e7287c638a
more easily mechanically distinguished from 'struct at_ifaddr'.
453 lines
11 KiB
C
453 lines
11 KiB
C
/*
|
|
* Copyright (c) 1990,1994 Regents of The University of Michigan.
|
|
* All Rights Reserved. See COPYRIGHT.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/systm.h>
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netatalk/at.h>
|
|
#include <netatalk/at_var.h>
|
|
#include <netatalk/ddp.h>
|
|
#include <netatalk/ddp_var.h>
|
|
#include <netatalk/at_extern.h>
|
|
|
|
static volatile int ddp_forward = 1;
|
|
static volatile int ddp_firewall = 0;
|
|
static struct ddpstat ddpstat;
|
|
static struct route forwro;
|
|
|
|
static void ddp_input(struct mbuf *, struct ifnet *, struct elaphdr *, int);
|
|
|
|
/*
|
|
* Could probably merge these two code segments a little better...
|
|
*/
|
|
void
|
|
at2intr(struct mbuf *m)
|
|
{
|
|
GIANT_REQUIRED;
|
|
|
|
/*
|
|
* Phase 2 packet handling
|
|
*/
|
|
ddp_input(m, m->m_pkthdr.rcvif, NULL, 2);
|
|
return;
|
|
}
|
|
|
|
void
|
|
at1intr(struct mbuf *m)
|
|
{
|
|
struct elaphdr *elhp, elh;
|
|
|
|
/*
|
|
* Phase 1 packet handling
|
|
*/
|
|
if (m->m_len < SZ_ELAPHDR && ((m = m_pullup(m, SZ_ELAPHDR)) == NULL)) {
|
|
ddpstat.ddps_tooshort++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This seems a little dubious, but I don't know phase 1 so leave it.
|
|
*/
|
|
elhp = mtod(m, struct elaphdr *);
|
|
m_adj(m, SZ_ELAPHDR);
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
if (elhp->el_type == ELAP_DDPEXTEND) {
|
|
ddp_input(m, m->m_pkthdr.rcvif, NULL, 1);
|
|
} else {
|
|
bcopy((caddr_t)elhp, (caddr_t)&elh, SZ_ELAPHDR);
|
|
ddp_input(m, m->m_pkthdr.rcvif, &elh, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ddp_input(m, ifp, elh, phase)
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct elaphdr *elh;
|
|
int phase;
|
|
{
|
|
struct sockaddr_at from, to;
|
|
struct ddpshdr *dsh, ddps;
|
|
struct at_ifaddr *aa;
|
|
struct ddpehdr *deh = NULL, ddpe;
|
|
struct ddpcb *ddp;
|
|
int dlen, mlen;
|
|
u_short cksum = 0;
|
|
|
|
bzero((caddr_t)&from, sizeof(struct sockaddr_at));
|
|
bzero((caddr_t)&to, sizeof(struct sockaddr_at));
|
|
if (elh != NULL) {
|
|
/*
|
|
* Extract the information in the short header.
|
|
* netowrk information is defaulted to ATADDR_ANYNET
|
|
* and node information comes from the elh info.
|
|
* We must be phase 1.
|
|
*/
|
|
ddpstat.ddps_short++;
|
|
|
|
if (m->m_len < sizeof(struct ddpshdr) &&
|
|
((m = m_pullup(m, sizeof(struct ddpshdr))) == NULL)) {
|
|
ddpstat.ddps_tooshort++;
|
|
return;
|
|
}
|
|
|
|
dsh = mtod(m, struct ddpshdr *);
|
|
bcopy((caddr_t)dsh, (caddr_t)&ddps, sizeof(struct ddpshdr));
|
|
ddps.dsh_bytes = ntohl(ddps.dsh_bytes);
|
|
dlen = ddps.dsh_len;
|
|
|
|
to.sat_addr.s_net = ATADDR_ANYNET;
|
|
to.sat_addr.s_node = elh->el_dnode;
|
|
to.sat_port = ddps.dsh_dport;
|
|
from.sat_addr.s_net = ATADDR_ANYNET;
|
|
from.sat_addr.s_node = elh->el_snode;
|
|
from.sat_port = ddps.dsh_sport;
|
|
|
|
/*
|
|
* Make sure that we point to the phase1 ifaddr info
|
|
* and that it's valid for this packet.
|
|
*/
|
|
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
|
|
if ((aa->aa_ifp == ifp)
|
|
&& ((aa->aa_flags & AFA_PHASE2) == 0)
|
|
&& ((to.sat_addr.s_node == AA_SAT(aa)->sat_addr.s_node)
|
|
|| (to.sat_addr.s_node == ATADDR_BCAST))) {
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* maybe we got a broadcast not meant for us.. ditch it.
|
|
*/
|
|
if (aa == NULL) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
} else {
|
|
/*
|
|
* There was no 'elh' passed on. This could still be
|
|
* either phase1 or phase2.
|
|
* We have a long header, but we may be running on a phase 1 net.
|
|
* Extract out all the info regarding this packet's src & dst.
|
|
*/
|
|
ddpstat.ddps_long++;
|
|
|
|
if (m->m_len < sizeof(struct ddpehdr) &&
|
|
((m = m_pullup(m, sizeof(struct ddpehdr))) == NULL)) {
|
|
ddpstat.ddps_tooshort++;
|
|
return;
|
|
}
|
|
|
|
deh = mtod(m, struct ddpehdr *);
|
|
bcopy((caddr_t)deh, (caddr_t)&ddpe, sizeof(struct ddpehdr));
|
|
ddpe.deh_bytes = ntohl(ddpe.deh_bytes);
|
|
dlen = ddpe.deh_len;
|
|
|
|
if ((cksum = ddpe.deh_sum) == 0) {
|
|
ddpstat.ddps_nosum++;
|
|
}
|
|
|
|
from.sat_addr.s_net = ddpe.deh_snet;
|
|
from.sat_addr.s_node = ddpe.deh_snode;
|
|
from.sat_port = ddpe.deh_sport;
|
|
to.sat_addr.s_net = ddpe.deh_dnet;
|
|
to.sat_addr.s_node = ddpe.deh_dnode;
|
|
to.sat_port = ddpe.deh_dport;
|
|
|
|
if (to.sat_addr.s_net == ATADDR_ANYNET) {
|
|
/*
|
|
* The TO address doesn't specify a net,
|
|
* So by definition it's for this net.
|
|
* Try find ifaddr info with the right phase,
|
|
* the right interface, and either to our node, a broadcast,
|
|
* or looped back (though that SHOULD be covered in the other
|
|
* cases).
|
|
*
|
|
* XXX If we have multiple interfaces, then the first with
|
|
* this node number will match (which may NOT be what we want,
|
|
* but it's probably safe in 99.999% of cases.
|
|
*/
|
|
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
|
|
if (phase == 1 && (aa->aa_flags & AFA_PHASE2)) {
|
|
continue;
|
|
}
|
|
if (phase == 2 && (aa->aa_flags & AFA_PHASE2) == 0) {
|
|
continue;
|
|
}
|
|
if ((aa->aa_ifp == ifp)
|
|
&& ((to.sat_addr.s_node == AA_SAT(aa)->sat_addr.s_node)
|
|
|| (to.sat_addr.s_node == ATADDR_BCAST)
|
|
|| (ifp->if_flags & IFF_LOOPBACK))) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* A destination network was given. We just try to find
|
|
* which ifaddr info matches it.
|
|
*/
|
|
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
|
|
/*
|
|
* This is a kludge. Accept packets that are
|
|
* for any router on a local netrange.
|
|
*/
|
|
if (to.sat_addr.s_net == aa->aa_firstnet &&
|
|
to.sat_addr.s_node == 0) {
|
|
break;
|
|
}
|
|
/*
|
|
* Don't use ifaddr info for which we are totally outside the
|
|
* netrange, and it's not a startup packet.
|
|
* Startup packets are always implicitly allowed on to
|
|
* the next test.
|
|
*/
|
|
if (((ntohs(to.sat_addr.s_net) < ntohs(aa->aa_firstnet))
|
|
|| (ntohs(to.sat_addr.s_net) > ntohs(aa->aa_lastnet)))
|
|
&& ((ntohs(to.sat_addr.s_net) < 0xff00)
|
|
|| (ntohs(to.sat_addr.s_net) > 0xfffe))) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Don't record a match either if we just don't have a match
|
|
* in the node address. This can have if the interface
|
|
* is in promiscuous mode for example.
|
|
*/
|
|
if ((to.sat_addr.s_node != AA_SAT(aa)->sat_addr.s_node)
|
|
&& (to.sat_addr.s_node != ATADDR_BCAST)) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjust the length, removing any padding that may have been added
|
|
* at a link layer. We do this before we attempt to forward a packet,
|
|
* possibly on a different media.
|
|
*/
|
|
mlen = m->m_pkthdr.len;
|
|
if (mlen < dlen) {
|
|
ddpstat.ddps_toosmall++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (mlen > dlen) {
|
|
m_adj(m, dlen - mlen);
|
|
}
|
|
|
|
/*
|
|
* If it aint for a net on any of our interfaces,
|
|
* or it IS for a net on a different interface than it came in on,
|
|
* (and it is not looped back) then consider if we should forward it.
|
|
* As we are not really a router this is a bit cheeky, but it may be
|
|
* useful some day.
|
|
*/
|
|
if ((aa == NULL)
|
|
|| ((to.sat_addr.s_node == ATADDR_BCAST)
|
|
&& (aa->aa_ifp != ifp)
|
|
&& ((ifp->if_flags & IFF_LOOPBACK) == 0))) {
|
|
/*
|
|
* If we've explicitly disabled it, don't route anything
|
|
*/
|
|
if (ddp_forward == 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
/*
|
|
* If the cached forwarding route is still valid, use it.
|
|
*/
|
|
if (forwro.ro_rt
|
|
&& (satosat(&forwro.ro_dst)->sat_addr.s_net != to.sat_addr.s_net
|
|
|| satosat(&forwro.ro_dst)->sat_addr.s_node != to.sat_addr.s_node)) {
|
|
RTFREE(forwro.ro_rt);
|
|
forwro.ro_rt = NULL;
|
|
}
|
|
|
|
/*
|
|
* If we don't have a cached one (any more) or it's useless,
|
|
* Then get a new route.
|
|
* XXX this could cause a 'route leak'. check this!
|
|
*/
|
|
if (forwro.ro_rt == NULL || forwro.ro_rt->rt_ifp == NULL) {
|
|
forwro.ro_dst.sa_len = sizeof(struct sockaddr_at);
|
|
forwro.ro_dst.sa_family = AF_APPLETALK;
|
|
satosat(&forwro.ro_dst)->sat_addr.s_net = to.sat_addr.s_net;
|
|
satosat(&forwro.ro_dst)->sat_addr.s_node = to.sat_addr.s_node;
|
|
rtalloc(&forwro);
|
|
}
|
|
|
|
/*
|
|
* If it's not going to get there on this hop, and it's
|
|
* already done too many hops, then throw it away.
|
|
*/
|
|
if ((to.sat_addr.s_net != satosat(&forwro.ro_dst)->sat_addr.s_net)
|
|
&& (ddpe.deh_hops == DDP_MAXHOPS)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A ddp router might use the same interface
|
|
* to forward the packet, which this would not effect.
|
|
* Don't allow packets to cross from one interface to another however.
|
|
*/
|
|
if (ddp_firewall
|
|
&& ((forwro.ro_rt == NULL)
|
|
|| (forwro.ro_rt->rt_ifp != ifp))) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Adjust the header.
|
|
* If it was a short header then it would have not gotten here,
|
|
* so we can assume there is room to drop the header in.
|
|
* XXX what about promiscuous mode, etc...
|
|
*/
|
|
ddpe.deh_hops++;
|
|
ddpe.deh_bytes = htonl(ddpe.deh_bytes);
|
|
bcopy((caddr_t)&ddpe, (caddr_t)deh, sizeof(u_short)); /* XXX deh? */
|
|
if (ddp_route(m, &forwro)) {
|
|
ddpstat.ddps_cantforward++;
|
|
} else {
|
|
ddpstat.ddps_forward++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* It was for us, and we have an ifaddr to use with it.
|
|
*/
|
|
from.sat_len = sizeof(struct sockaddr_at);
|
|
from.sat_family = AF_APPLETALK;
|
|
|
|
/*
|
|
* We are no longer interested in the link layer.
|
|
* so cut it off.
|
|
*/
|
|
if (elh != NULL) {
|
|
m_adj(m, sizeof(struct ddpshdr));
|
|
} else {
|
|
if (ddp_cksum && cksum && cksum != at_cksum(m, sizeof(int))) {
|
|
ddpstat.ddps_badsum++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
m_adj(m, sizeof(struct ddpehdr));
|
|
}
|
|
|
|
/*
|
|
* Search for ddp protocol control blocks that match these
|
|
* addresses.
|
|
*/
|
|
if ((ddp = ddp_search(&from, &to, aa)) == NULL) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
#ifdef MAC
|
|
if (mac_check_socket_deliver(ddp->ddp_socket, m) != 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we found one, deliver th epacket to the socket
|
|
*/
|
|
if (sbappendaddr(&ddp->ddp_socket->so_rcv, (struct sockaddr *)&from,
|
|
m, NULL) == 0) {
|
|
/*
|
|
* If the socket is full (or similar error) dump the packet.
|
|
*/
|
|
ddpstat.ddps_nosockspace++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
/*
|
|
* And wake up whatever might be waiting for it
|
|
*/
|
|
sorwakeup(ddp->ddp_socket);
|
|
}
|
|
|
|
#if 0
|
|
/* As if we haven't got enough of this sort of think floating
|
|
around the kernel :) */
|
|
|
|
#define BPXLEN 48
|
|
#define BPALEN 16
|
|
#include <ctype.h>
|
|
char hexdig[] = "0123456789ABCDEF";
|
|
|
|
static void
|
|
bprint(char *data, int len)
|
|
{
|
|
char xout[ BPXLEN ], aout[ BPALEN ];
|
|
int i = 0;
|
|
|
|
bzero(xout, BPXLEN);
|
|
bzero(aout, BPALEN);
|
|
|
|
for (;;) {
|
|
if (len < 1) {
|
|
if (i != 0) {
|
|
printf("%s\t%s\n", xout, aout);
|
|
}
|
|
printf("%s\n", "(end)");
|
|
break;
|
|
}
|
|
|
|
xout[ (i*3) ] = hexdig[ (*data & 0xf0) >> 4 ];
|
|
xout[ (i*3) + 1 ] = hexdig[ *data & 0x0f ];
|
|
|
|
if ((u_char)*data < 0x7f && (u_char)*data > 0x20) {
|
|
aout[ i ] = *data;
|
|
} else {
|
|
aout[ i ] = '.';
|
|
}
|
|
|
|
xout[ (i*3) + 2 ] = ' ';
|
|
|
|
i++;
|
|
len--;
|
|
data++;
|
|
|
|
if (i > BPALEN - 2) {
|
|
printf("%s\t%s\n", xout, aout);
|
|
bzero(xout, BPXLEN);
|
|
bzero(aout, BPALEN);
|
|
i = 0;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
m_printm(struct mbuf *m)
|
|
{
|
|
for (; m; m = m->m_next) {
|
|
bprint(mtod(m, char *), m->m_len);
|
|
}
|
|
}
|
|
#endif
|