pfg 1537078d8f sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00

952 lines
26 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004-2005 HighPoint Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* ioctl.c ioctl interface implementation
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#ifndef __KERNEL__
#define __KERNEL__
#endif
#include <dev/hptmv/global.h>
#include <dev/hptmv/hptintf.h>
#include <dev/hptmv/osbsd.h>
#include <dev/hptmv/access601.h>
#pragma pack(1)
typedef struct _HPT_REBUILD_PARAM
{
DEVICEID idMirror;
DWORD Lba;
UCHAR nSector;
} HPT_REBUILD_PARAM, *PHPT_REBUILD_PARAM;
#pragma pack()
#define MAX_EVENTS 10
static HPT_EVENT hpt_event_queue[MAX_EVENTS];
static int event_queue_head=0, event_queue_tail=0;
static int hpt_get_event(PHPT_EVENT pEvent);
static int hpt_set_array_state(DEVICEID idArray, DWORD state);
static void lock_driver_idle(IAL_ADAPTER_T *pAdapter);
static void HPTLIBAPI thread_io_done(_VBUS_ARG PCommand pCmd);
static int HPTLIBAPI R1ControlSgl(_VBUS_ARG PCommand pCmd,
FPSCAT_GATH pSgTable, int logical);
static void
get_disk_location(PDevice pDev, int *controller, int *channel)
{
IAL_ADAPTER_T *pAdapTemp;
int i, j;
*controller = *channel = 0;
for (i=1, pAdapTemp = gIal_Adapter; pAdapTemp; pAdapTemp = pAdapTemp->next, i++) {
for (j=0; j<MV_SATA_CHANNELS_NUM; j++) {
if (pDev == &pAdapTemp->VDevices[j].u.disk) {
*controller = i;
*channel = j;
return;
}
}
}
}
static int
event_queue_add(PHPT_EVENT pEvent)
{
int p;
p = (event_queue_tail + 1) % MAX_EVENTS;
if (p==event_queue_head)
{
return -1;
}
hpt_event_queue[event_queue_tail] = *pEvent;
event_queue_tail = p;
return 0;
}
static int
event_queue_remove(PHPT_EVENT pEvent)
{
if (event_queue_head != event_queue_tail)
{
*pEvent = hpt_event_queue[event_queue_head];
event_queue_head++;
event_queue_head %= MAX_EVENTS;
return 0;
}
return -1;
}
void HPTLIBAPI
ioctl_ReportEvent(UCHAR event, PVOID param)
{
HPT_EVENT e;
ZeroMemory(&e, sizeof(e));
e.EventType = event;
switch(event)
{
case ET_INITIALIZE_ABORTED:
case ET_INITIALIZE_FAILED:
memcpy(e.Data, ((PVDevice)param)->u.array.ArrayName, MAX_ARRAY_NAME);
case ET_INITIALIZE_STARTED:
case ET_INITIALIZE_FINISHED:
case ET_REBUILD_STARTED:
case ET_REBUILD_ABORTED:
case ET_REBUILD_FAILED:
case ET_REBUILD_FINISHED:
case ET_VERIFY_STARTED:
case ET_VERIFY_ABORTED:
case ET_VERIFY_FAILED:
case ET_VERIFY_FINISHED:
case ET_VERIFY_DATA_ERROR:
case ET_SPARE_TOOK_OVER:
case ET_DEVICE_REMOVED:
case ET_DEVICE_PLUGGED:
case ET_DEVICE_ERROR:
e.DeviceID = VDEV_TO_ID((PVDevice)param);
break;
default:
break;
}
event_queue_add(&e);
if (event==ET_DEVICE_REMOVED) {
int controller, channel;
get_disk_location(&((PVDevice)param)->u.disk, &controller, &channel);
hpt_printk(("Device removed: controller %d channel %d\n", controller, channel));
}
wakeup(param);
}
static int
hpt_delete_array(_VBUS_ARG DEVICEID id, DWORD options)
{
PVDevice pArray = ID_TO_VDEV(id);
BOOLEAN del_block0 = (options & DAF_KEEP_DATA_IF_POSSIBLE)?0:1;
int i;
PVDevice pa;
if ((id==0) || check_VDevice_valid(pArray))
return -1;
if(!mIsArray(pArray)) return -1;
if (pArray->u.array.rf_rebuilding || pArray->u.array.rf_verifying ||
pArray->u.array.rf_initializing)
return -1;
for(i=0; i<pArray->u.array.bArnMember; i++) {
pa = pArray->u.array.pMember[i];
if (pa && mIsArray(pa)) {
if (pa->u.array.rf_rebuilding || pa->u.array.rf_verifying ||
pa->u.array.rf_initializing)
return -1;
}
}
if (pArray->pVBus!=_vbus_p) { HPT_ASSERT(0); return -1;}
fDeleteArray(_VBUS_P pArray, del_block0);
return 0;
}
/* just to prevent driver from sending more commands */
static void HPTLIBAPI nothing(_VBUS_ARG void *notused){}
void
lock_driver_idle(IAL_ADAPTER_T *pAdapter)
{
_VBUS_INST(&pAdapter->VBus)
mtx_lock(&pAdapter->lock);
while (pAdapter->outstandingCommands) {
KdPrint(("outstandingCommands is %d, wait..\n", pAdapter->outstandingCommands));
if (!mWaitingForIdle(_VBUS_P0)) CallWhenIdle(_VBUS_P nothing, 0);
mtx_sleep(pAdapter, &pAdapter->lock, 0, "hptidle", 0);
}
CheckIdleCall(_VBUS_P0);
}
int Kernel_DeviceIoControl(_VBUS_ARG
DWORD dwIoControlCode, /* operation control code */
PVOID lpInBuffer, /* input data buffer */
DWORD nInBufferSize, /* size of input data buffer */
PVOID lpOutBuffer, /* output data buffer */
DWORD nOutBufferSize, /* size of output data buffer */
PDWORD lpBytesReturned /* byte count */
)
{
IAL_ADAPTER_T *pAdapter;
switch(dwIoControlCode) {
case HPT_IOCTL_DELETE_ARRAY:
{
DEVICEID idArray;
int iSuccess;
int i;
PVDevice pArray;
PVBus _vbus_p;
struct cam_periph *periph = NULL;
if (nInBufferSize!=sizeof(DEVICEID)+sizeof(DWORD)) return -1;
if (nOutBufferSize!=sizeof(int)) return -1;
idArray = *(DEVICEID *)lpInBuffer;
pArray = ID_TO_VDEV(idArray);
if((idArray == 0) || check_VDevice_valid(pArray))
return -1;
if(!mIsArray(pArray))
return -1;
_vbus_p=pArray->pVBus;
pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt;
for(i = 0; i < MAX_VDEVICE_PER_VBUS; i++) {
if(pArray == _vbus_p->pVDevice[i])
{
periph = hpt_get_periph(pAdapter->mvSataAdapter.adapterId, i);
if (periph != NULL && periph->refcount >= 1)
{
hpt_printk(("Can not delete a mounted device.\n"));
return -1;
}
}
/* the Mounted Disk isn't delete */
}
iSuccess = hpt_delete_array(_VBUS_P idArray, *(DWORD*)((DEVICEID *)lpInBuffer+1));
*(int*)lpOutBuffer = iSuccess;
if(iSuccess != 0)
return -1;
break;
}
case HPT_IOCTL_GET_EVENT:
{
PHPT_EVENT pInfo;
if (nInBufferSize!=0) return -1;
if (nOutBufferSize!=sizeof(HPT_EVENT)) return -1;
pInfo = (PHPT_EVENT)lpOutBuffer;
if (hpt_get_event(pInfo)!=0)
return -1;
}
break;
case HPT_IOCTL_SET_ARRAY_STATE:
{
DEVICEID idArray;
DWORD state;
if (nInBufferSize!=sizeof(HPT_SET_STATE_PARAM)) return -1;
if (nOutBufferSize!=0) return -1;
idArray = ((PHPT_SET_STATE_PARAM)lpInBuffer)->idArray;
state = ((PHPT_SET_STATE_PARAM)lpInBuffer)->state;
if(hpt_set_array_state(idArray, state)!=0)
return -1;
}
break;
case HPT_IOCTL_RESCAN_DEVICES:
{
if (nInBufferSize!=0) return -1;
if (nOutBufferSize!=0) return -1;
#ifndef FOR_DEMO
/* stop buzzer if user perform rescan */
for (pAdapter=gIal_Adapter; pAdapter; pAdapter=pAdapter->next) {
if (pAdapter->beeping) {
pAdapter->beeping = 0;
BeepOff(pAdapter->mvSataAdapter.adapterIoBaseAddress);
}
}
#endif
}
break;
default:
{
PVDevice pVDev;
switch(dwIoControlCode) {
/* read-only ioctl functions can be called directly. */
case HPT_IOCTL_GET_VERSION:
case HPT_IOCTL_GET_CONTROLLER_IDS:
case HPT_IOCTL_GET_CONTROLLER_COUNT:
case HPT_IOCTL_GET_CONTROLLER_INFO:
case HPT_IOCTL_GET_CHANNEL_INFO:
case HPT_IOCTL_GET_LOGICAL_DEVICES:
case HPT_IOCTL_GET_DEVICE_INFO:
case HPT_IOCTL_GET_DEVICE_INFO_V2:
case HPT_IOCTL_GET_EVENT:
case HPT_IOCTL_GET_DRIVER_CAPABILITIES:
if(hpt_default_ioctl(_VBUS_P dwIoControlCode, lpInBuffer, nInBufferSize,
lpOutBuffer, nOutBufferSize, lpBytesReturned) == -1) return -1;
break;
default:
/*
* GUI always use /proc/scsi/hptmv/0, so the _vbus_p param will be
* wrong for second controller.
*/
switch(dwIoControlCode) {
case HPT_IOCTL_CREATE_ARRAY:
pVDev = ID_TO_VDEV(((PCREATE_ARRAY_PARAMS)lpInBuffer)->Members[0]); break;
case HPT_IOCTL_CREATE_ARRAY_V2:
pVDev = ID_TO_VDEV(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->Members[0]); break;
case HPT_IOCTL_SET_ARRAY_INFO:
pVDev = ID_TO_VDEV(((PHPT_SET_ARRAY_INFO)lpInBuffer)->idArray); break;
case HPT_IOCTL_SET_DEVICE_INFO:
pVDev = ID_TO_VDEV(((PHPT_SET_DEVICE_INFO)lpInBuffer)->idDisk); break;
case HPT_IOCTL_SET_DEVICE_INFO_V2:
pVDev = ID_TO_VDEV(((PHPT_SET_DEVICE_INFO_V2)lpInBuffer)->idDisk); break;
case HPT_IOCTL_SET_BOOT_MARK:
case HPT_IOCTL_ADD_SPARE_DISK:
case HPT_IOCTL_REMOVE_SPARE_DISK:
pVDev = ID_TO_VDEV(*(DEVICEID *)lpInBuffer); break;
case HPT_IOCTL_ADD_DISK_TO_ARRAY:
pVDev = ID_TO_VDEV(((PHPT_ADD_DISK_TO_ARRAY)lpInBuffer)->idArray); break;
default:
pVDev = 0;
}
if (pVDev && !check_VDevice_valid(pVDev)){
_vbus_p = pVDev->pVBus;
pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt;
/*
* create_array, and other functions can't be executed while channel is
* perform I/O commands. Wait until driver is idle.
*/
lock_driver_idle(pAdapter);
if (hpt_default_ioctl(_VBUS_P dwIoControlCode, lpInBuffer, nInBufferSize,
lpOutBuffer, nOutBufferSize, lpBytesReturned) == -1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
mtx_unlock(&pAdapter->lock);
}
else
return -1;
break;
}
#ifdef SUPPORT_ARRAY
switch(dwIoControlCode)
{
case HPT_IOCTL_CREATE_ARRAY:
{
pAdapter=(IAL_ADAPTER_T *)(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->pVBus->OsExt;
mtx_lock(&pAdapter->lock);
if(((PCREATE_ARRAY_PARAMS)lpInBuffer)->CreateFlags & CAF_CREATE_AND_DUPLICATE)
{
(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->u.array.rf_auto_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), DUPLICATE);
}
else if(((PCREATE_ARRAY_PARAMS)lpInBuffer)->CreateFlags & CAF_CREATE_R5_ZERO_INIT)
{
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), INITIALIZE);
}
else if(((PCREATE_ARRAY_PARAMS)lpInBuffer)->CreateFlags & CAF_CREATE_R5_BUILD_PARITY)
{
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), REBUILD_PARITY);
}
mtx_unlock(&pAdapter->lock);
break;
}
case HPT_IOCTL_CREATE_ARRAY_V2:
{
pAdapter=(IAL_ADAPTER_T *)(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->pVBus->OsExt;
mtx_lock(&pAdapter->lock);
if(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->CreateFlags & CAF_CREATE_AND_DUPLICATE) {
(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->u.array.rf_auto_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), DUPLICATE);
} else if(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->CreateFlags & CAF_CREATE_R5_ZERO_INIT) {
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), INITIALIZE);
} else if(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->CreateFlags & CAF_CREATE_R5_BUILD_PARITY) {
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), REBUILD_PARITY);
}
mtx_unlock(&pAdapter->lock);
break;
}
case HPT_IOCTL_ADD_DISK_TO_ARRAY:
{
PVDevice pArray = ID_TO_VDEV(((PHPT_ADD_DISK_TO_ARRAY)lpInBuffer)->idArray);
pAdapter=(IAL_ADAPTER_T *)pArray->pVBus->OsExt;
if(pArray->u.array.rf_rebuilding == 0)
{
mtx_lock(&pAdapter->lock);
pArray->u.array.rf_auto_rebuild = 0;
pArray->u.array.rf_abort_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, DUPLICATE);
while (!pArray->u.array.rf_rebuilding)
{
if (mtx_sleep(pArray, &pAdapter->lock, 0, "hptwait", hz * 3) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
}
}
#endif
return 0;
}
}
if (lpBytesReturned)
*lpBytesReturned = nOutBufferSize;
return 0;
}
static int
hpt_get_event(PHPT_EVENT pEvent)
{
int ret = event_queue_remove(pEvent);
return ret;
}
static int
hpt_set_array_state(DEVICEID idArray, DWORD state)
{
IAL_ADAPTER_T *pAdapter;
PVDevice pVDevice = ID_TO_VDEV(idArray);
int i;
if(idArray == 0 || check_VDevice_valid(pVDevice)) return -1;
if(!mIsArray(pVDevice))
return -1;
if(!pVDevice->vf_online || pVDevice->u.array.rf_broken) return -1;
pAdapter=(IAL_ADAPTER_T *)pVDevice->pVBus->OsExt;
switch(state)
{
case MIRROR_REBUILD_START:
{
mtx_lock(&pAdapter->lock);
if (pVDevice->u.array.rf_rebuilding ||
pVDevice->u.array.rf_verifying ||
pVDevice->u.array.rf_initializing) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_auto_rebuild = 0;
pVDevice->u.array.rf_abort_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pVDevice,
(UCHAR)((pVDevice->u.array.CriticalMembers || pVDevice->VDeviceType == VD_RAID_1)? DUPLICATE : REBUILD_PARITY));
while (!pVDevice->u.array.rf_rebuilding)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptwait", hz * 20) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case MIRROR_REBUILD_ABORT:
{
for(i = 0; i < pVDevice->u.array.bArnMember; i++) {
if(pVDevice->u.array.pMember[i] != 0 && pVDevice->u.array.pMember[i]->VDeviceType == VD_RAID_1)
hpt_set_array_state(VDEV_TO_ID(pVDevice->u.array.pMember[i]), state);
}
mtx_lock(&pAdapter->lock);
if(pVDevice->u.array.rf_rebuilding != 1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_abort_rebuild = 1;
while (pVDevice->u.array.rf_abort_rebuild)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptabrt", hz * 20) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_VERIFY_START:
{
/*if(pVDevice->u.array.rf_verifying)
return -1;*/
mtx_lock(&pAdapter->lock);
if (pVDevice->u.array.rf_rebuilding ||
pVDevice->u.array.rf_verifying ||
pVDevice->u.array.rf_initializing) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.RebuildSectors = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pVDevice, VERIFY);
while (!pVDevice->u.array.rf_verifying)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptvrfy", hz * 20) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_VERIFY_ABORT:
{
mtx_lock(&pAdapter->lock);
if(pVDevice->u.array.rf_verifying != 1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_abort_rebuild = 1;
while (pVDevice->u.array.rf_abort_rebuild)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptvrfy", hz * 80) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_INITIALIZE_START:
{
mtx_lock(&pAdapter->lock);
if (pVDevice->u.array.rf_rebuilding ||
pVDevice->u.array.rf_verifying ||
pVDevice->u.array.rf_initializing) {
mtx_unlock(&pAdapter->lock);
return -1;
}
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pVDevice, VERIFY);
while (!pVDevice->u.array.rf_initializing)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptinit", hz * 80) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_INITIALIZE_ABORT:
{
mtx_lock(&pAdapter->lock);
if(pVDevice->u.array.rf_initializing != 1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_abort_rebuild = 1;
while (pVDevice->u.array.rf_abort_rebuild)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptinit", hz * 80) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
default:
return -1;
}
return 0;
}
int HPTLIBAPI
R1ControlSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSgTable, int logical)
{
ULONG bufferSize = SECTOR_TO_BYTE(pCmd->uCmd.R1Control.nSectors);
if (pCmd->uCmd.R1Control.Command==CTRL_CMD_VERIFY)
bufferSize<<=1;
if (logical) {
pSgTable->dSgAddress = (ULONG_PTR)pCmd->uCmd.R1Control.Buffer;
pSgTable->wSgSize = (USHORT)bufferSize;
pSgTable->wSgFlag = SG_FLAG_EOT;
}
else {
/* build physical SG table for pCmd->uCmd.R1Control.Buffer */
ADDRESS dataPointer, v, nextpage, currvaddr, nextvaddr, currphypage, nextphypage;
ULONG length;
int idx = 0;
v = pCmd->uCmd.R1Control.Buffer;
dataPointer = (ADDRESS)fOsPhysicalAddress(v);
if ((ULONG_PTR)dataPointer & 0x1)
return FALSE;
#define ON64KBOUNDARY(x) (((ULONG_PTR)(x) & 0xFFFF) == 0)
#define NOTNEIGHBORPAGE(highvaddr, lowvaddr) ((ULONG_PTR)(highvaddr) - (ULONG_PTR)(lowvaddr) != PAGE_SIZE)
do {
if (idx >= MAX_SG_DESCRIPTORS) return FALSE;
pSgTable[idx].dSgAddress = fOsPhysicalAddress(v);
currvaddr = v;
currphypage = (ADDRESS)fOsPhysicalAddress((void*)trunc_page((ULONG_PTR)currvaddr));
do {
nextpage = (ADDRESS)trunc_page(((ULONG_PTR)currvaddr + PAGE_SIZE));
nextvaddr = (ADDRESS)MIN(((ULONG_PTR)v + bufferSize), (ULONG_PTR)(nextpage));
if (nextvaddr == (ADDRESS)((ULONG_PTR)v + bufferSize)) break;
nextphypage = (ADDRESS)fOsPhysicalAddress(nextpage);
if (NOTNEIGHBORPAGE(nextphypage, currphypage) || ON64KBOUNDARY(nextphypage)) {
nextvaddr = nextpage;
break;
}
currvaddr = nextvaddr;
currphypage = nextphypage;
}while (1);
length = (ULONG_PTR)nextvaddr - (ULONG_PTR)v;
v = nextvaddr;
bufferSize -= length;
pSgTable[idx].wSgSize = (USHORT)length;
pSgTable[idx].wSgFlag = (bufferSize)? 0 : SG_FLAG_EOT;
idx++;
}while (bufferSize);
}
return 1;
}
static int End_Job=0;
void HPTLIBAPI
thread_io_done(_VBUS_ARG PCommand pCmd)
{
End_Job = 1;
wakeup((caddr_t)pCmd);
}
void
hpt_rebuild_data_block(IAL_ADAPTER_T *pAdapter, PVDevice pArray, UCHAR flags)
{
ULONG capacity = pArray->VDeviceCapacity / (pArray->u.array.bArnMember-1);
PCommand pCmd;
UINT result;
int needsync=0, retry=0, needdelete=0;
void *buffer = NULL;
_VBUS_INST(&pAdapter->VBus)
if (pArray->u.array.rf_broken==1 ||
pArray->u.array.RebuildSectors>=capacity)
return;
mtx_lock(&pAdapter->lock);
switch(flags)
{
case DUPLICATE:
case REBUILD_PARITY:
if(pArray->u.array.rf_rebuilding == 0)
{
pArray->u.array.rf_rebuilding = 1;
hpt_printk(("Rebuilding started.\n"));
ioctl_ReportEvent(ET_REBUILD_STARTED, pArray);
}
break;
case INITIALIZE:
if(pArray->u.array.rf_initializing == 0)
{
pArray->u.array.rf_initializing = 1;
hpt_printk(("Initializing started.\n"));
ioctl_ReportEvent(ET_INITIALIZE_STARTED, pArray);
}
break;
case VERIFY:
if(pArray->u.array.rf_verifying == 0)
{
pArray->u.array.rf_verifying = 1;
hpt_printk(("Verifying started.\n"));
ioctl_ReportEvent(ET_VERIFY_STARTED, pArray);
}
break;
}
retry_cmd:
pCmd = AllocateCommand(_VBUS_P0);
HPT_ASSERT(pCmd);
pCmd->cf_control = 1;
End_Job = 0;
if (pArray->VDeviceType==VD_RAID_1)
{
#define MAX_REBUILD_SECTORS 0x40
/* take care for discontinuous buffer in R1ControlSgl */
buffer = malloc(SECTOR_TO_BYTE(MAX_REBUILD_SECTORS), M_DEVBUF, M_NOWAIT);
if(!buffer) {
FreeCommand(_VBUS_P pCmd);
hpt_printk(("can't allocate rebuild buffer\n"));
goto fail;
}
switch(flags)
{
case DUPLICATE:
pCmd->uCmd.R1Control.Command = CTRL_CMD_REBUILD;
pCmd->uCmd.R1Control.nSectors = MAX_REBUILD_SECTORS;
break;
case VERIFY:
pCmd->uCmd.R1Control.Command = CTRL_CMD_VERIFY;
pCmd->uCmd.R1Control.nSectors = MAX_REBUILD_SECTORS/2;
break;
case INITIALIZE:
pCmd->uCmd.R1Control.Command = CTRL_CMD_REBUILD;
pCmd->uCmd.R1Control.nSectors = MAX_REBUILD_SECTORS;
break;
}
pCmd->uCmd.R1Control.Lba = pArray->u.array.RebuildSectors;
if (capacity - pArray->u.array.RebuildSectors < pCmd->uCmd.R1Control.nSectors)
pCmd->uCmd.R1Control.nSectors = capacity - pArray->u.array.RebuildSectors;
pCmd->uCmd.R1Control.Buffer = buffer;
pCmd->pfnBuildSgl = R1ControlSgl;
}
else if (pArray->VDeviceType==VD_RAID_5)
{
switch(flags)
{
case DUPLICATE:
case REBUILD_PARITY:
pCmd->uCmd.R5Control.Command = CTRL_CMD_REBUILD; break;
case VERIFY:
pCmd->uCmd.R5Control.Command = CTRL_CMD_VERIFY; break;
case INITIALIZE:
pCmd->uCmd.R5Control.Command = CTRL_CMD_INIT; break;
}
pCmd->uCmd.R5Control.StripeLine=pArray->u.array.RebuildSectors>>pArray->u.array.bArBlockSizeShift;
}
else
HPT_ASSERT(0);
pCmd->pVDevice = pArray;
pCmd->pfnCompletion = thread_io_done;
pArray->pfnSendCommand(_VBUS_P pCmd);
CheckPendingCall(_VBUS_P0);
if (!End_Job) {
mtx_sleep(pCmd, &pAdapter->lock, 0, "hptrbld", hz * 60);
if (!End_Job) {
hpt_printk(("timeout, reset\n"));
fResetVBus(_VBUS_P0);
}
}
result = pCmd->Result;
FreeCommand(_VBUS_P pCmd);
if (buffer) free(buffer, M_DEVBUF);
KdPrintI(("cmd finished %d", result));
switch(result)
{
case RETURN_SUCCESS:
if (!pArray->u.array.rf_abort_rebuild)
{
if(pArray->u.array.RebuildSectors < capacity)
{
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, flags);
}
else
{
switch (flags)
{
case DUPLICATE:
case REBUILD_PARITY:
needsync = 1;
pArray->u.array.rf_rebuilding = 0;
pArray->u.array.rf_need_rebuild = 0;
pArray->u.array.CriticalMembers = 0;
pArray->u.array.RebuildSectors = MAX_LBA_T;
pArray->u.array.rf_duplicate_and_create = 0;
hpt_printk(("Rebuilding finished.\n"));
ioctl_ReportEvent(ET_REBUILD_FINISHED, pArray);
break;
case INITIALIZE:
needsync = 1;
pArray->u.array.rf_initializing = 0;
pArray->u.array.rf_need_rebuild = 0;
pArray->u.array.RebuildSectors = MAX_LBA_T;
hpt_printk(("Initializing finished.\n"));
ioctl_ReportEvent(ET_INITIALIZE_FINISHED, pArray);
break;
case VERIFY:
pArray->u.array.rf_verifying = 0;
hpt_printk(("Verifying finished.\n"));
ioctl_ReportEvent(ET_VERIFY_FINISHED, pArray);
break;
}
}
}
else
{
pArray->u.array.rf_abort_rebuild = 0;
if (pArray->u.array.rf_rebuilding)
{
hpt_printk(("Abort rebuilding.\n"));
pArray->u.array.rf_rebuilding = 0;
pArray->u.array.rf_duplicate_and_create = 0;
ioctl_ReportEvent(ET_REBUILD_ABORTED, pArray);
}
else if (pArray->u.array.rf_verifying)
{
hpt_printk(("Abort verifying.\n"));
pArray->u.array.rf_verifying = 0;
ioctl_ReportEvent(ET_VERIFY_ABORTED, pArray);
}
else if (pArray->u.array.rf_initializing)
{
hpt_printk(("Abort initializing.\n"));
pArray->u.array.rf_initializing = 0;
ioctl_ReportEvent(ET_INITIALIZE_ABORTED, pArray);
}
needdelete=1;
}
break;
case RETURN_DATA_ERROR:
if (flags==VERIFY)
{
needsync = 1;
pArray->u.array.rf_verifying = 0;
pArray->u.array.rf_need_rebuild = 1;
hpt_printk(("Verifying failed: found inconsistency\n"));
ioctl_ReportEvent(ET_VERIFY_DATA_ERROR, pArray);
ioctl_ReportEvent(ET_VERIFY_FAILED, pArray);
if (!pArray->vf_online || pArray->u.array.rf_broken) break;
pArray->u.array.rf_auto_rebuild = 0;
pArray->u.array.rf_abort_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray,
(pArray->VDeviceType == VD_RAID_1) ? DUPLICATE : REBUILD_PARITY);
}
break;
default:
hpt_printk(("command failed with error %d\n", result));
if (++retry<3)
{
hpt_printk(("retry (%d)\n", retry));
goto retry_cmd;
}
fail:
pArray->u.array.rf_abort_rebuild = 0;
switch (flags)
{
case DUPLICATE:
case REBUILD_PARITY:
needsync = 1;
pArray->u.array.rf_rebuilding = 0;
pArray->u.array.rf_duplicate_and_create = 0;
hpt_printk(((flags==DUPLICATE)? "Duplicating failed.\n":"Rebuilding failed.\n"));
ioctl_ReportEvent(ET_REBUILD_FAILED, pArray);
break;
case INITIALIZE:
needsync = 1;
pArray->u.array.rf_initializing = 0;
hpt_printk(("Initializing failed.\n"));
ioctl_ReportEvent(ET_INITIALIZE_FAILED, pArray);
break;
case VERIFY:
needsync = 1;
pArray->u.array.rf_verifying = 0;
hpt_printk(("Verifying failed.\n"));
ioctl_ReportEvent(ET_VERIFY_FAILED, pArray);
break;
}
needdelete=1;
}
while (pAdapter->outstandingCommands)
{
KdPrintI(("currcmds is %d, wait..\n", pAdapter->outstandingCommands));
/* put this to have driver stop processing system commands quickly */
if (!mWaitingForIdle(_VBUS_P0)) CallWhenIdle(_VBUS_P nothing, 0);
mtx_sleep(pAdapter, &pAdapter->lock, 0, "hptidle", 0);
}
if (needsync) SyncArrayInfo(pArray);
if(needdelete && (pArray->u.array.rf_duplicate_must_done || (flags == INITIALIZE)))
fDeleteArray(_VBUS_P pArray, TRUE);
Check_Idle_Call(pAdapter);
mtx_unlock(&pAdapter->lock);
}