ff6e113f1b
to this event, adding if_var.h to files that do need it. Also, include all includes that now are included due to implicit pollution via if_var.h Sponsored by: Netflix Sponsored by: Nginx, Inc.
1812 lines
46 KiB
C
1812 lines
46 KiB
C
/*-
|
|
* Copyright (c) 1992, 1993, University of Vermont and State
|
|
* Agricultural College.
|
|
* Copyright (c) 1992, 1993, Garrett A. Wollman.
|
|
*
|
|
* Portions:
|
|
* Copyright (c) 1990, 1991, William F. Jolitz
|
|
* Copyright (c) 1990, The Regents of the University of California
|
|
*
|
|
* 3Com 3C507 support:
|
|
* Copyright (c) 1993, 1994, Charles M. Hannum
|
|
*
|
|
* EtherExpress 16 support:
|
|
* Copyright (c) 1993, 1994, 1995, Rodney W. Grimes
|
|
* Copyright (c) 1997, Aaron C. Smith
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* Vermont and State Agricultural College and Garrett A. Wollman, by
|
|
* William F. Jolitz, by the University of California, Berkeley,
|
|
* Lawrence Berkeley Laboratory, and their contributors, by
|
|
* Charles M. Hannum, by Rodney W. Grimes, and by Aaron C. Smith.
|
|
* 4. Neither the names of the Universities nor the names of the authors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR AUTHORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* MAINTAINER: Matthew N. Dodd <winter@jurai.net>
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Intel 82586 Ethernet chip
|
|
* Register, bit, and structure definitions.
|
|
*
|
|
* Written by GAW with reference to the Clarkson Packet Driver code for this
|
|
* chip written by Russ Nelson and others.
|
|
*
|
|
* Intel EtherExpress 16 support from if_ix.c, written by Rodney W. Grimes.
|
|
*/
|
|
|
|
/*
|
|
* The i82586 is a very versatile chip, found in many implementations.
|
|
* Programming this chip is mostly the same, but certain details differ
|
|
* from card to card. This driver is written so that different cards
|
|
* can be automatically detected at run-time.
|
|
*/
|
|
|
|
/*
|
|
* Mode of operation:
|
|
*
|
|
* We run the 82586 in a standard Ethernet mode. We keep NFRAMES
|
|
* received frame descriptors around for the receiver to use, and
|
|
* NRXBUFS associated receive buffer descriptors, both in a circular
|
|
* list. Whenever a frame is received, we rotate both lists as
|
|
* necessary. (The 586 treats both lists as a simple queue.) We also
|
|
* keep a transmit command around so that packets can be sent off
|
|
* quickly.
|
|
*
|
|
* We configure the adapter in AL-LOC = 1 mode, which means that the
|
|
* Ethernet/802.3 MAC header is placed at the beginning of the receive
|
|
* buffer rather than being split off into various fields in the RFD.
|
|
* This also means that we must include this header in the transmit
|
|
* buffer as well.
|
|
*
|
|
* By convention, all transmit commands, and only transmit commands,
|
|
* shall have the I (IE_CMD_INTR) bit set in the command. This way,
|
|
* when an interrupt arrives at ieintr(), it is immediately possible
|
|
* to tell what precisely caused it. ANY OTHER command-sending routines
|
|
* should run at splimp(), and should post an acknowledgement to every
|
|
* interrupt they generate.
|
|
*
|
|
* The 82586 has a 24-bit address space internally, and the adaptor's
|
|
* memory is located at the top of this region. However, the value
|
|
* we are given in configuration is normally the *bottom* of the adaptor
|
|
* RAM. So, we must go through a few gyrations to come up with a
|
|
* kernel virtual address which represents the actual beginning of the
|
|
* 586 address space. First, we autosize the RAM by running through
|
|
* several possible sizes and trying to initialize the adapter under
|
|
* the assumption that the selected size is correct. Then, knowing
|
|
* the correct RAM size, we set up our pointers in the softc `iomem'
|
|
* represents the computed base of the 586 address space. `iomembot'
|
|
* represents the actual configured base of adapter RAM. Finally,
|
|
* `iosize' represents the calculated size of 586 RAM. Then, when
|
|
* laying out commands, we use the interval [iomembot, iomembot +
|
|
* iosize); to make 24-pointers, we subtract iomem, and to make
|
|
* 16-pointers, we subtract iomem and and with 0xffff.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_dl.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <dev/ic/i82586.h>
|
|
#include <dev/ie/if_ievar.h>
|
|
#include <dev/ie/if_iereg.h>
|
|
#include <dev/ie/if_ie507.h>
|
|
#include <dev/ie/if_iee16.h>
|
|
#include <i386/isa/elink.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef DEBUG
|
|
#define IED_RINT 0x01
|
|
#define IED_TINT 0x02
|
|
#define IED_RNR 0x04
|
|
#define IED_CNA 0x08
|
|
#define IED_READFRAME 0x10
|
|
static int ie_debug = IED_RNR;
|
|
|
|
#endif
|
|
|
|
#define IE_BUF_LEN ETHER_MAX_LEN /* length of transmit buffer */
|
|
|
|
/* XXX this driver uses `volatile' and `caddr_t' to a fault. */
|
|
typedef volatile char *v_caddr_t; /* core address, pointer to volatile */
|
|
|
|
/* Forward declaration */
|
|
struct ie_softc;
|
|
|
|
static void ieinit (void *);
|
|
static void ieinit_locked (struct ie_softc *);
|
|
static void ie_stop (struct ie_softc *);
|
|
static int ieioctl (struct ifnet *, u_long, caddr_t);
|
|
static void iestart (struct ifnet *);
|
|
static void iestart_locked (struct ifnet *);
|
|
|
|
static __inline void
|
|
ee16_interrupt_enable (struct ie_softc *);
|
|
static void ee16_eeprom_outbits (struct ie_softc *, int, int);
|
|
static void ee16_eeprom_clock (struct ie_softc *, int);
|
|
static u_short ee16_read_eeprom (struct ie_softc *, int);
|
|
static int ee16_eeprom_inbits (struct ie_softc *);
|
|
|
|
static __inline void
|
|
ie_ack (struct ie_softc *, u_int);
|
|
static void iereset (struct ie_softc *);
|
|
static void ie_readframe (struct ie_softc *, int);
|
|
static void ie_drop_packet_buffer (struct ie_softc *);
|
|
static void find_ie_mem_size (struct ie_softc *);
|
|
static int command_and_wait (struct ie_softc *,
|
|
int, void volatile *, int);
|
|
static void run_tdr (struct ie_softc *,
|
|
volatile struct ie_tdr_cmd *);
|
|
static int ierint (struct ie_softc *);
|
|
static int ietint (struct ie_softc *);
|
|
static int iernr (struct ie_softc *);
|
|
static void start_receiver (struct ie_softc *);
|
|
static __inline int
|
|
ieget (struct ie_softc *, struct mbuf **);
|
|
static v_caddr_t setup_rfa (struct ie_softc *, v_caddr_t);
|
|
static int mc_setup (struct ie_softc *);
|
|
static void ie_mc_reset (struct ie_softc *);
|
|
|
|
#ifdef DEBUG
|
|
static void print_rbd (volatile struct ie_recv_buf_desc * rbd);
|
|
static int in_ierint = 0;
|
|
static int in_ietint = 0;
|
|
#endif
|
|
|
|
static const char *ie_hardware_names[] = {
|
|
"None",
|
|
"StarLAN 10",
|
|
"EN100",
|
|
"StarLAN Fiber",
|
|
"3C507",
|
|
"NI5210",
|
|
"EtherExpress 16",
|
|
"Unknown"
|
|
};
|
|
|
|
/*
|
|
* sizeof(iscp) == 1+1+2+4 == 8
|
|
* sizeof(scb) == 2+2+2+2+2+2+2+2 == 16
|
|
* NFRAMES * sizeof(rfd) == NFRAMES*(2+2+2+2+6+6+2+2) == NFRAMES*24 == 384
|
|
* sizeof(xmit_cmd) == 2+2+2+2+6+2 == 18
|
|
* sizeof(transmit buffer) == 1512
|
|
* sizeof(transmit buffer desc) == 8
|
|
* -----
|
|
* 1946
|
|
*
|
|
* NRXBUFS * sizeof(rbd) == NRXBUFS*(2+2+4+2+2) == NRXBUFS*12
|
|
* NRXBUFS * IE_RBUF_SIZE == NRXBUFS*256
|
|
*
|
|
* NRXBUFS should be (16384 - 1946) / (256 + 12) == 14438 / 268 == 53
|
|
*
|
|
* With NRXBUFS == 48, this leaves us 1574 bytes for another command or
|
|
* more buffers. Another transmit command would be 18+8+1512 == 1538
|
|
* ---just barely fits!
|
|
*
|
|
* Obviously all these would have to be reduced for smaller memory sizes.
|
|
* With a larger memory, it would be possible to roughly double the number
|
|
* of both transmit and receive buffers.
|
|
*/
|
|
|
|
#define NFRAMES 4 /* number of receive frames */
|
|
#define NRXBUFS 24 /* number of buffers to allocate */
|
|
#define IE_RBUF_SIZE 256 /* size of each buffer, MUST BE POWER OF TWO */
|
|
#define NTXBUFS 1 /* number of transmit commands */
|
|
#define IE_TBUF_SIZE ETHER_MAX_LEN /* size of transmit buffer */
|
|
|
|
#define MK_24(base, ptr) ((caddr_t)((uintptr_t)ptr - (uintptr_t)base))
|
|
#define MK_16(base, ptr) ((u_short)(uintptr_t)MK_24(base, ptr))
|
|
|
|
void
|
|
ee16_shutdown(struct ie_softc *sc)
|
|
{
|
|
|
|
ee16_reset_586(sc);
|
|
outb(PORT(sc) + IEE16_ECTRL, IEE16_RESET_ASIC);
|
|
outb(PORT(sc) + IEE16_ECTRL, 0);
|
|
}
|
|
|
|
/*
|
|
* Taken almost exactly from Bill's if_is.c, then modified beyond recognition.
|
|
*/
|
|
int
|
|
ie_attach(device_t dev)
|
|
{
|
|
struct ie_softc * sc;
|
|
struct ifnet * ifp;
|
|
size_t allocsize;
|
|
int error, factor;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc->dev, "can not if_alloc()\n");
|
|
return (ENOSPC);
|
|
}
|
|
|
|
sc->dev = dev;
|
|
mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
|
|
/*
|
|
* based on the amount of memory we have, allocate our tx and rx
|
|
* resources.
|
|
*/
|
|
factor = rman_get_size(sc->mem_res) / 8192;
|
|
sc->nframes = factor * NFRAMES;
|
|
sc->nrxbufs = factor * NRXBUFS;
|
|
sc->ntxbufs = factor * NTXBUFS;
|
|
|
|
/*
|
|
* Since all of these guys are arrays of pointers, allocate as one
|
|
* big chunk and dole out accordingly.
|
|
*/
|
|
allocsize = sizeof(void *) * (sc->nframes
|
|
+ (sc->nrxbufs * 2)
|
|
+ (sc->ntxbufs * 3));
|
|
sc->rframes = (volatile struct ie_recv_frame_desc **) malloc(allocsize,
|
|
M_DEVBUF,
|
|
M_NOWAIT);
|
|
if (sc->rframes == NULL) {
|
|
mtx_destroy(&sc->lock);
|
|
return (ENXIO);
|
|
}
|
|
sc->rbuffs =
|
|
(volatile struct ie_recv_buf_desc **)&sc->rframes[sc->nframes];
|
|
sc->cbuffs = (volatile u_char **)&sc->rbuffs[sc->nrxbufs];
|
|
sc->xmit_cmds =
|
|
(volatile struct ie_xmit_cmd **)&sc->cbuffs[sc->nrxbufs];
|
|
sc->xmit_buffs =
|
|
(volatile struct ie_xmit_buf **)&sc->xmit_cmds[sc->ntxbufs];
|
|
sc->xmit_cbuffs = (volatile u_char **)&sc->xmit_buffs[sc->ntxbufs];
|
|
|
|
if (bootverbose)
|
|
device_printf(sc->dev, "hardware type %s, revision %d\n",
|
|
ie_hardware_names[sc->hard_type], sc->hard_vers + 1);
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = iestart;
|
|
ifp->if_ioctl = ieioctl;
|
|
ifp->if_init = ieinit;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
|
|
|
|
ether_ifattach(ifp, sc->enaddr);
|
|
|
|
error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, ie_intr, sc, &sc->irq_ih);
|
|
if (error) {
|
|
device_printf(dev, "Unable to register interrupt handler\n");
|
|
mtx_destroy(&sc->lock);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
ie_ack(struct ie_softc *sc, u_int mask)
|
|
{
|
|
|
|
sc->scb->ie_command = sc->scb->ie_status & mask;
|
|
(*sc->ie_chan_attn) (sc);
|
|
}
|
|
|
|
/*
|
|
* What to do upon receipt of an interrupt.
|
|
*/
|
|
void
|
|
ie_intr(void *xsc)
|
|
{
|
|
struct ie_softc *sc = (struct ie_softc *)xsc;
|
|
u_short status;
|
|
|
|
IE_LOCK(sc);
|
|
|
|
/* Clear the interrupt latch on the 3C507. */
|
|
if (sc->hard_type == IE_3C507
|
|
&& (inb(PORT(sc) + IE507_CTRL) & EL_CTRL_INTL))
|
|
outb(PORT(sc) + IE507_ICTRL, 1);
|
|
|
|
/* disable interrupts on the EE16. */
|
|
if (sc->hard_type == IE_EE16)
|
|
outb(PORT(sc) + IEE16_IRQ, sc->irq_encoded);
|
|
|
|
status = sc->scb->ie_status;
|
|
|
|
loop:
|
|
|
|
/* Don't ack interrupts which we didn't receive */
|
|
ie_ack(sc, IE_ST_WHENCE & status);
|
|
|
|
if (status & (IE_ST_RECV | IE_ST_RNR)) {
|
|
#ifdef DEBUG
|
|
in_ierint++;
|
|
if (ie_debug & IED_RINT)
|
|
if_printf(sc->ifp, "rint\n");
|
|
#endif
|
|
ierint(sc);
|
|
#ifdef DEBUG
|
|
in_ierint--;
|
|
#endif
|
|
}
|
|
if (status & IE_ST_DONE) {
|
|
#ifdef DEBUG
|
|
in_ietint++;
|
|
if (ie_debug & IED_TINT)
|
|
if_printf(sc->ifp, "tint\n");
|
|
#endif
|
|
ietint(sc);
|
|
#ifdef DEBUG
|
|
in_ietint--;
|
|
#endif
|
|
}
|
|
if (status & IE_ST_RNR) {
|
|
#ifdef DEBUG
|
|
if (ie_debug & IED_RNR)
|
|
if_printf(sc->ifp, "rnr\n");
|
|
#endif
|
|
iernr(sc);
|
|
}
|
|
#ifdef DEBUG
|
|
if ((status & IE_ST_ALLDONE) && (ie_debug & IED_CNA))
|
|
if_printf(sc->ifp, "cna\n");
|
|
#endif
|
|
|
|
if ((status = sc->scb->ie_status) & IE_ST_WHENCE)
|
|
goto loop;
|
|
|
|
/* Clear the interrupt latch on the 3C507. */
|
|
if (sc->hard_type == IE_3C507)
|
|
outb(PORT(sc) + IE507_ICTRL, 1);
|
|
|
|
/* enable interrupts on the EE16. */
|
|
if (sc->hard_type == IE_EE16)
|
|
outb(PORT(sc) + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
|
|
IE_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Process a received-frame interrupt.
|
|
*/
|
|
static int
|
|
ierint(struct ie_softc *sc)
|
|
{
|
|
int i, status;
|
|
static int timesthru = 1024;
|
|
|
|
i = sc->rfhead;
|
|
while (1) {
|
|
status = sc->rframes[i]->ie_fd_status;
|
|
|
|
if ((status & IE_FD_COMPLETE) && (status & IE_FD_OK)) {
|
|
sc->ifp->if_ipackets++;
|
|
if (!--timesthru) {
|
|
sc->ifp->if_ierrors +=
|
|
sc->scb->ie_err_crc +
|
|
sc->scb->ie_err_align +
|
|
sc->scb->ie_err_resource +
|
|
sc->scb->ie_err_overrun;
|
|
sc->scb->ie_err_crc = 0;
|
|
sc->scb->ie_err_align = 0;
|
|
sc->scb->ie_err_resource = 0;
|
|
sc->scb->ie_err_overrun = 0;
|
|
timesthru = 1024;
|
|
}
|
|
ie_readframe(sc, i);
|
|
} else {
|
|
if (status & IE_FD_RNR) {
|
|
if (!(sc->scb->ie_status & IE_RU_READY)) {
|
|
sc->rframes[0]->ie_fd_next =
|
|
MK_16(MEM(sc), sc->rbuffs[0]);
|
|
sc->scb->ie_recv_list =
|
|
MK_16(MEM(sc), sc->rframes[0]);
|
|
command_and_wait(sc, IE_RU_START, 0, 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
i = (i + 1) % sc->nframes;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Process a command-complete interrupt. These are only generated by
|
|
* the transmission of frames. This routine is deceptively simple, since
|
|
* most of the real work is done by iestart().
|
|
*/
|
|
static int
|
|
ietint(struct ie_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
int status;
|
|
int i;
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
for (i = 0; i < sc->xmit_count; i++) {
|
|
status = sc->xmit_cmds[i]->ie_xmit_status;
|
|
|
|
if (status & IE_XS_LATECOLL) {
|
|
if_printf(ifp, "late collision\n");
|
|
ifp->if_collisions++;
|
|
ifp->if_oerrors++;
|
|
} else if (status & IE_XS_NOCARRIER) {
|
|
if_printf(ifp, "no carrier\n");
|
|
ifp->if_oerrors++;
|
|
} else if (status & IE_XS_LOSTCTS) {
|
|
if_printf(ifp, "lost CTS\n");
|
|
ifp->if_oerrors++;
|
|
} else if (status & IE_XS_UNDERRUN) {
|
|
if_printf(ifp, "DMA underrun\n");
|
|
ifp->if_oerrors++;
|
|
} else if (status & IE_XS_EXCMAX) {
|
|
if_printf(ifp, "too many collisions\n");
|
|
ifp->if_collisions += 16;
|
|
ifp->if_oerrors++;
|
|
} else {
|
|
ifp->if_opackets++;
|
|
ifp->if_collisions += status & IE_XS_MAXCOLL;
|
|
}
|
|
}
|
|
sc->xmit_count = 0;
|
|
|
|
/*
|
|
* If multicast addresses were added or deleted while we were
|
|
* transmitting, ie_mc_reset() set the want_mcsetup flag indicating
|
|
* that we should do it.
|
|
*/
|
|
if (sc->want_mcsetup) {
|
|
mc_setup(sc);
|
|
sc->want_mcsetup = 0;
|
|
}
|
|
/* Wish I knew why this seems to be necessary... */
|
|
sc->xmit_cmds[0]->ie_xmit_status |= IE_STAT_COMPL;
|
|
|
|
iestart_locked(ifp);
|
|
return (0); /* shouldn't be necessary */
|
|
}
|
|
|
|
/*
|
|
* Process a receiver-not-ready interrupt. I believe that we get these
|
|
* when there aren't enough buffers to go around. For now (FIXME), we
|
|
* just restart the receiver, and hope everything's ok.
|
|
*/
|
|
static int
|
|
iernr(struct ie_softc *sc)
|
|
{
|
|
#ifdef doesnt_work
|
|
setup_rfa(sc, (v_caddr_t) sc->rframes[0]);
|
|
|
|
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
|
|
command_and_wait(sc, IE_RU_START, 0, 0);
|
|
#else
|
|
/* This doesn't work either, but it doesn't hang either. */
|
|
command_and_wait(sc, IE_RU_DISABLE, 0, 0); /* just in case */
|
|
setup_rfa(sc, (v_caddr_t) sc->rframes[0]); /* ignore cast-qual */
|
|
|
|
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
|
|
command_and_wait(sc, IE_RU_START, 0, 0); /* was ENABLE */
|
|
|
|
#endif
|
|
ie_ack(sc, IE_ST_WHENCE);
|
|
|
|
sc->ifp->if_ierrors++;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Compare two Ether/802 addresses for equality, inlined and
|
|
* unrolled for speed. I'd love to have an inline assembler
|
|
* version of this...
|
|
*/
|
|
static __inline int
|
|
ether_equal(u_char * one, u_char * two)
|
|
{
|
|
if (one[0] != two[0])
|
|
return (0);
|
|
if (one[1] != two[1])
|
|
return (0);
|
|
if (one[2] != two[2])
|
|
return (0);
|
|
if (one[3] != two[3])
|
|
return (0);
|
|
if (one[4] != two[4])
|
|
return (0);
|
|
if (one[5] != two[5])
|
|
return (0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Determine quickly whether we should bother reading in this packet.
|
|
* This depends on whether BPF and/or bridging is enabled, whether we
|
|
* are receiving multicast address, and whether promiscuous mode is enabled.
|
|
* We assume that if IFF_PROMISC is set, then *somebody* wants to see
|
|
* all incoming packets.
|
|
*/
|
|
static __inline int
|
|
check_eh(struct ie_softc *sc, struct ether_header *eh)
|
|
{
|
|
/* Optimize the common case: normal operation. We've received
|
|
either a unicast with our dest or a multicast packet. */
|
|
if (sc->promisc == 0) {
|
|
int i;
|
|
|
|
/* If not multicast, it's definitely for us */
|
|
if ((eh->ether_dhost[0] & 1) == 0)
|
|
return (1);
|
|
|
|
/* Accept broadcasts (loose but fast check) */
|
|
if (eh->ether_dhost[0] == 0xff)
|
|
return (1);
|
|
|
|
/* Compare against our multicast addresses */
|
|
for (i = 0; i < sc->mcast_count; i++) {
|
|
if (ether_equal(eh->ether_dhost,
|
|
(u_char *)&sc->mcast_addrs[i]))
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Always accept packets when in promiscuous mode */
|
|
if ((sc->promisc & IFF_PROMISC) != 0)
|
|
return (1);
|
|
|
|
/* Always accept packets directed at us */
|
|
if (ether_equal(eh->ether_dhost, IF_LLADDR(sc->ifp)))
|
|
return (1);
|
|
|
|
/* Must have IFF_ALLMULTI but not IFF_PROMISC set. The chip is
|
|
actually in promiscuous mode, so discard unicast packets. */
|
|
return((eh->ether_dhost[0] & 1) != 0);
|
|
}
|
|
|
|
/*
|
|
* We want to isolate the bits that have meaning... This assumes that
|
|
* IE_RBUF_SIZE is an even power of two. If somehow the act_len exceeds
|
|
* the size of the buffer, then we are screwed anyway.
|
|
*/
|
|
static __inline int
|
|
ie_buflen(struct ie_softc *sc, int head)
|
|
{
|
|
return (sc->rbuffs[head]->ie_rbd_actual
|
|
& (IE_RBUF_SIZE | (IE_RBUF_SIZE - 1)));
|
|
}
|
|
|
|
static __inline int
|
|
ie_packet_len(struct ie_softc *sc)
|
|
{
|
|
int i;
|
|
int head = sc->rbhead;
|
|
int acc = 0;
|
|
|
|
do {
|
|
if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
|
|
#ifdef DEBUG
|
|
print_rbd(sc->rbuffs[sc->rbhead]);
|
|
#endif
|
|
log(LOG_ERR,
|
|
"%s: receive descriptors out of sync at %d\n",
|
|
sc->ifp->if_xname, sc->rbhead);
|
|
iereset(sc);
|
|
return (-1);
|
|
}
|
|
i = sc->rbuffs[head]->ie_rbd_actual & IE_RBD_LAST;
|
|
|
|
acc += ie_buflen(sc, head);
|
|
head = (head + 1) % sc->nrxbufs;
|
|
} while (!i);
|
|
|
|
return (acc);
|
|
}
|
|
|
|
/*
|
|
* Read data off the interface, and turn it into an mbuf chain.
|
|
*
|
|
* This code is DRAMATICALLY different from the previous version; this
|
|
* version tries to allocate the entire mbuf chain up front, given the
|
|
* length of the data available. This enables us to allocate mbuf
|
|
* clusters in many situations where before we would have had a long
|
|
* chain of partially-full mbufs. This should help to speed up the
|
|
* operation considerably. (Provided that it works, of course.)
|
|
*/
|
|
static __inline int
|
|
ieget(struct ie_softc *sc, struct mbuf **mp)
|
|
{
|
|
struct ether_header eh;
|
|
struct mbuf *m, *top, **mymp;
|
|
int offset;
|
|
int totlen, resid;
|
|
int thismboff;
|
|
int head;
|
|
|
|
totlen = ie_packet_len(sc);
|
|
if (totlen <= 0)
|
|
return (-1);
|
|
|
|
/*
|
|
* Snarf the Ethernet header.
|
|
*/
|
|
bcopy(sc->cbuffs[sc->rbhead], &eh, sizeof(struct ether_header));
|
|
/* ignore cast-qual warning here */
|
|
|
|
/*
|
|
* As quickly as possible, check if this packet is for us. If not,
|
|
* don't waste a single cycle copying the rest of the packet in.
|
|
* This is only a consideration when FILTER is defined; i.e., when
|
|
* we are either running BPF or doing multicasting.
|
|
*/
|
|
if (!check_eh(sc, &eh)) {
|
|
ie_drop_packet_buffer(sc);
|
|
sc->ifp->if_ierrors--; /* just this case, it's not an
|
|
* error
|
|
*/
|
|
return (-1);
|
|
}
|
|
|
|
MGETHDR(m, M_NOWAIT, MT_DATA);
|
|
if (!m) {
|
|
ie_drop_packet_buffer(sc);
|
|
/* XXXX if_ierrors++; */
|
|
return (-1);
|
|
}
|
|
|
|
*mp = m;
|
|
m->m_pkthdr.rcvif = sc->ifp;
|
|
m->m_len = MHLEN;
|
|
resid = m->m_pkthdr.len = totlen;
|
|
top = 0;
|
|
|
|
mymp = ⊤
|
|
|
|
/*
|
|
* This loop goes through and allocates mbufs for all the data we
|
|
* will be copying in. It does not actually do the copying yet.
|
|
*/
|
|
do { /* while(resid > 0) */
|
|
/*
|
|
* Try to allocate an mbuf to hold the data that we have.
|
|
* If we already allocated one, just get another one and
|
|
* stick it on the end (eventually). If we don't already
|
|
* have one, try to allocate an mbuf cluster big enough to
|
|
* hold the whole packet, if we think it's reasonable, or a
|
|
* single mbuf which may or may not be big enough. Got that?
|
|
*/
|
|
if (top) {
|
|
MGET(m, M_NOWAIT, MT_DATA);
|
|
if (!m) {
|
|
m_freem(top);
|
|
ie_drop_packet_buffer(sc);
|
|
return (-1);
|
|
}
|
|
m->m_len = MLEN;
|
|
}
|
|
if (resid >= MINCLSIZE) {
|
|
MCLGET(m, M_NOWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
m->m_len = min(resid, MCLBYTES);
|
|
} else {
|
|
if (resid < m->m_len) {
|
|
if (!top && resid + max_linkhdr <= m->m_len)
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = resid;
|
|
}
|
|
}
|
|
resid -= m->m_len;
|
|
*mymp = m;
|
|
mymp = &m->m_next;
|
|
} while (resid > 0);
|
|
|
|
resid = totlen; /* remaining data */
|
|
offset = 0; /* packet offset */
|
|
thismboff = 0; /* offset in m */
|
|
|
|
m = top; /* current mbuf */
|
|
head = sc->rbhead; /* current rx buffer */
|
|
|
|
/*
|
|
* Now we take the mbuf chain (hopefully only one mbuf most of the
|
|
* time) and stuff the data into it. There are no possible failures
|
|
* at or after this point.
|
|
*/
|
|
while (resid > 0) { /* while there's stuff left */
|
|
int thislen = ie_buflen(sc, head) - offset;
|
|
|
|
/*
|
|
* If too much data for the current mbuf, then fill the
|
|
* current one up, go to the next one, and try again.
|
|
*/
|
|
if (thislen > m->m_len - thismboff) {
|
|
int newlen = m->m_len - thismboff;
|
|
|
|
bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
|
|
mtod(m, caddr_t) +thismboff, (unsigned) newlen);
|
|
/* ignore cast-qual warning */
|
|
m = m->m_next;
|
|
thismboff = 0; /* new mbuf, so no offset */
|
|
offset += newlen; /* we are now this far into
|
|
* the packet */
|
|
resid -= newlen; /* so there is this much left
|
|
* to get */
|
|
continue;
|
|
}
|
|
/*
|
|
* If there is more than enough space in the mbuf to hold
|
|
* the contents of this buffer, copy everything in, advance
|
|
* pointers, and so on.
|
|
*/
|
|
if (thislen < m->m_len - thismboff) {
|
|
bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
|
|
mtod(m, caddr_t) +thismboff, (unsigned) thislen);
|
|
thismboff += thislen; /* we are this far into the
|
|
* mbuf */
|
|
resid -= thislen; /* and this much is left */
|
|
goto nextbuf;
|
|
}
|
|
/*
|
|
* Otherwise, there is exactly enough space to put this
|
|
* buffer's contents into the current mbuf. Do the
|
|
* combination of the above actions.
|
|
*/
|
|
bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
|
|
mtod(m, caddr_t) + thismboff, (unsigned) thislen);
|
|
m = m->m_next;
|
|
thismboff = 0; /* new mbuf, start at the beginning */
|
|
resid -= thislen; /* and we are this far through */
|
|
|
|
/*
|
|
* Advance all the pointers. We can get here from either of
|
|
* the last two cases, but never the first.
|
|
*/
|
|
nextbuf:
|
|
offset = 0;
|
|
sc->rbuffs[head]->ie_rbd_actual = 0;
|
|
sc->rbuffs[head]->ie_rbd_length |= IE_RBD_LAST;
|
|
sc->rbhead = head = (head + 1) % sc->nrxbufs;
|
|
sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
|
|
sc->rbtail = (sc->rbtail + 1) % sc->nrxbufs;
|
|
}
|
|
|
|
/*
|
|
* Unless something changed strangely while we were doing the copy,
|
|
* we have now copied everything in from the shared memory. This
|
|
* means that we are done.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read frame NUM from unit UNIT (pre-cached as IE).
|
|
*
|
|
* This routine reads the RFD at NUM, and copies in the buffers from
|
|
* the list of RBD, then rotates the RBD and RFD lists so that the receiver
|
|
* doesn't start complaining. Trailers are DROPPED---there's no point
|
|
* in wasting time on confusing code to deal with them. Hopefully,
|
|
* this machine will never ARP for trailers anyway.
|
|
*/
|
|
static void
|
|
ie_readframe(struct ie_softc *sc, int num/* frame number to read */)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
struct ie_recv_frame_desc rfd;
|
|
struct mbuf *m = 0;
|
|
#ifdef DEBUG
|
|
struct ether_header *eh;
|
|
#endif
|
|
|
|
bcopy((v_caddr_t) (sc->rframes[num]), &rfd,
|
|
sizeof(struct ie_recv_frame_desc));
|
|
|
|
/*
|
|
* Immediately advance the RFD list, since we we have copied ours
|
|
* now.
|
|
*/
|
|
sc->rframes[num]->ie_fd_status = 0;
|
|
sc->rframes[num]->ie_fd_last |= IE_FD_LAST;
|
|
sc->rframes[sc->rftail]->ie_fd_last &= ~IE_FD_LAST;
|
|
sc->rftail = (sc->rftail + 1) % sc->nframes;
|
|
sc->rfhead = (sc->rfhead + 1) % sc->nframes;
|
|
|
|
if (rfd.ie_fd_status & IE_FD_OK) {
|
|
if (ieget(sc, &m)) {
|
|
sc->ifp->if_ierrors++; /* this counts as an
|
|
* error */
|
|
return;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
eh = mtod(m, struct ether_header *);
|
|
if (ie_debug & IED_READFRAME) {
|
|
if_printf(ifp, "frame from ether %6D type %x\n",
|
|
eh->ether_shost, ":", (unsigned) eh->ether_type);
|
|
}
|
|
if (ntohs(eh->ether_type) > ETHERTYPE_TRAIL
|
|
&& ntohs(eh->ether_type) < (ETHERTYPE_TRAIL + ETHERTYPE_NTRAILER))
|
|
printf("received trailer!\n");
|
|
#endif
|
|
|
|
if (!m)
|
|
return;
|
|
|
|
/*
|
|
* Finally pass this packet up to higher layers.
|
|
*/
|
|
IE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
IE_LOCK(sc);
|
|
}
|
|
|
|
static void
|
|
ie_drop_packet_buffer(struct ie_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
/*
|
|
* This means we are somehow out of sync. So, we reset the
|
|
* adapter.
|
|
*/
|
|
if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
|
|
#ifdef DEBUG
|
|
print_rbd(sc->rbuffs[sc->rbhead]);
|
|
#endif
|
|
log(LOG_ERR, "%s: receive descriptors out of sync at %d\n",
|
|
sc->ifp->if_xname, sc->rbhead);
|
|
iereset(sc);
|
|
return;
|
|
}
|
|
i = sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_LAST;
|
|
|
|
sc->rbuffs[sc->rbhead]->ie_rbd_length |= IE_RBD_LAST;
|
|
sc->rbuffs[sc->rbhead]->ie_rbd_actual = 0;
|
|
sc->rbhead = (sc->rbhead + 1) % sc->nrxbufs;
|
|
sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
|
|
sc->rbtail = (sc->rbtail + 1) % sc->nrxbufs;
|
|
} while (!i);
|
|
}
|
|
|
|
|
|
/*
|
|
* Start transmission on an interface.
|
|
*/
|
|
static void
|
|
iestart(struct ifnet *ifp)
|
|
{
|
|
struct ie_softc *sc = ifp->if_softc;
|
|
|
|
IE_LOCK(sc);
|
|
iestart_locked(ifp);
|
|
IE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
iestart_locked(struct ifnet *ifp)
|
|
{
|
|
struct ie_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
volatile unsigned char *buffer;
|
|
u_short len;
|
|
|
|
/*
|
|
* This is not really volatile, in this routine, but it makes gcc
|
|
* happy.
|
|
*/
|
|
volatile u_short *bptr = &sc->scb->ie_command_list;
|
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
return;
|
|
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
|
|
return;
|
|
|
|
do {
|
|
IF_DEQUEUE(&sc->ifp->if_snd, m);
|
|
if (!m)
|
|
break;
|
|
|
|
buffer = sc->xmit_cbuffs[sc->xmit_count];
|
|
len = 0;
|
|
|
|
for (m0 = m; m && len < IE_BUF_LEN; m = m->m_next) {
|
|
bcopy(mtod(m, caddr_t), buffer, m->m_len);
|
|
buffer += m->m_len;
|
|
len += m->m_len;
|
|
}
|
|
|
|
m_freem(m0);
|
|
len = max(len, ETHER_MIN_LEN);
|
|
|
|
/*
|
|
* See if bpf is listening on this interface, let it see the
|
|
* packet before we commit it to the wire.
|
|
*/
|
|
BPF_TAP(sc->ifp,
|
|
(void *)sc->xmit_cbuffs[sc->xmit_count], len);
|
|
|
|
sc->xmit_buffs[sc->xmit_count]->ie_xmit_flags =
|
|
IE_XMIT_LAST|len;
|
|
sc->xmit_buffs[sc->xmit_count]->ie_xmit_next = 0xffff;
|
|
sc->xmit_buffs[sc->xmit_count]->ie_xmit_buf =
|
|
MK_24(sc->iomem, sc->xmit_cbuffs[sc->xmit_count]);
|
|
|
|
sc->xmit_cmds[sc->xmit_count]->com.ie_cmd_cmd = IE_CMD_XMIT;
|
|
sc->xmit_cmds[sc->xmit_count]->ie_xmit_status = 0;
|
|
sc->xmit_cmds[sc->xmit_count]->ie_xmit_desc =
|
|
MK_16(sc->iomem, sc->xmit_buffs[sc->xmit_count]);
|
|
|
|
*bptr = MK_16(sc->iomem, sc->xmit_cmds[sc->xmit_count]);
|
|
bptr = &sc->xmit_cmds[sc->xmit_count]->com.ie_cmd_link;
|
|
sc->xmit_count++;
|
|
} while (sc->xmit_count < sc->ntxbufs);
|
|
|
|
/*
|
|
* If we queued up anything for transmission, send it.
|
|
*/
|
|
if (sc->xmit_count) {
|
|
sc->xmit_cmds[sc->xmit_count - 1]->com.ie_cmd_cmd |=
|
|
IE_CMD_LAST | IE_CMD_INTR;
|
|
|
|
/*
|
|
* By passing the command pointer as a null, we tell
|
|
* command_and_wait() to pretend that this isn't an action
|
|
* command. I wish I understood what was happening here.
|
|
*/
|
|
command_and_wait(sc, IE_CU_START, 0, 0);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check to see if there's an 82586 out there.
|
|
*/
|
|
int
|
|
check_ie_present(struct ie_softc *sc)
|
|
{
|
|
volatile struct ie_sys_conf_ptr *scp;
|
|
volatile struct ie_int_sys_conf_ptr *iscp;
|
|
volatile struct ie_sys_ctl_block *scb;
|
|
u_long realbase;
|
|
|
|
realbase = (uintptr_t) sc->iomembot + sc->iosize - (1 << 24);
|
|
|
|
scp = (volatile struct ie_sys_conf_ptr *) (uintptr_t)
|
|
(realbase + IE_SCP_ADDR);
|
|
bzero((volatile char *) scp, sizeof *scp);
|
|
|
|
/*
|
|
* First we put the ISCP at the bottom of memory; this tests to make
|
|
* sure that our idea of the size of memory is the same as the
|
|
* controller's. This is NOT where the ISCP will be in normal
|
|
* operation.
|
|
*/
|
|
iscp = (volatile struct ie_int_sys_conf_ptr *) sc->iomembot;
|
|
bzero((volatile char *)iscp, sizeof *iscp);
|
|
|
|
scb = (volatile struct ie_sys_ctl_block *) sc->iomembot;
|
|
bzero((volatile char *)scb, sizeof *scb);
|
|
|
|
scp->ie_bus_use = sc->bus_use; /* 8-bit or 16-bit */
|
|
scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
|
|
((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);
|
|
|
|
iscp->ie_busy = 1;
|
|
iscp->ie_scb_offset = MK_16(realbase, scb) + 256;
|
|
|
|
(*sc->ie_reset_586) (sc);
|
|
(*sc->ie_chan_attn) (sc);
|
|
|
|
DELAY(100); /* wait a while... */
|
|
|
|
if (iscp->ie_busy) {
|
|
return (0);
|
|
}
|
|
/*
|
|
* Now relocate the ISCP to its real home, and reset the controller
|
|
* again.
|
|
*/
|
|
iscp = (void *) Align((caddr_t) (uintptr_t)
|
|
(realbase + IE_SCP_ADDR -
|
|
sizeof(struct ie_int_sys_conf_ptr)));
|
|
bzero((volatile char *) iscp, sizeof *iscp); /* ignore cast-qual */
|
|
|
|
scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
|
|
((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);
|
|
|
|
iscp->ie_busy = 1;
|
|
iscp->ie_scb_offset = MK_16(realbase, scb);
|
|
|
|
(*sc->ie_reset_586) (sc);
|
|
(*sc->ie_chan_attn) (sc);
|
|
|
|
DELAY(100);
|
|
|
|
if (iscp->ie_busy) {
|
|
return (0);
|
|
}
|
|
sc->iomem = (caddr_t) (uintptr_t) realbase;
|
|
|
|
sc->iscp = iscp;
|
|
sc->scb = scb;
|
|
|
|
/*
|
|
* Acknowledge any interrupts we may have caused...
|
|
*/
|
|
ie_ack(sc, IE_ST_WHENCE);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Divine the memory size of ie board UNIT.
|
|
* Better hope there's nothing important hiding just below the ie card...
|
|
*/
|
|
static void
|
|
find_ie_mem_size(struct ie_softc *sc)
|
|
{
|
|
unsigned size;
|
|
|
|
sc->iosize = 0;
|
|
|
|
for (size = 65536; size >= 8192; size -= 8192) {
|
|
if (check_ie_present(sc)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
el_reset_586(struct ie_softc *sc)
|
|
{
|
|
outb(PORT(sc) + IE507_CTRL, EL_CTRL_RESET);
|
|
DELAY(100);
|
|
outb(PORT(sc) + IE507_CTRL, EL_CTRL_NORMAL);
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
sl_reset_586(struct ie_softc *sc)
|
|
{
|
|
outb(PORT(sc) + IEATT_RESET, 0);
|
|
}
|
|
|
|
void
|
|
ee16_reset_586(struct ie_softc *sc)
|
|
{
|
|
outb(PORT(sc) + IEE16_ECTRL, IEE16_RESET_586);
|
|
DELAY(100);
|
|
outb(PORT(sc) + IEE16_ECTRL, 0);
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
el_chan_attn(struct ie_softc *sc)
|
|
{
|
|
outb(PORT(sc) + IE507_ATTN, 1);
|
|
}
|
|
|
|
void
|
|
sl_chan_attn(struct ie_softc *sc)
|
|
{
|
|
outb(PORT(sc) + IEATT_ATTN, 0);
|
|
}
|
|
|
|
void
|
|
ee16_chan_attn(struct ie_softc *sc)
|
|
{
|
|
outb(PORT(sc) + IEE16_ATTN, 0);
|
|
}
|
|
|
|
u_short
|
|
ee16_read_eeprom(struct ie_softc *sc, int location)
|
|
{
|
|
int ectrl, edata;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= IEE16_ECTRL_MASK;
|
|
ectrl |= IEE16_ECTRL_EECS;
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
|
|
ee16_eeprom_outbits(sc, IEE16_EEPROM_READ, IEE16_EEPROM_OPSIZE1);
|
|
ee16_eeprom_outbits(sc, location, IEE16_EEPROM_ADDR_SIZE);
|
|
edata = ee16_eeprom_inbits(sc);
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EEDI | IEE16_ECTRL_EECS);
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
ee16_eeprom_clock(sc, 1);
|
|
ee16_eeprom_clock(sc, 0);
|
|
return edata;
|
|
}
|
|
|
|
static void
|
|
ee16_eeprom_outbits(struct ie_softc *sc, int edata, int count)
|
|
{
|
|
int ectrl, i;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~IEE16_RESET_ASIC;
|
|
for (i = count - 1; i >= 0; i--) {
|
|
ectrl &= ~IEE16_ECTRL_EEDI;
|
|
if (edata & (1 << i)) {
|
|
ectrl |= IEE16_ECTRL_EEDI;
|
|
}
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
DELAY(1); /* eeprom data must be setup for 0.4 uSec */
|
|
ee16_eeprom_clock(sc, 1);
|
|
ee16_eeprom_clock(sc, 0);
|
|
}
|
|
ectrl &= ~IEE16_ECTRL_EEDI;
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
DELAY(1); /* eeprom data must be held for 0.4 uSec */
|
|
}
|
|
|
|
static int
|
|
ee16_eeprom_inbits(struct ie_softc *sc)
|
|
{
|
|
int ectrl, edata, i;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~IEE16_RESET_ASIC;
|
|
for (edata = 0, i = 0; i < 16; i++) {
|
|
edata = edata << 1;
|
|
ee16_eeprom_clock(sc, 1);
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
if (ectrl & IEE16_ECTRL_EEDO) {
|
|
edata |= 1;
|
|
}
|
|
ee16_eeprom_clock(sc, 0);
|
|
}
|
|
return (edata);
|
|
}
|
|
|
|
static void
|
|
ee16_eeprom_clock(struct ie_softc *sc, int state)
|
|
{
|
|
int ectrl;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EESK);
|
|
if (state) {
|
|
ectrl |= IEE16_ECTRL_EESK;
|
|
}
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
DELAY(9); /* EESK must be stable for 8.38 uSec */
|
|
}
|
|
|
|
static __inline void
|
|
ee16_interrupt_enable(struct ie_softc *sc)
|
|
{
|
|
DELAY(100);
|
|
outb(sc->port + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
sl_read_ether(struct ie_softc *sc, unsigned char *addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 6; i++)
|
|
addr[i] = inb(PORT(sc) + i);
|
|
}
|
|
|
|
static void
|
|
iereset(struct ie_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
if_printf(ifp, "reset\n");
|
|
ie_stop(sc);
|
|
|
|
/*
|
|
* Stop i82586 dead in its tracks.
|
|
*/
|
|
if (command_and_wait(sc, IE_RU_ABORT | IE_CU_ABORT, 0, 0))
|
|
if_printf(ifp, "abort commands timed out\n");
|
|
|
|
if (command_and_wait(sc, IE_RU_DISABLE | IE_CU_STOP, 0, 0))
|
|
if_printf(ifp, "disable commands timed out\n");
|
|
|
|
#ifdef notdef
|
|
if (!check_ie_present(sc))
|
|
panic("ie disappeared!");
|
|
#endif
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
ieinit_locked(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Send a command to the controller and wait for it to either
|
|
* complete or be accepted, depending on the command. If the
|
|
* command pointer is null, then pretend that the command is
|
|
* not an action command. If the command pointer is not null,
|
|
* and the command is an action command, wait for
|
|
* ((volatile struct ie_cmd_common *)pcmd)->ie_cmd_status & MASK
|
|
* to become true.
|
|
*/
|
|
static int
|
|
command_and_wait(struct ie_softc *sc, int cmd, volatile void *pcmd, int mask)
|
|
{
|
|
volatile struct ie_cmd_common *cc = pcmd;
|
|
int i;
|
|
|
|
sc->scb->ie_command = (u_short) cmd;
|
|
|
|
if (IE_ACTION_COMMAND(cmd) && pcmd) {
|
|
(*sc->ie_chan_attn) (sc);
|
|
|
|
/*
|
|
* Now spin-lock waiting for status. This is not a very
|
|
* nice thing to do, but I haven't figured out how, or
|
|
* indeed if, we can put the process waiting for action to
|
|
* sleep. (We may be getting called through some other
|
|
* timeout running in the kernel.)
|
|
*
|
|
* According to the packet driver, the minimum timeout
|
|
* should be .369 seconds, which we round up to .37.
|
|
*/
|
|
for (i = 0; i < 370; i++) {
|
|
if (cc->ie_cmd_status & mask)
|
|
return (0);
|
|
DELAY(1000);
|
|
}
|
|
|
|
return (1);
|
|
} else {
|
|
|
|
/*
|
|
* Otherwise, just wait for the command to be accepted.
|
|
*/
|
|
(*sc->ie_chan_attn) (sc);
|
|
|
|
while (sc->scb->ie_command); /* spin lock */
|
|
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run the time-domain reflectometer...
|
|
*/
|
|
static void
|
|
run_tdr(struct ie_softc *sc, volatile struct ie_tdr_cmd *cmd)
|
|
{
|
|
int result;
|
|
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_TDR | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
cmd->ie_tdr_time = 0;
|
|
|
|
sc->scb->ie_command_list = MK_16(MEM(sc), cmd);
|
|
cmd->ie_tdr_time = 0;
|
|
|
|
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL))
|
|
result = 0x2000;
|
|
else
|
|
result = cmd->ie_tdr_time;
|
|
|
|
ie_ack(sc, IE_ST_WHENCE);
|
|
|
|
if (result & IE_TDR_SUCCESS)
|
|
return;
|
|
|
|
if (result & IE_TDR_XCVR) {
|
|
if_printf(sc->ifp, "transceiver problem\n");
|
|
} else if (result & IE_TDR_OPEN) {
|
|
if_printf(sc->ifp, "TDR detected an open %d clocks away\n",
|
|
result & IE_TDR_TIME);
|
|
} else if (result & IE_TDR_SHORT) {
|
|
if_printf(sc->ifp, "TDR detected a short %d clocks away\n",
|
|
result & IE_TDR_TIME);
|
|
} else {
|
|
if_printf(sc->ifp, "TDR returned unknown status %x\n", result);
|
|
}
|
|
}
|
|
|
|
static void
|
|
start_receiver(struct ie_softc *sc)
|
|
{
|
|
|
|
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
|
|
command_and_wait(sc, IE_RU_START, 0, 0);
|
|
|
|
ie_ack(sc, IE_ST_WHENCE);
|
|
}
|
|
|
|
/*
|
|
* Here is a helper routine for iernr() and ieinit(). This sets up
|
|
* the RFA.
|
|
*/
|
|
static v_caddr_t
|
|
setup_rfa(struct ie_softc *sc, v_caddr_t ptr)
|
|
{
|
|
volatile struct ie_recv_frame_desc *rfd = (volatile void *)ptr;
|
|
volatile struct ie_recv_buf_desc *rbd;
|
|
int i;
|
|
|
|
/* First lay them out */
|
|
for (i = 0; i < sc->nframes; i++) {
|
|
sc->rframes[i] = rfd;
|
|
bzero((volatile char *) rfd, sizeof *rfd); /* ignore cast-qual */
|
|
rfd++;
|
|
}
|
|
|
|
ptr = Alignvol(rfd); /* ignore cast-qual */
|
|
|
|
/* Now link them together */
|
|
for (i = 0; i < sc->nframes; i++) {
|
|
sc->rframes[i]->ie_fd_next =
|
|
MK_16(MEM(sc), sc->rframes[(i + 1) % sc->nframes]);
|
|
}
|
|
|
|
/* Finally, set the EOL bit on the last one. */
|
|
sc->rframes[sc->nframes - 1]->ie_fd_last |= IE_FD_LAST;
|
|
|
|
/*
|
|
* Now lay out some buffers for the incoming frames. Note that we
|
|
* set aside a bit of slop in each buffer, to make sure that we have
|
|
* enough space to hold a single frame in every buffer.
|
|
*/
|
|
rbd = (volatile void *) ptr;
|
|
|
|
for (i = 0; i < sc->nrxbufs; i++) {
|
|
sc->rbuffs[i] = rbd;
|
|
bzero((volatile char *)rbd, sizeof *rbd);
|
|
ptr = Alignvol(ptr + sizeof *rbd);
|
|
rbd->ie_rbd_length = IE_RBUF_SIZE;
|
|
rbd->ie_rbd_buffer = MK_24(MEM(sc), ptr);
|
|
sc->cbuffs[i] = (volatile void *) ptr;
|
|
ptr += IE_RBUF_SIZE;
|
|
rbd = (volatile void *) ptr;
|
|
}
|
|
|
|
/* Now link them together */
|
|
for (i = 0; i < sc->nrxbufs; i++) {
|
|
sc->rbuffs[i]->ie_rbd_next =
|
|
MK_16(MEM(sc), sc->rbuffs[(i + 1) % sc->nrxbufs]);
|
|
}
|
|
|
|
/* Tag EOF on the last one */
|
|
sc->rbuffs[sc->nrxbufs - 1]->ie_rbd_length |= IE_RBD_LAST;
|
|
|
|
/*
|
|
* We use the head and tail pointers on receive to keep track of the
|
|
* order in which RFDs and RBDs are used.
|
|
*/
|
|
sc->rfhead = 0;
|
|
sc->rftail = sc->nframes - 1;
|
|
sc->rbhead = 0;
|
|
sc->rbtail = sc->nrxbufs - 1;
|
|
|
|
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
|
|
sc->rframes[0]->ie_fd_buf_desc = MK_16(MEM(sc), sc->rbuffs[0]);
|
|
|
|
ptr = Alignvol(ptr);
|
|
return (ptr);
|
|
}
|
|
|
|
/*
|
|
* Run the multicast setup command.
|
|
*/
|
|
static int
|
|
mc_setup(struct ie_softc *sc)
|
|
{
|
|
volatile struct ie_mcast_cmd *cmd = (volatile void *)sc->xmit_cbuffs[0];
|
|
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_MCAST | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
|
|
/* ignore cast-qual */
|
|
bcopy((v_caddr_t) sc->mcast_addrs, (v_caddr_t) cmd->ie_mcast_addrs,
|
|
sc->mcast_count * sizeof *sc->mcast_addrs);
|
|
|
|
cmd->ie_mcast_bytes = sc->mcast_count * 6; /* grrr... */
|
|
|
|
sc->scb->ie_command_list = MK_16(MEM(sc), cmd);
|
|
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
|
|
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
|
|
if_printf(sc->ifp, "multicast address setup command failed\n");
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* This routine takes the environment generated by check_ie_present()
|
|
* and adds to it all the other structures we need to operate the adapter.
|
|
* This includes executing the CONFIGURE, IA-SETUP, and MC-SETUP commands,
|
|
* starting the receiver unit, and clearing interrupts.
|
|
*/
|
|
static void
|
|
ieinit(xsc)
|
|
void *xsc;
|
|
{
|
|
struct ie_softc *sc = xsc;
|
|
|
|
IE_LOCK(sc);
|
|
ieinit_locked(sc);
|
|
IE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
ieinit_locked(struct ie_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
volatile struct ie_sys_ctl_block *scb = sc->scb;
|
|
caddr_t ptr;
|
|
int i;
|
|
|
|
ptr = Alignvol((volatile char *) scb + sizeof *scb);
|
|
|
|
/*
|
|
* Send the configure command first.
|
|
*/
|
|
{
|
|
volatile struct ie_config_cmd *cmd = (volatile void *) ptr;
|
|
|
|
ie_setup_config(cmd, sc->promisc,
|
|
sc->hard_type == IE_STARLAN10);
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_CONFIG | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
|
|
scb->ie_command_list = MK_16(MEM(sc), cmd);
|
|
|
|
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
|
|
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
|
|
if_printf(ifp, "configure command failed\n");
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* Now send the Individual Address Setup command.
|
|
*/
|
|
{
|
|
volatile struct ie_iasetup_cmd *cmd = (volatile void *) ptr;
|
|
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_IASETUP | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
|
|
bcopy((volatile char *)IF_LLADDR(ifp),
|
|
(volatile char *)&cmd->ie_address, sizeof cmd->ie_address);
|
|
scb->ie_command_list = MK_16(MEM(sc), cmd);
|
|
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
|
|
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
|
|
if_printf(ifp, "individual address "
|
|
"setup command failed\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now run the time-domain reflectometer.
|
|
*/
|
|
run_tdr(sc, (volatile void *) ptr);
|
|
|
|
/*
|
|
* Acknowledge any interrupts we have generated thus far.
|
|
*/
|
|
ie_ack(sc, IE_ST_WHENCE);
|
|
|
|
/*
|
|
* Set up the RFA.
|
|
*/
|
|
ptr = setup_rfa(sc, ptr);
|
|
|
|
/*
|
|
* Finally, the transmit command and buffer are the last little bit
|
|
* of work.
|
|
*/
|
|
|
|
/* transmit command buffers */
|
|
for (i = 0; i < sc->ntxbufs; i++) {
|
|
sc->xmit_cmds[i] = (volatile void *) ptr;
|
|
ptr += sizeof *sc->xmit_cmds[i];
|
|
ptr = Alignvol(ptr);
|
|
sc->xmit_buffs[i] = (volatile void *)ptr;
|
|
ptr += sizeof *sc->xmit_buffs[i];
|
|
ptr = Alignvol(ptr);
|
|
}
|
|
|
|
/* transmit buffers */
|
|
for (i = 0; i < sc->ntxbufs - 1; i++) {
|
|
sc->xmit_cbuffs[i] = (volatile void *)ptr;
|
|
ptr += IE_BUF_LEN;
|
|
ptr = Alignvol(ptr);
|
|
}
|
|
sc->xmit_cbuffs[sc->ntxbufs - 1] = (volatile void *) ptr;
|
|
|
|
for (i = 1; i < sc->ntxbufs; i++) {
|
|
bzero((v_caddr_t) sc->xmit_cmds[i], sizeof *sc->xmit_cmds[i]);
|
|
bzero((v_caddr_t) sc->xmit_buffs[i], sizeof *sc->xmit_buffs[i]);
|
|
}
|
|
|
|
/*
|
|
* This must be coordinated with iestart() and ietint().
|
|
*/
|
|
sc->xmit_cmds[0]->ie_xmit_status = IE_STAT_COMPL;
|
|
|
|
/* take the ee16 out of loopback */
|
|
if (sc->hard_type == IE_EE16) {
|
|
u_int8_t bart_config;
|
|
|
|
bart_config = inb(PORT(sc) + IEE16_CONFIG);
|
|
bart_config &= ~IEE16_BART_LOOPBACK;
|
|
/* inb doesn't get bit! */
|
|
bart_config |= IEE16_BART_MCS16_TEST;
|
|
outb(PORT(sc) + IEE16_CONFIG, bart_config);
|
|
ee16_interrupt_enable(sc);
|
|
ee16_chan_attn(sc);
|
|
}
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING; /* tell higher levels
|
|
* we're here */
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
start_receiver(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ie_stop(struct ie_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
command_and_wait(sc, IE_RU_DISABLE, 0, 0);
|
|
}
|
|
|
|
static int
|
|
ieioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
int error = 0;
|
|
struct ie_softc *sc = ifp->if_softc;
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* Note that this device doesn't have an "all multicast"
|
|
* mode, so we must turn on promiscuous mode and do the
|
|
* filtering manually.
|
|
*/
|
|
IE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
ie_stop(sc);
|
|
} else if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
sc->promisc =
|
|
ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
|
|
ieinit_locked(sc);
|
|
} else if (sc->promisc ^
|
|
(ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))) {
|
|
sc->promisc =
|
|
ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
|
|
ieinit_locked(sc);
|
|
}
|
|
IE_UNLOCK(sc);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* Update multicast listeners
|
|
*/
|
|
/* reset multicast filtering */
|
|
IE_LOCK(sc);
|
|
ie_mc_reset(sc);
|
|
IE_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ie_mc_reset(struct ie_softc *sc)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
|
|
/*
|
|
* Step through the list of addresses.
|
|
*/
|
|
sc->mcast_count = 0;
|
|
if_maddr_rlock(sc->ifp);
|
|
TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
/* XXX - this is broken... */
|
|
if (sc->mcast_count >= MAXMCAST) {
|
|
sc->ifp->if_flags |= IFF_ALLMULTI;
|
|
if (sc->ifp->if_flags & IFF_UP)
|
|
ieinit_locked(sc);
|
|
goto setflag;
|
|
}
|
|
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
|
|
&(sc->mcast_addrs[sc->mcast_count]), 6);
|
|
sc->mcast_count++;
|
|
}
|
|
if_maddr_runlock(sc->ifp);
|
|
|
|
setflag:
|
|
sc->want_mcsetup = 1;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
print_rbd(volatile struct ie_recv_buf_desc * rbd)
|
|
{
|
|
printf("RBD at %p:\n"
|
|
"actual %04x, next %04x, buffer %p\n"
|
|
"length %04x, mbz %04x\n",
|
|
(volatile void *) rbd,
|
|
rbd->ie_rbd_actual, rbd->ie_rbd_next,
|
|
(void *) rbd->ie_rbd_buffer,
|
|
rbd->ie_rbd_length, rbd->mbz);
|
|
}
|
|
|
|
#endif /* DEBUG */
|
|
|
|
int
|
|
ie_alloc_resources (device_t dev)
|
|
{
|
|
struct ie_softc * sc;
|
|
int error;
|
|
|
|
error = 0;
|
|
sc = device_get_softc(dev);
|
|
|
|
sc->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &sc->io_rid,
|
|
RF_ACTIVE);
|
|
if (!sc->io_res) {
|
|
device_printf(dev, "No I/O space?!\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
sc->io_bt = rman_get_bustag(sc->io_res);
|
|
sc->io_bh = rman_get_bushandle(sc->io_res);
|
|
|
|
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
|
|
RF_ACTIVE);
|
|
if (!sc->mem_res) {
|
|
device_printf(dev, "No Memory!\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
sc->mem_bt = rman_get_bustag(sc->mem_res);
|
|
sc->mem_bh = rman_get_bushandle(sc->mem_res);
|
|
|
|
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
|
|
RF_ACTIVE);
|
|
if (!sc->irq_res) {
|
|
device_printf(dev, "No IRQ!\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
sc->port = rman_get_start(sc->io_res); /* XXX hack */
|
|
sc->iomembot = rman_get_virtual(sc->mem_res);
|
|
sc->iosize = rman_get_size(sc->mem_res);
|
|
|
|
return (0);
|
|
bad:
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
ie_release_resources (device_t dev)
|
|
{
|
|
struct ie_softc * sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (sc->irq_ih)
|
|
bus_teardown_intr(dev, sc->irq_res, sc->irq_ih);
|
|
if (sc->rframes)
|
|
free(sc->rframes, M_DEVBUF);
|
|
if (sc->io_res)
|
|
bus_release_resource(dev, SYS_RES_IOPORT,
|
|
sc->io_rid, sc->io_res);
|
|
if (sc->irq_res)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
sc->irq_rid, sc->irq_res);
|
|
if (sc->mem_res)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
sc->mem_rid, sc->mem_res);
|
|
if (sc->ifp)
|
|
if_free(sc->ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
int
|
|
ie_detach (device_t dev)
|
|
{
|
|
struct ie_softc * sc;
|
|
struct ifnet * ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->ifp;
|
|
|
|
IE_LOCK(sc);
|
|
if (sc->hard_type == IE_EE16)
|
|
ee16_shutdown(sc);
|
|
|
|
ie_stop(sc);
|
|
IE_UNLOCK(sc);
|
|
ether_ifdetach(ifp);
|
|
ie_release_resources(dev);
|
|
mtx_destroy(&sc->lock);
|
|
|
|
return (0);
|
|
}
|