freebsd-skq/common/ctf/ctf_create.c
Xin LI d5c2dea67b Update vendor/illumos/dist and vendor-sys/illumos/dist
to illumos-gate 14143:42d090a37218:

Illumos DTrace issues:
  3089 want ::typedef
  3094 libctf should support removing a dynamic type
  3095 libctf does not validate arrays correctly
  3096 libctf does not validate function types correctly
2013-08-16 19:33:36 +00:00

1543 lines
42 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <sys/sysmacros.h>
#include <sys/param.h>
#include <sys/mman.h>
#include <ctf_impl.h>
#include <sys/debug.h>
/*
* This static string is used as the template for initially populating a
* dynamic container's string table. We always store \0 in the first byte,
* and we use the generic string "PARENT" to mark this container's parent
* if one is associated with the container using ctf_import().
*/
static const char _CTF_STRTAB_TEMPLATE[] = "\0PARENT";
/*
* To create an empty CTF container, we just declare a zeroed header and call
* ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new container r/w
* and initialize the dynamic members. We set dtstrlen to 1 to reserve the
* first byte of the string table for a \0 byte, and we start assigning type
* IDs at 1 because type ID 0 is used as a sentinel.
*/
ctf_file_t *
ctf_create(int *errp)
{
static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } };
const ulong_t hashlen = 128;
ctf_dtdef_t **hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *));
ctf_sect_t cts;
ctf_file_t *fp;
if (hash == NULL)
return (ctf_set_open_errno(errp, EAGAIN));
cts.cts_name = _CTF_SECTION;
cts.cts_type = SHT_PROGBITS;
cts.cts_flags = 0;
cts.cts_data = &hdr;
cts.cts_size = sizeof (hdr);
cts.cts_entsize = 1;
cts.cts_offset = 0;
if ((fp = ctf_bufopen(&cts, NULL, NULL, errp)) == NULL) {
ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *));
return (NULL);
}
fp->ctf_flags |= LCTF_RDWR;
fp->ctf_dthashlen = hashlen;
bzero(hash, hashlen * sizeof (ctf_dtdef_t *));
fp->ctf_dthash = hash;
fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE);
fp->ctf_dtnextid = 1;
fp->ctf_dtoldid = 0;
return (fp);
}
static uchar_t *
ctf_copy_smembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t)
{
ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
ctf_member_t ctm;
for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
if (dmd->dmd_name) {
ctm.ctm_name = soff;
soff += strlen(dmd->dmd_name) + 1;
} else
ctm.ctm_name = 0;
ctm.ctm_type = (ushort_t)dmd->dmd_type;
ctm.ctm_offset = (ushort_t)dmd->dmd_offset;
bcopy(&ctm, t, sizeof (ctm));
t += sizeof (ctm);
}
return (t);
}
static uchar_t *
ctf_copy_lmembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t)
{
ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
ctf_lmember_t ctlm;
for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
if (dmd->dmd_name) {
ctlm.ctlm_name = soff;
soff += strlen(dmd->dmd_name) + 1;
} else
ctlm.ctlm_name = 0;
ctlm.ctlm_type = (ushort_t)dmd->dmd_type;
ctlm.ctlm_pad = 0;
ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(dmd->dmd_offset);
ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(dmd->dmd_offset);
bcopy(&ctlm, t, sizeof (ctlm));
t += sizeof (ctlm);
}
return (t);
}
static uchar_t *
ctf_copy_emembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t)
{
ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
ctf_enum_t cte;
for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
cte.cte_name = soff;
cte.cte_value = dmd->dmd_value;
soff += strlen(dmd->dmd_name) + 1;
bcopy(&cte, t, sizeof (cte));
t += sizeof (cte);
}
return (t);
}
static uchar_t *
ctf_copy_membnames(ctf_dtdef_t *dtd, uchar_t *s)
{
ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
size_t len;
for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
if (dmd->dmd_name == NULL)
continue; /* skip anonymous members */
len = strlen(dmd->dmd_name) + 1;
bcopy(dmd->dmd_name, s, len);
s += len;
}
return (s);
}
/*
* Only types of dyanmic CTF containers contain reference counts. These
* containers are marked RD/WR. Because of that we basically make this a no-op
* for compatability with non-dynamic CTF sections. This is also a no-op for
* types which are not dynamic types. It is the responsibility of the caller to
* make sure it is a valid type. We help that caller out on debug builds.
*
* Note that the reference counts are not maintained for types that are not
* within this container. In other words if we have a type in a parent, that
* will not have its reference count increased. On the flip side, the parent
* will not be allowed to remove dynamic types if it has children.
*/
static void
ctf_ref_inc(ctf_file_t *fp, ctf_id_t tid)
{
ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid);
if (dtd == NULL)
return;
if (!(fp->ctf_flags & LCTF_RDWR))
return;
dtd->dtd_ref++;
}
/*
* Just as with ctf_ref_inc, this is a no-op on non-writeable containers and the
* caller should ensure that this is already a valid type.
*/
static void
ctf_ref_dec(ctf_file_t *fp, ctf_id_t tid)
{
ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid);
if (dtd == NULL)
return;
if (!(fp->ctf_flags & LCTF_RDWR))
return;
ASSERT(dtd->dtd_ref >= 1);
dtd->dtd_ref--;
}
/*
* If the specified CTF container is writable and has been modified, reload
* this container with the updated type definitions. In order to make this
* code and the rest of libctf as simple as possible, we perform updates by
* taking the dynamic type definitions and creating an in-memory CTF file
* containing the definitions, and then call ctf_bufopen() on it. This not
* only leverages ctf_bufopen(), but also avoids having to bifurcate the rest
* of the library code with different lookup paths for static and dynamic
* type definitions. We are therefore optimizing greatly for lookup over
* update, which we assume will be an uncommon operation. We perform one
* extra trick here for the benefit of callers and to keep our code simple:
* ctf_bufopen() will return a new ctf_file_t, but we want to keep the fp
* constant for the caller, so after ctf_bufopen() returns, we use bcopy to
* swap the interior of the old and new ctf_file_t's, and then free the old.
*
* Note that the lists of dynamic types stays around and the resulting container
* is still writeable. Furthermore, the reference counts that are on the dtd's
* are still valid.
*/
int
ctf_update(ctf_file_t *fp)
{
ctf_file_t ofp, *nfp;
ctf_header_t hdr;
ctf_dtdef_t *dtd;
ctf_sect_t cts;
uchar_t *s, *s0, *t;
size_t size;
void *buf;
int err;
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
if (!(fp->ctf_flags & LCTF_DIRTY))
return (0); /* no update required */
/*
* Fill in an initial CTF header. We will leave the label, object,
* and function sections empty and only output a header, type section,
* and string table. The type section begins at a 4-byte aligned
* boundary past the CTF header itself (at relative offset zero).
*/
bzero(&hdr, sizeof (hdr));
hdr.cth_magic = CTF_MAGIC;
hdr.cth_version = CTF_VERSION;
if (fp->ctf_flags & LCTF_CHILD)
hdr.cth_parname = 1; /* i.e. _CTF_STRTAB_TEMPLATE[1] */
/*
* Iterate through the dynamic type definition list and compute the
* size of the CTF type section we will need to generate.
*/
for (size = 0, dtd = ctf_list_next(&fp->ctf_dtdefs);
dtd != NULL; dtd = ctf_list_next(dtd)) {
uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
size += sizeof (ctf_stype_t);
else
size += sizeof (ctf_type_t);
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
size += sizeof (uint_t);
break;
case CTF_K_ARRAY:
size += sizeof (ctf_array_t);
break;
case CTF_K_FUNCTION:
size += sizeof (ushort_t) * (vlen + (vlen & 1));
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
size += sizeof (ctf_member_t) * vlen;
else
size += sizeof (ctf_lmember_t) * vlen;
break;
case CTF_K_ENUM:
size += sizeof (ctf_enum_t) * vlen;
break;
}
}
/*
* Fill in the string table offset and size, compute the size of the
* entire CTF buffer we need, and then allocate a new buffer and
* bcopy the finished header to the start of the buffer.
*/
hdr.cth_stroff = hdr.cth_typeoff + size;
hdr.cth_strlen = fp->ctf_dtstrlen;
size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;
if ((buf = ctf_data_alloc(size)) == MAP_FAILED)
return (ctf_set_errno(fp, EAGAIN));
bcopy(&hdr, buf, sizeof (ctf_header_t));
t = (uchar_t *)buf + sizeof (ctf_header_t);
s = s0 = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_stroff;
bcopy(_CTF_STRTAB_TEMPLATE, s, sizeof (_CTF_STRTAB_TEMPLATE));
s += sizeof (_CTF_STRTAB_TEMPLATE);
/*
* We now take a final lap through the dynamic type definition list and
* copy the appropriate type records and strings to the output buffer.
*/
for (dtd = ctf_list_next(&fp->ctf_dtdefs);
dtd != NULL; dtd = ctf_list_next(dtd)) {
uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
ctf_array_t cta;
uint_t encoding;
size_t len;
if (dtd->dtd_name != NULL) {
dtd->dtd_data.ctt_name = (uint_t)(s - s0);
len = strlen(dtd->dtd_name) + 1;
bcopy(dtd->dtd_name, s, len);
s += len;
} else
dtd->dtd_data.ctt_name = 0;
if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
len = sizeof (ctf_stype_t);
else
len = sizeof (ctf_type_t);
bcopy(&dtd->dtd_data, t, len);
t += len;
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
if (kind == CTF_K_INTEGER) {
encoding = CTF_INT_DATA(
dtd->dtd_u.dtu_enc.cte_format,
dtd->dtd_u.dtu_enc.cte_offset,
dtd->dtd_u.dtu_enc.cte_bits);
} else {
encoding = CTF_FP_DATA(
dtd->dtd_u.dtu_enc.cte_format,
dtd->dtd_u.dtu_enc.cte_offset,
dtd->dtd_u.dtu_enc.cte_bits);
}
bcopy(&encoding, t, sizeof (encoding));
t += sizeof (encoding);
break;
case CTF_K_ARRAY:
cta.cta_contents = (ushort_t)
dtd->dtd_u.dtu_arr.ctr_contents;
cta.cta_index = (ushort_t)
dtd->dtd_u.dtu_arr.ctr_index;
cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems;
bcopy(&cta, t, sizeof (cta));
t += sizeof (cta);
break;
case CTF_K_FUNCTION: {
ushort_t *argv = (ushort_t *)(uintptr_t)t;
uint_t argc;
for (argc = 0; argc < vlen; argc++)
*argv++ = (ushort_t)dtd->dtd_u.dtu_argv[argc];
if (vlen & 1)
*argv++ = 0; /* pad to 4-byte boundary */
t = (uchar_t *)argv;
break;
}
case CTF_K_STRUCT:
case CTF_K_UNION:
if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
t = ctf_copy_smembers(dtd, (uint_t)(s - s0), t);
else
t = ctf_copy_lmembers(dtd, (uint_t)(s - s0), t);
s = ctf_copy_membnames(dtd, s);
break;
case CTF_K_ENUM:
t = ctf_copy_emembers(dtd, (uint_t)(s - s0), t);
s = ctf_copy_membnames(dtd, s);
break;
}
}
/*
* Finally, we are ready to ctf_bufopen() the new container. If this
* is successful, we then switch nfp and fp and free the old container.
*/
ctf_data_protect(buf, size);
cts.cts_name = _CTF_SECTION;
cts.cts_type = SHT_PROGBITS;
cts.cts_flags = 0;
cts.cts_data = buf;
cts.cts_size = size;
cts.cts_entsize = 1;
cts.cts_offset = 0;
if ((nfp = ctf_bufopen(&cts, NULL, NULL, &err)) == NULL) {
ctf_data_free(buf, size);
return (ctf_set_errno(fp, err));
}
(void) ctf_setmodel(nfp, ctf_getmodel(fp));
(void) ctf_import(nfp, fp->ctf_parent);
nfp->ctf_refcnt = fp->ctf_refcnt;
nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY;
nfp->ctf_data.cts_data = NULL; /* force ctf_data_free() on close */
nfp->ctf_dthash = fp->ctf_dthash;
nfp->ctf_dthashlen = fp->ctf_dthashlen;
nfp->ctf_dtdefs = fp->ctf_dtdefs;
nfp->ctf_dtstrlen = fp->ctf_dtstrlen;
nfp->ctf_dtnextid = fp->ctf_dtnextid;
nfp->ctf_dtoldid = fp->ctf_dtnextid - 1;
nfp->ctf_specific = fp->ctf_specific;
fp->ctf_dthash = NULL;
fp->ctf_dthashlen = 0;
bzero(&fp->ctf_dtdefs, sizeof (ctf_list_t));
bcopy(fp, &ofp, sizeof (ctf_file_t));
bcopy(nfp, fp, sizeof (ctf_file_t));
bcopy(&ofp, nfp, sizeof (ctf_file_t));
/*
* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
* array of type name prefixes and the corresponding ctf_hash to use.
* NOTE: This code must be kept in sync with the code in ctf_bufopen().
*/
fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
nfp->ctf_refcnt = 1; /* force nfp to be freed */
ctf_close(nfp);
return (0);
}
void
ctf_dtd_insert(ctf_file_t *fp, ctf_dtdef_t *dtd)
{
ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1);
dtd->dtd_hash = fp->ctf_dthash[h];
fp->ctf_dthash[h] = dtd;
ctf_list_append(&fp->ctf_dtdefs, dtd);
}
void
ctf_dtd_delete(ctf_file_t *fp, ctf_dtdef_t *dtd)
{
ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1);
ctf_dtdef_t *p, **q = &fp->ctf_dthash[h];
ctf_dmdef_t *dmd, *nmd;
size_t len;
int kind, i;
for (p = *q; p != NULL; p = p->dtd_hash) {
if (p != dtd)
q = &p->dtd_hash;
else
break;
}
if (p != NULL)
*q = p->dtd_hash;
kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
switch (kind) {
case CTF_K_STRUCT:
case CTF_K_UNION:
case CTF_K_ENUM:
for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
dmd != NULL; dmd = nmd) {
if (dmd->dmd_name != NULL) {
len = strlen(dmd->dmd_name) + 1;
ctf_free(dmd->dmd_name, len);
fp->ctf_dtstrlen -= len;
}
if (kind != CTF_K_ENUM)
ctf_ref_dec(fp, dmd->dmd_type);
nmd = ctf_list_next(dmd);
ctf_free(dmd, sizeof (ctf_dmdef_t));
}
break;
case CTF_K_FUNCTION:
ctf_ref_dec(fp, dtd->dtd_data.ctt_type);
for (i = 0; i < CTF_INFO_VLEN(dtd->dtd_data.ctt_info); i++)
if (dtd->dtd_u.dtu_argv[i] != 0)
ctf_ref_dec(fp, dtd->dtd_u.dtu_argv[i]);
ctf_free(dtd->dtd_u.dtu_argv, sizeof (ctf_id_t) *
CTF_INFO_VLEN(dtd->dtd_data.ctt_info));
break;
case CTF_K_ARRAY:
ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents);
ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index);
break;
case CTF_K_TYPEDEF:
ctf_ref_dec(fp, dtd->dtd_data.ctt_type);
break;
case CTF_K_POINTER:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
ctf_ref_dec(fp, dtd->dtd_data.ctt_type);
break;
}
if (dtd->dtd_name) {
len = strlen(dtd->dtd_name) + 1;
ctf_free(dtd->dtd_name, len);
fp->ctf_dtstrlen -= len;
}
ctf_list_delete(&fp->ctf_dtdefs, dtd);
ctf_free(dtd, sizeof (ctf_dtdef_t));
}
ctf_dtdef_t *
ctf_dtd_lookup(ctf_file_t *fp, ctf_id_t type)
{
ulong_t h = type & (fp->ctf_dthashlen - 1);
ctf_dtdef_t *dtd;
if (fp->ctf_dthash == NULL)
return (NULL);
for (dtd = fp->ctf_dthash[h]; dtd != NULL; dtd = dtd->dtd_hash) {
if (dtd->dtd_type == type)
break;
}
return (dtd);
}
/*
* Discard all of the dynamic type definitions that have been added to the
* container since the last call to ctf_update(). We locate such types by
* scanning the list and deleting elements that have type IDs greater than
* ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly
* with our reference counting schemes, we must delete the dynamic list in
* reverse.
*/
int
ctf_discard(ctf_file_t *fp)
{
ctf_dtdef_t *dtd, *ntd;
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
if (!(fp->ctf_flags & LCTF_DIRTY))
return (0); /* no update required */
for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
if (dtd->dtd_type <= fp->ctf_dtoldid)
continue; /* skip types that have been committed */
ntd = ctf_list_prev(dtd);
ctf_dtd_delete(fp, dtd);
}
fp->ctf_dtnextid = fp->ctf_dtoldid + 1;
fp->ctf_flags &= ~LCTF_DIRTY;
return (0);
}
static ctf_id_t
ctf_add_generic(ctf_file_t *fp, uint_t flag, const char *name, ctf_dtdef_t **rp)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
char *s = NULL;
if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
return (ctf_set_errno(fp, EINVAL));
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
if (CTF_INDEX_TO_TYPE(fp->ctf_dtnextid, 1) > CTF_MAX_TYPE)
return (ctf_set_errno(fp, ECTF_FULL));
if ((dtd = ctf_alloc(sizeof (ctf_dtdef_t))) == NULL)
return (ctf_set_errno(fp, EAGAIN));
if (name != NULL && (s = ctf_strdup(name)) == NULL) {
ctf_free(dtd, sizeof (ctf_dtdef_t));
return (ctf_set_errno(fp, EAGAIN));
}
type = fp->ctf_dtnextid++;
type = CTF_INDEX_TO_TYPE(type, (fp->ctf_flags & LCTF_CHILD));
bzero(dtd, sizeof (ctf_dtdef_t));
dtd->dtd_name = s;
dtd->dtd_type = type;
if (s != NULL)
fp->ctf_dtstrlen += strlen(s) + 1;
ctf_dtd_insert(fp, dtd);
fp->ctf_flags |= LCTF_DIRTY;
*rp = dtd;
return (type);
}
/*
* When encoding integer sizes, we want to convert a byte count in the range
* 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
* is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.
*/
static size_t
clp2(size_t x)
{
x--;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return (x + 1);
}
static ctf_id_t
ctf_add_encoded(ctf_file_t *fp, uint_t flag,
const char *name, const ctf_encoding_t *ep, uint_t kind)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
if (ep == NULL)
return (ctf_set_errno(fp, EINVAL));
if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0);
dtd->dtd_data.ctt_size = clp2(P2ROUNDUP(ep->cte_bits, NBBY) / NBBY);
dtd->dtd_u.dtu_enc = *ep;
return (type);
}
static ctf_id_t
ctf_add_reftype(ctf_file_t *fp, uint_t flag, ctf_id_t ref, uint_t kind)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
if (ref == CTF_ERR || ref < 0 || ref > CTF_MAX_TYPE)
return (ctf_set_errno(fp, EINVAL));
if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
ctf_ref_inc(fp, ref);
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0);
dtd->dtd_data.ctt_type = (ushort_t)ref;
return (type);
}
ctf_id_t
ctf_add_integer(ctf_file_t *fp, uint_t flag,
const char *name, const ctf_encoding_t *ep)
{
return (ctf_add_encoded(fp, flag, name, ep, CTF_K_INTEGER));
}
ctf_id_t
ctf_add_float(ctf_file_t *fp, uint_t flag,
const char *name, const ctf_encoding_t *ep)
{
return (ctf_add_encoded(fp, flag, name, ep, CTF_K_FLOAT));
}
ctf_id_t
ctf_add_pointer(ctf_file_t *fp, uint_t flag, ctf_id_t ref)
{
return (ctf_add_reftype(fp, flag, ref, CTF_K_POINTER));
}
ctf_id_t
ctf_add_array(ctf_file_t *fp, uint_t flag, const ctf_arinfo_t *arp)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
ctf_file_t *fpd;
if (arp == NULL)
return (ctf_set_errno(fp, EINVAL));
fpd = fp;
if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL &&
ctf_dtd_lookup(fp, arp->ctr_contents) == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
fpd = fp;
if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL &&
ctf_dtd_lookup(fp, arp->ctr_index) == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, flag, 0);
dtd->dtd_data.ctt_size = 0;
dtd->dtd_u.dtu_arr = *arp;
ctf_ref_inc(fp, arp->ctr_contents);
ctf_ref_inc(fp, arp->ctr_index);
return (type);
}
int
ctf_set_array(ctf_file_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
{
ctf_file_t *fpd;
ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type);
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
if (dtd == NULL || CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
return (ctf_set_errno(fp, ECTF_BADID));
fpd = fp;
if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL &&
ctf_dtd_lookup(fp, arp->ctr_contents) == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
fpd = fp;
if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL &&
ctf_dtd_lookup(fp, arp->ctr_index) == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents);
ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index);
fp->ctf_flags |= LCTF_DIRTY;
dtd->dtd_u.dtu_arr = *arp;
ctf_ref_inc(fp, arp->ctr_contents);
ctf_ref_inc(fp, arp->ctr_index);
return (0);
}
ctf_id_t
ctf_add_function(ctf_file_t *fp, uint_t flag,
const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
uint_t vlen;
int i;
ctf_id_t *vdat = NULL;
ctf_file_t *fpd;
if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 ||
(ctc->ctc_argc != 0 && argv == NULL))
return (ctf_set_errno(fp, EINVAL));
vlen = ctc->ctc_argc;
if (ctc->ctc_flags & CTF_FUNC_VARARG)
vlen++; /* add trailing zero to indicate varargs (see below) */
if (vlen > CTF_MAX_VLEN)
return (ctf_set_errno(fp, EOVERFLOW));
fpd = fp;
if (ctf_lookup_by_id(&fpd, ctc->ctc_return) == NULL &&
ctf_dtd_lookup(fp, ctc->ctc_return) == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
for (i = 0; i < ctc->ctc_argc; i++) {
fpd = fp;
if (ctf_lookup_by_id(&fpd, argv[i]) == NULL &&
ctf_dtd_lookup(fp, argv[i]) == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
}
if (vlen != 0 && (vdat = ctf_alloc(sizeof (ctf_id_t) * vlen)) == NULL)
return (ctf_set_errno(fp, EAGAIN));
if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) {
ctf_free(vdat, sizeof (ctf_id_t) * vlen);
return (CTF_ERR); /* errno is set for us */
}
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, flag, vlen);
dtd->dtd_data.ctt_type = (ushort_t)ctc->ctc_return;
ctf_ref_inc(fp, ctc->ctc_return);
for (i = 0; i < ctc->ctc_argc; i++)
ctf_ref_inc(fp, argv[i]);
bcopy(argv, vdat, sizeof (ctf_id_t) * ctc->ctc_argc);
if (ctc->ctc_flags & CTF_FUNC_VARARG)
vdat[vlen - 1] = 0; /* add trailing zero to indicate varargs */
dtd->dtd_u.dtu_argv = vdat;
return (type);
}
ctf_id_t
ctf_add_struct(ctf_file_t *fp, uint_t flag, const char *name)
{
ctf_hash_t *hp = &fp->ctf_structs;
ctf_helem_t *hep = NULL;
ctf_dtdef_t *dtd;
ctf_id_t type;
if (name != NULL)
hep = ctf_hash_lookup(hp, fp, name, strlen(name));
if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD)
dtd = ctf_dtd_lookup(fp, type = hep->h_type);
else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, flag, 0);
dtd->dtd_data.ctt_size = 0;
return (type);
}
ctf_id_t
ctf_add_union(ctf_file_t *fp, uint_t flag, const char *name)
{
ctf_hash_t *hp = &fp->ctf_unions;
ctf_helem_t *hep = NULL;
ctf_dtdef_t *dtd;
ctf_id_t type;
if (name != NULL)
hep = ctf_hash_lookup(hp, fp, name, strlen(name));
if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD)
dtd = ctf_dtd_lookup(fp, type = hep->h_type);
else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, flag, 0);
dtd->dtd_data.ctt_size = 0;
return (type);
}
ctf_id_t
ctf_add_enum(ctf_file_t *fp, uint_t flag, const char *name)
{
ctf_hash_t *hp = &fp->ctf_enums;
ctf_helem_t *hep = NULL;
ctf_dtdef_t *dtd;
ctf_id_t type;
if (name != NULL)
hep = ctf_hash_lookup(hp, fp, name, strlen(name));
if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD)
dtd = ctf_dtd_lookup(fp, type = hep->h_type);
else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, flag, 0);
dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;
return (type);
}
ctf_id_t
ctf_add_forward(ctf_file_t *fp, uint_t flag, const char *name, uint_t kind)
{
ctf_hash_t *hp;
ctf_helem_t *hep;
ctf_dtdef_t *dtd;
ctf_id_t type;
switch (kind) {
case CTF_K_STRUCT:
hp = &fp->ctf_structs;
break;
case CTF_K_UNION:
hp = &fp->ctf_unions;
break;
case CTF_K_ENUM:
hp = &fp->ctf_enums;
break;
default:
return (ctf_set_errno(fp, ECTF_NOTSUE));
}
/*
* If the type is already defined or exists as a forward tag, just
* return the ctf_id_t of the existing definition.
*/
if (name != NULL && (hep = ctf_hash_lookup(hp,
fp, name, strlen(name))) != NULL)
return (hep->h_type);
if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, flag, 0);
dtd->dtd_data.ctt_type = kind;
return (type);
}
ctf_id_t
ctf_add_typedef(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
ctf_file_t *fpd;
fpd = fp;
if (ref == CTF_ERR || (ctf_lookup_by_id(&fpd, ref) == NULL &&
ctf_dtd_lookup(fp, ref) == NULL))
return (ctf_set_errno(fp, EINVAL));
if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, flag, 0);
dtd->dtd_data.ctt_type = (ushort_t)ref;
ctf_ref_inc(fp, ref);
return (type);
}
ctf_id_t
ctf_add_volatile(ctf_file_t *fp, uint_t flag, ctf_id_t ref)
{
return (ctf_add_reftype(fp, flag, ref, CTF_K_VOLATILE));
}
ctf_id_t
ctf_add_const(ctf_file_t *fp, uint_t flag, ctf_id_t ref)
{
return (ctf_add_reftype(fp, flag, ref, CTF_K_CONST));
}
ctf_id_t
ctf_add_restrict(ctf_file_t *fp, uint_t flag, ctf_id_t ref)
{
return (ctf_add_reftype(fp, flag, ref, CTF_K_RESTRICT));
}
int
ctf_add_enumerator(ctf_file_t *fp, ctf_id_t enid, const char *name, int value)
{
ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, enid);
ctf_dmdef_t *dmd;
uint_t kind, vlen, root;
char *s;
if (name == NULL)
return (ctf_set_errno(fp, EINVAL));
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
if (dtd == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info);
vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
if (kind != CTF_K_ENUM)
return (ctf_set_errno(fp, ECTF_NOTENUM));
if (vlen == CTF_MAX_VLEN)
return (ctf_set_errno(fp, ECTF_DTFULL));
for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
dmd != NULL; dmd = ctf_list_next(dmd)) {
if (strcmp(dmd->dmd_name, name) == 0)
return (ctf_set_errno(fp, ECTF_DUPMEMBER));
}
if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL)
return (ctf_set_errno(fp, EAGAIN));
if ((s = ctf_strdup(name)) == NULL) {
ctf_free(dmd, sizeof (ctf_dmdef_t));
return (ctf_set_errno(fp, EAGAIN));
}
dmd->dmd_name = s;
dmd->dmd_type = CTF_ERR;
dmd->dmd_offset = 0;
dmd->dmd_value = value;
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1);
ctf_list_append(&dtd->dtd_u.dtu_members, dmd);
fp->ctf_dtstrlen += strlen(s) + 1;
fp->ctf_flags |= LCTF_DIRTY;
return (0);
}
int
ctf_add_member(ctf_file_t *fp, ctf_id_t souid, const char *name, ctf_id_t type)
{
ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, souid);
ctf_dmdef_t *dmd;
ssize_t msize, malign, ssize;
uint_t kind, vlen, root;
char *s = NULL;
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
if (dtd == NULL)
return (ctf_set_errno(fp, ECTF_BADID));
kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info);
vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
return (ctf_set_errno(fp, ECTF_NOTSOU));
if (vlen == CTF_MAX_VLEN)
return (ctf_set_errno(fp, ECTF_DTFULL));
if (name != NULL) {
for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
dmd != NULL; dmd = ctf_list_next(dmd)) {
if (dmd->dmd_name != NULL &&
strcmp(dmd->dmd_name, name) == 0)
return (ctf_set_errno(fp, ECTF_DUPMEMBER));
}
}
if ((msize = ctf_type_size(fp, type)) == CTF_ERR ||
(malign = ctf_type_align(fp, type)) == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL)
return (ctf_set_errno(fp, EAGAIN));
if (name != NULL && (s = ctf_strdup(name)) == NULL) {
ctf_free(dmd, sizeof (ctf_dmdef_t));
return (ctf_set_errno(fp, EAGAIN));
}
dmd->dmd_name = s;
dmd->dmd_type = type;
dmd->dmd_value = -1;
if (kind == CTF_K_STRUCT && vlen != 0) {
ctf_dmdef_t *lmd = ctf_list_prev(&dtd->dtd_u.dtu_members);
ctf_id_t ltype = ctf_type_resolve(fp, lmd->dmd_type);
size_t off = lmd->dmd_offset;
ctf_encoding_t linfo;
ssize_t lsize;
if (ctf_type_encoding(fp, ltype, &linfo) != CTF_ERR)
off += linfo.cte_bits;
else if ((lsize = ctf_type_size(fp, ltype)) != CTF_ERR)
off += lsize * NBBY;
/*
* Round up the offset of the end of the last member to the
* next byte boundary, convert 'off' to bytes, and then round
* it up again to the next multiple of the alignment required
* by the new member. Finally, convert back to bits and store
* the result in dmd_offset. Technically we could do more
* efficient packing if the new member is a bit-field, but
* we're the "compiler" and ANSI says we can do as we choose.
*/
off = roundup(off, NBBY) / NBBY;
off = roundup(off, MAX(malign, 1));
dmd->dmd_offset = off * NBBY;
ssize = off + msize;
} else {
dmd->dmd_offset = 0;
ssize = ctf_get_ctt_size(fp, &dtd->dtd_data, NULL, NULL);
ssize = MAX(ssize, msize);
}
if (ssize > CTF_MAX_SIZE) {
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(ssize);
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(ssize);
} else
dtd->dtd_data.ctt_size = (ushort_t)ssize;
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1);
ctf_list_append(&dtd->dtd_u.dtu_members, dmd);
if (s != NULL)
fp->ctf_dtstrlen += strlen(s) + 1;
ctf_ref_inc(fp, type);
fp->ctf_flags |= LCTF_DIRTY;
return (0);
}
/*
* This removes a type from the dynamic section. This will fail if the type is
* referenced by another type. Note that the CTF ID is never reused currently by
* CTF. Note that if this container is a parent container then we just outright
* refuse to remove the type. There currently is no notion of searching for the
* ctf_dtdef_t in parent containers. If there is, then this constraint could
* become finer grained.
*/
int
ctf_delete_type(ctf_file_t *fp, ctf_id_t type)
{
ctf_file_t *fpd;
ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type);
if (!(fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(fp, ECTF_RDONLY));
/*
* We want to give as useful an errno as possible. That means that we
* want to distinguish between a type which does not exist and one for
* which the type is not dynamic.
*/
fpd = fp;
if (ctf_lookup_by_id(&fpd, type) == NULL &&
ctf_dtd_lookup(fp, type) == NULL)
return (CTF_ERR); /* errno is set for us */
if (dtd == NULL)
return (ctf_set_errno(fp, ECTF_NOTDYN));
if (dtd->dtd_ref != 0 || fp->ctf_refcnt > 1)
return (ctf_set_errno(fp, ECTF_REFERENCED));
ctf_dtd_delete(fp, dtd);
fp->ctf_flags |= LCTF_DIRTY;
return (0);
}
static int
enumcmp(const char *name, int value, void *arg)
{
ctf_bundle_t *ctb = arg;
int bvalue;
return (ctf_enum_value(ctb->ctb_file, ctb->ctb_type,
name, &bvalue) == CTF_ERR || value != bvalue);
}
static int
enumadd(const char *name, int value, void *arg)
{
ctf_bundle_t *ctb = arg;
return (ctf_add_enumerator(ctb->ctb_file, ctb->ctb_type,
name, value) == CTF_ERR);
}
/*ARGSUSED*/
static int
membcmp(const char *name, ctf_id_t type, ulong_t offset, void *arg)
{
ctf_bundle_t *ctb = arg;
ctf_membinfo_t ctm;
return (ctf_member_info(ctb->ctb_file, ctb->ctb_type,
name, &ctm) == CTF_ERR || ctm.ctm_offset != offset);
}
static int
membadd(const char *name, ctf_id_t type, ulong_t offset, void *arg)
{
ctf_bundle_t *ctb = arg;
ctf_dmdef_t *dmd;
char *s = NULL;
if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL)
return (ctf_set_errno(ctb->ctb_file, EAGAIN));
if (name != NULL && (s = ctf_strdup(name)) == NULL) {
ctf_free(dmd, sizeof (ctf_dmdef_t));
return (ctf_set_errno(ctb->ctb_file, EAGAIN));
}
/*
* For now, dmd_type is copied as the src_fp's type; it is reset to an
* equivalent dst_fp type by a final loop in ctf_add_type(), below.
*/
dmd->dmd_name = s;
dmd->dmd_type = type;
dmd->dmd_offset = offset;
dmd->dmd_value = -1;
ctf_list_append(&ctb->ctb_dtd->dtd_u.dtu_members, dmd);
if (s != NULL)
ctb->ctb_file->ctf_dtstrlen += strlen(s) + 1;
ctb->ctb_file->ctf_flags |= LCTF_DIRTY;
return (0);
}
/*
* The ctf_add_type routine is used to copy a type from a source CTF container
* to a dynamic destination container. This routine operates recursively by
* following the source type's links and embedded member types. If the
* destination container already contains a named type which has the same
* attributes, then we succeed and return this type but no changes occur.
*/
ctf_id_t
ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type)
{
ctf_id_t dst_type = CTF_ERR;
uint_t dst_kind = CTF_K_UNKNOWN;
const ctf_type_t *tp;
const char *name;
uint_t kind, flag, vlen;
ctf_bundle_t src, dst;
ctf_encoding_t src_en, dst_en;
ctf_arinfo_t src_ar, dst_ar;
ctf_dtdef_t *dtd;
ctf_funcinfo_t ctc;
ssize_t size;
ctf_hash_t *hp;
ctf_helem_t *hep;
if (dst_fp == src_fp)
return (src_type);
if (!(dst_fp->ctf_flags & LCTF_RDWR))
return (ctf_set_errno(dst_fp, ECTF_RDONLY));
if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL)
return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));
name = ctf_strptr(src_fp, tp->ctt_name);
kind = LCTF_INFO_KIND(src_fp, tp->ctt_info);
flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info);
vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info);
switch (kind) {
case CTF_K_STRUCT:
hp = &dst_fp->ctf_structs;
break;
case CTF_K_UNION:
hp = &dst_fp->ctf_unions;
break;
case CTF_K_ENUM:
hp = &dst_fp->ctf_enums;
break;
default:
hp = &dst_fp->ctf_names;
break;
}
/*
* If the source type has a name and is a root type (visible at the
* top-level scope), lookup the name in the destination container and
* verify that it is of the same kind before we do anything else.
*/
if ((flag & CTF_ADD_ROOT) && name[0] != '\0' &&
(hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) {
dst_type = (ctf_id_t)hep->h_type;
dst_kind = ctf_type_kind(dst_fp, dst_type);
}
/*
* If an identically named dst_type exists, fail with ECTF_CONFLICT
* unless dst_type is a forward declaration and src_type is a struct,
* union, or enum (i.e. the definition of the previous forward decl).
*/
if (dst_type != CTF_ERR && dst_kind != kind && (
dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM &&
kind != CTF_K_STRUCT && kind != CTF_K_UNION)))
return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
/*
* If the non-empty name was not found in the appropriate hash, search
* the list of pending dynamic definitions that are not yet committed.
* If a matching name and kind are found, assume this is the type that
* we are looking for. This is necessary to permit ctf_add_type() to
* operate recursively on entities such as a struct that contains a
* pointer member that refers to the same struct type.
*/
if (dst_type == CTF_ERR && name[0] != '\0') {
for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL &&
dtd->dtd_type > dst_fp->ctf_dtoldid;
dtd = ctf_list_prev(dtd)) {
if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) == kind &&
dtd->dtd_name != NULL &&
strcmp(dtd->dtd_name, name) == 0)
return (dtd->dtd_type);
}
}
src.ctb_file = src_fp;
src.ctb_type = src_type;
src.ctb_dtd = NULL;
dst.ctb_file = dst_fp;
dst.ctb_type = dst_type;
dst.ctb_dtd = NULL;
/*
* Now perform kind-specific processing. If dst_type is CTF_ERR, then
* we add a new type with the same properties as src_type to dst_fp.
* If dst_type is not CTF_ERR, then we verify that dst_type has the
* same attributes as src_type. We recurse for embedded references.
*/
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
if (ctf_type_encoding(src_fp, src_type, &src_en) != 0)
return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));
if (dst_type != CTF_ERR) {
if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0)
return (CTF_ERR); /* errno is set for us */
if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t)))
return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
} else if (kind == CTF_K_INTEGER) {
dst_type = ctf_add_integer(dst_fp, flag, name, &src_en);
} else
dst_type = ctf_add_float(dst_fp, flag, name, &src_en);
break;
case CTF_K_POINTER:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
src_type = ctf_type_reference(src_fp, src_type);
src_type = ctf_add_type(dst_fp, src_fp, src_type);
if (src_type == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dst_type = ctf_add_reftype(dst_fp, flag, src_type, kind);
break;
case CTF_K_ARRAY:
if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR)
return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));
src_ar.ctr_contents =
ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents);
src_ar.ctr_index =
ctf_add_type(dst_fp, src_fp, src_ar.ctr_index);
src_ar.ctr_nelems = src_ar.ctr_nelems;
if (src_ar.ctr_contents == CTF_ERR ||
src_ar.ctr_index == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
if (dst_type != CTF_ERR) {
if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0)
return (CTF_ERR); /* errno is set for us */
if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
} else
dst_type = ctf_add_array(dst_fp, flag, &src_ar);
break;
case CTF_K_FUNCTION:
ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type);
ctc.ctc_argc = 0;
ctc.ctc_flags = 0;
if (ctc.ctc_return == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dst_type = ctf_add_function(dst_fp, flag, &ctc, NULL);
break;
case CTF_K_STRUCT:
case CTF_K_UNION: {
ctf_dmdef_t *dmd;
int errs = 0;
/*
* Technically to match a struct or union we need to check both
* ways (src members vs. dst, dst members vs. src) but we make
* this more optimal by only checking src vs. dst and comparing
* the total size of the structure (which we must do anyway)
* which covers the possibility of dst members not in src.
* This optimization can be defeated for unions, but is so
* pathological as to render it irrelevant for our purposes.
*/
if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) {
if (ctf_type_size(src_fp, src_type) !=
ctf_type_size(dst_fp, dst_type))
return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
if (ctf_member_iter(src_fp, src_type, membcmp, &dst))
return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
break;
}
/*
* Unlike the other cases, copying structs and unions is done
* manually so as to avoid repeated lookups in ctf_add_member
* and to ensure the exact same member offsets as in src_type.
*/
dst_type = ctf_add_generic(dst_fp, flag, name, &dtd);
if (dst_type == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
dst.ctb_type = dst_type;
dst.ctb_dtd = dtd;
if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0)
errs++; /* increment errs and fail at bottom of case */
if ((size = ctf_type_size(src_fp, src_type)) > CTF_MAX_SIZE) {
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size);
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size);
} else
dtd->dtd_data.ctt_size = (ushort_t)size;
dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen);
/*
* Make a final pass through the members changing each dmd_type
* (a src_fp type) to an equivalent type in dst_fp. We pass
* through all members, leaving any that fail set to CTF_ERR.
*/
for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
dmd != NULL; dmd = ctf_list_next(dmd)) {
if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp,
dmd->dmd_type)) == CTF_ERR)
errs++;
}
if (errs)
return (CTF_ERR); /* errno is set for us */
/*
* Now that we know that we can't fail, we go through and bump
* all the reference counts on the member types.
*/
for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
dmd != NULL; dmd = ctf_list_next(dmd))
ctf_ref_inc(dst_fp, dmd->dmd_type);
break;
}
case CTF_K_ENUM:
if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) {
if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) ||
ctf_enum_iter(dst_fp, dst_type, enumcmp, &src))
return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
} else {
dst_type = ctf_add_enum(dst_fp, flag, name);
if ((dst.ctb_type = dst_type) == CTF_ERR ||
ctf_enum_iter(src_fp, src_type, enumadd, &dst))
return (CTF_ERR); /* errno is set for us */
}
break;
case CTF_K_FORWARD:
if (dst_type == CTF_ERR) {
dst_type = ctf_add_forward(dst_fp,
flag, name, CTF_K_STRUCT); /* assume STRUCT */
}
break;
case CTF_K_TYPEDEF:
src_type = ctf_type_reference(src_fp, src_type);
src_type = ctf_add_type(dst_fp, src_fp, src_type);
if (src_type == CTF_ERR)
return (CTF_ERR); /* errno is set for us */
/*
* If dst_type is not CTF_ERR at this point, we should check if
* ctf_type_reference(dst_fp, dst_type) != src_type and if so
* fail with ECTF_CONFLICT. However, this causes problems with
* <sys/types.h> typedefs that vary based on things like if
* _ILP32x then pid_t is int otherwise long. We therefore omit
* this check and assume that if the identically named typedef
* already exists in dst_fp, it is correct or equivalent.
*/
if (dst_type == CTF_ERR) {
dst_type = ctf_add_typedef(dst_fp, flag,
name, src_type);
}
break;
default:
return (ctf_set_errno(dst_fp, ECTF_CORRUPT));
}
return (dst_type);
}