sc_process_limit = TXP_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "process_limit",
&sc->sc_process_limit);
if (error == 0) {
if (sc->sc_process_limit < TXP_PROC_MIN ||
sc->sc_process_limit > TXP_PROC_MAX) {
device_printf(sc->sc_dev,
"process_limit value out of range; "
"using default: %d\n", TXP_PROC_DEFAULT);
sc->sc_process_limit = TXP_PROC_DEFAULT;
}
}
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "TXP statistics");
parent = SYSCTL_CHILDREN(tree);
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
TXP_SYSCTL_STAT_ADD32(ctx, child, "frames",
&stats->tx_frames, "Frames");
TXP_SYSCTL_STAT_ADD64(ctx, child, "octets",
&stats->tx_bytes, "Octets");
TXP_SYSCTL_STAT_ADD32(ctx, child, "deferred",
&stats->tx_deferred, "Deferred frames");
TXP_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_late_colls, "Late collisions");
TXP_SYSCTL_STAT_ADD32(ctx, child, "colls",
&stats->tx_colls, "Collisions");
TXP_SYSCTL_STAT_ADD32(ctx, child, "carrier_lost",
&stats->tx_carrier_lost, "Carrier lost");
TXP_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
TXP_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
&stats->tx_excess_colls, "Excessive collisions");
TXP_SYSCTL_STAT_ADD32(ctx, child, "fifo_underruns",
&stats->tx_fifo_underruns, "FIFO underruns");
TXP_SYSCTL_STAT_ADD32(ctx, child, "mcast_oflows",
&stats->tx_mcast_oflows, "Multicast overflows");
TXP_SYSCTL_STAT_ADD32(ctx, child, "filtered",
&stats->tx_filtered, "Filtered frames");
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
TXP_SYSCTL_STAT_ADD32(ctx, child, "frames",
&stats->rx_frames, "Frames");
TXP_SYSCTL_STAT_ADD64(ctx, child, "octets",
&stats->rx_bytes, "Octets");
TXP_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
TXP_SYSCTL_STAT_ADD32(ctx, child, "badssd",
&stats->rx_badssd, "Bad SSD");
TXP_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
&stats->rx_crcerrs, "CRC errors");
TXP_SYSCTL_STAT_ADD32(ctx, child, "lenerrs",
&stats->rx_lenerrs, "Length errors");
TXP_SYSCTL_STAT_ADD32(ctx, child, "bcast_frames",
&stats->rx_bcast_frames, "Broadcast frames");
TXP_SYSCTL_STAT_ADD32(ctx, child, "mcast_frames",
&stats->rx_mcast_frames, "Multicast frames");
TXP_SYSCTL_STAT_ADD32(ctx, child, "oflows",
&stats->rx_oflows, "Overflows");
TXP_SYSCTL_STAT_ADD32(ctx, child, "filtered",
&stats->rx_filtered, "Filtered frames");
}
#undef TXP_SYSCTL_STAT_ADD32
#undef TXP_SYSCTL_STAT_ADD64
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_txp_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
TXP_PROC_MIN, TXP_PROC_MAX));
}