314 lines
9.0 KiB
C
314 lines
9.0 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License, Version 1.0 only
|
|
* (the "License"). You may not use this file except in compliance
|
|
* with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "%Z%%M% %I% %E% SMI"
|
|
|
|
#include <sys/sysmacros.h>
|
|
#include <ctf_impl.h>
|
|
|
|
/*
|
|
* Compare the given input string and length against a table of known C storage
|
|
* qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
|
|
* do this quickly, we use a pre-computed Perfect Hash Function similar to the
|
|
* technique originally described in the classic paper:
|
|
*
|
|
* R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
|
|
* Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
|
|
*
|
|
* For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
|
|
* for the current set of qualifiers yields a unique H in the range [0 .. 20].
|
|
* The hash can be modified when the keyword set changes as necessary. We also
|
|
* store the length of each keyword and check it prior to the final strcmp().
|
|
*/
|
|
static int
|
|
isqualifier(const char *s, size_t len)
|
|
{
|
|
static const struct qual {
|
|
const char *q_name;
|
|
size_t q_len;
|
|
} qhash[] = {
|
|
{ "static", 6 }, { "", 0 }, { "", 0 }, { "", 0 },
|
|
{ "volatile", 8 }, { "", 0 }, { "", 0 }, { "", 0 }, { "", 0 },
|
|
{ "", 0 }, { "auto", 4 }, { "extern", 6 }, { "", 0 }, { "", 0 },
|
|
{ "", 0 }, { "", 0 }, { "const", 5 }, { "register", 8 },
|
|
{ "", 0 }, { "restrict", 8 }, { "_Restrict", 9 }
|
|
};
|
|
|
|
int h = s[len - 1] + (int)len - 105;
|
|
const struct qual *qp = &qhash[h];
|
|
|
|
return (h >= 0 && h < sizeof (qhash) / sizeof (qhash[0]) &&
|
|
len == qp->q_len && strncmp(qp->q_name, s, qp->q_len) == 0);
|
|
}
|
|
|
|
/*
|
|
* Attempt to convert the given C type name into the corresponding CTF type ID.
|
|
* It is not possible to do complete and proper conversion of type names
|
|
* without implementing a more full-fledged parser, which is necessary to
|
|
* handle things like types that are function pointers to functions that
|
|
* have arguments that are function pointers, and fun stuff like that.
|
|
* Instead, this function implements a very simple conversion algorithm that
|
|
* finds the things that we actually care about: structs, unions, enums,
|
|
* integers, floats, typedefs, and pointers to any of these named types.
|
|
*/
|
|
ctf_id_t
|
|
ctf_lookup_by_name(ctf_file_t *fp, const char *name)
|
|
{
|
|
static const char delimiters[] = " \t\n\r\v\f*";
|
|
|
|
const ctf_lookup_t *lp;
|
|
const ctf_helem_t *hp;
|
|
const char *p, *q, *end;
|
|
ctf_id_t type = 0;
|
|
ctf_id_t ntype, ptype;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_errno(fp, EINVAL));
|
|
|
|
for (p = name, end = name + strlen(name); *p != '\0'; p = q) {
|
|
while (isspace(*p))
|
|
p++; /* skip leading ws */
|
|
|
|
if (p == end)
|
|
break;
|
|
|
|
if ((q = strpbrk(p + 1, delimiters)) == NULL)
|
|
q = end; /* compare until end */
|
|
|
|
if (*p == '*') {
|
|
/*
|
|
* Find a pointer to type by looking in fp->ctf_ptrtab.
|
|
* If we can't find a pointer to the given type, see if
|
|
* we can compute a pointer to the type resulting from
|
|
* resolving the type down to its base type and use
|
|
* that instead. This helps with cases where the CTF
|
|
* data includes "struct foo *" but not "foo_t *" and
|
|
* the user tries to access "foo_t *" in the debugger.
|
|
*/
|
|
ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)];
|
|
if (ntype == 0) {
|
|
ntype = ctf_type_resolve(fp, type);
|
|
if (ntype == CTF_ERR || (ntype = fp->ctf_ptrtab[
|
|
CTF_TYPE_TO_INDEX(ntype)]) == 0) {
|
|
(void) ctf_set_errno(fp, ECTF_NOTYPE);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
type = CTF_INDEX_TO_TYPE(ntype,
|
|
(fp->ctf_flags & LCTF_CHILD));
|
|
|
|
q = p + 1;
|
|
continue;
|
|
}
|
|
|
|
if (isqualifier(p, (size_t)(q - p)))
|
|
continue; /* skip qualifier keyword */
|
|
|
|
for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++) {
|
|
if (lp->ctl_prefix[0] == '\0' ||
|
|
strncmp(p, lp->ctl_prefix, (size_t)(q - p)) == 0) {
|
|
for (p += lp->ctl_len; isspace(*p); p++)
|
|
continue; /* skip prefix and next ws */
|
|
|
|
if ((q = strchr(p, '*')) == NULL)
|
|
q = end; /* compare until end */
|
|
|
|
while (isspace(q[-1]))
|
|
q--; /* exclude trailing ws */
|
|
|
|
if ((hp = ctf_hash_lookup(lp->ctl_hash, fp, p,
|
|
(size_t)(q - p))) == NULL) {
|
|
(void) ctf_set_errno(fp, ECTF_NOTYPE);
|
|
goto err;
|
|
}
|
|
|
|
type = hp->h_type;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lp->ctl_prefix == NULL) {
|
|
(void) ctf_set_errno(fp, ECTF_NOTYPE);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (*p != '\0' || type == 0)
|
|
return (ctf_set_errno(fp, ECTF_SYNTAX));
|
|
|
|
return (type);
|
|
|
|
err:
|
|
if (fp->ctf_parent != NULL &&
|
|
(ptype = ctf_lookup_by_name(fp->ctf_parent, name)) != CTF_ERR)
|
|
return (ptype);
|
|
|
|
return (CTF_ERR);
|
|
}
|
|
|
|
/*
|
|
* Given a symbol table index, return the type of the data object described
|
|
* by the corresponding entry in the symbol table.
|
|
*/
|
|
ctf_id_t
|
|
ctf_lookup_by_symbol(ctf_file_t *fp, ulong_t symidx)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
ctf_id_t type;
|
|
|
|
if (sp->cts_data == NULL)
|
|
return (ctf_set_errno(fp, ECTF_NOSYMTAB));
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
return (ctf_set_errno(fp, EINVAL));
|
|
|
|
if (sp->cts_entsize == sizeof (Elf32_Sym)) {
|
|
const Elf32_Sym *symp = (Elf32_Sym *)sp->cts_data + symidx;
|
|
if (ELF32_ST_TYPE(symp->st_info) != STT_OBJECT)
|
|
return (ctf_set_errno(fp, ECTF_NOTDATA));
|
|
} else {
|
|
const Elf64_Sym *symp = (Elf64_Sym *)sp->cts_data + symidx;
|
|
if (ELF64_ST_TYPE(symp->st_info) != STT_OBJECT)
|
|
return (ctf_set_errno(fp, ECTF_NOTDATA));
|
|
}
|
|
|
|
if (fp->ctf_sxlate[symidx] == -1u)
|
|
return (ctf_set_errno(fp, ECTF_NOTYPEDAT));
|
|
|
|
type = *(ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]);
|
|
if (type == 0)
|
|
return (ctf_set_errno(fp, ECTF_NOTYPEDAT));
|
|
|
|
return (type);
|
|
}
|
|
|
|
/*
|
|
* Return the pointer to the internal CTF type data corresponding to the
|
|
* given type ID. If the ID is invalid, the function returns NULL.
|
|
* This function is not exported outside of the library.
|
|
*/
|
|
const ctf_type_t *
|
|
ctf_lookup_by_id(ctf_file_t **fpp, ctf_id_t type)
|
|
{
|
|
ctf_file_t *fp = *fpp; /* caller passes in starting CTF container */
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && CTF_TYPE_ISPARENT(type) &&
|
|
(fp = fp->ctf_parent) == NULL) {
|
|
(void) ctf_set_errno(*fpp, ECTF_NOPARENT);
|
|
return (NULL);
|
|
}
|
|
|
|
type = CTF_TYPE_TO_INDEX(type);
|
|
if (type > 0 && type <= fp->ctf_typemax) {
|
|
*fpp = fp; /* function returns ending CTF container */
|
|
return (LCTF_INDEX_TO_TYPEPTR(fp, type));
|
|
}
|
|
|
|
(void) ctf_set_errno(fp, ECTF_BADID);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Given a symbol table index, return the info for the function described
|
|
* by the corresponding entry in the symbol table.
|
|
*/
|
|
int
|
|
ctf_func_info(ctf_file_t *fp, ulong_t symidx, ctf_funcinfo_t *fip)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
const ushort_t *dp;
|
|
ushort_t info, kind, n;
|
|
|
|
if (sp->cts_data == NULL)
|
|
return (ctf_set_errno(fp, ECTF_NOSYMTAB));
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
return (ctf_set_errno(fp, EINVAL));
|
|
|
|
if (sp->cts_entsize == sizeof (Elf32_Sym)) {
|
|
const Elf32_Sym *symp = (Elf32_Sym *)sp->cts_data + symidx;
|
|
if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC)
|
|
return (ctf_set_errno(fp, ECTF_NOTFUNC));
|
|
} else {
|
|
const Elf64_Sym *symp = (Elf64_Sym *)sp->cts_data + symidx;
|
|
if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC)
|
|
return (ctf_set_errno(fp, ECTF_NOTFUNC));
|
|
}
|
|
|
|
if (fp->ctf_sxlate[symidx] == -1u)
|
|
return (ctf_set_errno(fp, ECTF_NOFUNCDAT));
|
|
|
|
dp = (ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]);
|
|
|
|
info = *dp++;
|
|
kind = LCTF_INFO_KIND(fp, info);
|
|
n = LCTF_INFO_VLEN(fp, info);
|
|
|
|
if (kind == CTF_K_UNKNOWN && n == 0)
|
|
return (ctf_set_errno(fp, ECTF_NOFUNCDAT));
|
|
|
|
if (kind != CTF_K_FUNCTION)
|
|
return (ctf_set_errno(fp, ECTF_CORRUPT));
|
|
|
|
fip->ctc_return = *dp++;
|
|
fip->ctc_argc = n;
|
|
fip->ctc_flags = 0;
|
|
|
|
if (n != 0 && dp[n - 1] == 0) {
|
|
fip->ctc_flags |= CTF_FUNC_VARARG;
|
|
fip->ctc_argc--;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a symbol table index, return the arguments for the function described
|
|
* by the corresponding entry in the symbol table.
|
|
*/
|
|
int
|
|
ctf_func_args(ctf_file_t *fp, ulong_t symidx, uint_t argc, ctf_id_t *argv)
|
|
{
|
|
const ushort_t *dp;
|
|
ctf_funcinfo_t f;
|
|
|
|
if (ctf_func_info(fp, symidx, &f) == CTF_ERR)
|
|
return (CTF_ERR); /* errno is set for us */
|
|
|
|
/*
|
|
* The argument data is two ushort_t's past the translation table
|
|
* offset: one for the function info, and one for the return type.
|
|
*/
|
|
dp = (ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]) + 2;
|
|
|
|
for (argc = MIN(argc, f.ctc_argc); argc != 0; argc--)
|
|
*argv++ = *dp++;
|
|
|
|
return (0);
|
|
}
|