freebsd-skq/sys/amd64/vmm/amd/svm.c
neel e72e75f02d Clear blocking due to STI or MOV SS in the hypervisor when an instruction is
emulated or when the vcpu incurs an exception. This matches the CPU behavior.

Remove special case code in HLT processing that was clearing the interrupt
shadow. This is now redundant because the interrupt shadow is always cleared
when the vcpu is resumed after an instruction is emulated.

Reported by:	David Reed (david.reed@tidalscale.com)
MFC after:	2 weeks
2015-01-06 19:04:02 +00:00

2189 lines
56 KiB
C

/*-
* Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/smp.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/cpufunc.h>
#include <machine/psl.h>
#include <machine/pmap.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <machine/smp.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/vmm_instruction_emul.h>
#include "vmm_lapic.h"
#include "vmm_stat.h"
#include "vmm_ktr.h"
#include "vmm_ioport.h"
#include "vatpic.h"
#include "vlapic.h"
#include "vlapic_priv.h"
#include "x86.h"
#include "vmcb.h"
#include "svm.h"
#include "svm_softc.h"
#include "svm_msr.h"
#include "npt.h"
SYSCTL_DECL(_hw_vmm);
SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
/*
* SVM CPUID function 0x8000_000A, edx bit decoding.
*/
#define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */
#define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */
#define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */
#define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */
#define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */
#define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */
#define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */
#define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */
#define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */
#define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */
#define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \
VMCB_CACHE_IOPM | \
VMCB_CACHE_I | \
VMCB_CACHE_TPR | \
VMCB_CACHE_CR2 | \
VMCB_CACHE_CR | \
VMCB_CACHE_DT | \
VMCB_CACHE_SEG | \
VMCB_CACHE_NP)
static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
0, NULL);
static MALLOC_DEFINE(M_SVM, "svm", "svm");
static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
/* Per-CPU context area. */
extern struct pcpu __pcpu[];
static uint32_t svm_feature; /* AMD SVM features. */
SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
"SVM features advertised by CPUID.8000000AH:EDX");
static int disable_npf_assist;
SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
&disable_npf_assist, 0, NULL);
/* Maximum ASIDs supported by the processor */
static uint32_t nasid;
SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
"Number of ASIDs supported by this processor");
/* Current ASID generation for each host cpu */
static struct asid asid[MAXCPU];
/*
* SVM host state saved area of size 4KB for each core.
*/
static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
static __inline int
flush_by_asid(void)
{
return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
}
static __inline int
decode_assist(void)
{
return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
}
static void
svm_disable(void *arg __unused)
{
uint64_t efer;
efer = rdmsr(MSR_EFER);
efer &= ~EFER_SVM;
wrmsr(MSR_EFER, efer);
}
/*
* Disable SVM on all CPUs.
*/
static int
svm_cleanup(void)
{
smp_rendezvous(NULL, svm_disable, NULL, NULL);
return (0);
}
/*
* Verify that all the features required by bhyve are available.
*/
static int
check_svm_features(void)
{
u_int regs[4];
/* CPUID Fn8000_000A is for SVM */
do_cpuid(0x8000000A, regs);
svm_feature = regs[3];
nasid = regs[1];
KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
/* bhyve requires the Nested Paging feature */
if (!(svm_feature & AMD_CPUID_SVM_NP)) {
printf("SVM: Nested Paging feature not available.\n");
return (ENXIO);
}
/* bhyve requires the NRIP Save feature */
if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
printf("SVM: NRIP Save feature not available.\n");
return (ENXIO);
}
return (0);
}
static void
svm_enable(void *arg __unused)
{
uint64_t efer;
efer = rdmsr(MSR_EFER);
efer |= EFER_SVM;
wrmsr(MSR_EFER, efer);
wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
}
/*
* Return 1 if SVM is enabled on this processor and 0 otherwise.
*/
static int
svm_available(void)
{
uint64_t msr;
/* Section 15.4 Enabling SVM from APM2. */
if ((amd_feature2 & AMDID2_SVM) == 0) {
printf("SVM: not available.\n");
return (0);
}
msr = rdmsr(MSR_VM_CR);
if ((msr & VM_CR_SVMDIS) != 0) {
printf("SVM: disabled by BIOS.\n");
return (0);
}
return (1);
}
static int
svm_init(int ipinum)
{
int error, cpu;
if (!svm_available())
return (ENXIO);
error = check_svm_features();
if (error)
return (error);
vmcb_clean &= VMCB_CACHE_DEFAULT;
for (cpu = 0; cpu < MAXCPU; cpu++) {
/*
* Initialize the host ASIDs to their "highest" valid values.
*
* The next ASID allocation will rollover both 'gen' and 'num'
* and start off the sequence at {1,1}.
*/
asid[cpu].gen = ~0UL;
asid[cpu].num = nasid - 1;
}
svm_msr_init();
svm_npt_init(ipinum);
/* Enable SVM on all CPUs */
smp_rendezvous(NULL, svm_enable, NULL, NULL);
return (0);
}
static void
svm_restore(void)
{
svm_enable(NULL);
}
/* Pentium compatible MSRs */
#define MSR_PENTIUM_START 0
#define MSR_PENTIUM_END 0x1FFF
/* AMD 6th generation and Intel compatible MSRs */
#define MSR_AMD6TH_START 0xC0000000UL
#define MSR_AMD6TH_END 0xC0001FFFUL
/* AMD 7th and 8th generation compatible MSRs */
#define MSR_AMD7TH_START 0xC0010000UL
#define MSR_AMD7TH_END 0xC0011FFFUL
/*
* Get the index and bit position for a MSR in permission bitmap.
* Two bits are used for each MSR: lower bit for read and higher bit for write.
*/
static int
svm_msr_index(uint64_t msr, int *index, int *bit)
{
uint32_t base, off;
*index = -1;
*bit = (msr % 4) * 2;
base = 0;
if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
*index = msr / 4;
return (0);
}
base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
off = (msr - MSR_AMD6TH_START);
*index = (off + base) / 4;
return (0);
}
base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
off = (msr - MSR_AMD7TH_START);
*index = (off + base) / 4;
return (0);
}
return (EINVAL);
}
/*
* Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
*/
static void
svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
{
int index, bit, error;
error = svm_msr_index(msr, &index, &bit);
KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
("%s: invalid index %d for msr %#lx", __func__, index, msr));
KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
"msr %#lx", __func__, bit, msr));
if (read)
perm_bitmap[index] &= ~(1UL << bit);
if (write)
perm_bitmap[index] &= ~(2UL << bit);
}
static void
svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
{
svm_msr_perm(perm_bitmap, msr, true, true);
}
static void
svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
{
svm_msr_perm(perm_bitmap, msr, true, false);
}
static __inline int
svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
{
struct vmcb_ctrl *ctrl;
KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
return (ctrl->intercept[idx] & bitmask ? 1 : 0);
}
static __inline void
svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
int enabled)
{
struct vmcb_ctrl *ctrl;
uint32_t oldval;
KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
oldval = ctrl->intercept[idx];
if (enabled)
ctrl->intercept[idx] |= bitmask;
else
ctrl->intercept[idx] &= ~bitmask;
if (ctrl->intercept[idx] != oldval) {
svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
"from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
}
}
static __inline void
svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
{
svm_set_intercept(sc, vcpu, off, bitmask, 0);
}
static __inline void
svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
{
svm_set_intercept(sc, vcpu, off, bitmask, 1);
}
static void
vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
uint64_t msrpm_base_pa, uint64_t np_pml4)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
uint32_t mask;
int n;
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
state = svm_get_vmcb_state(sc, vcpu);
ctrl->iopm_base_pa = iopm_base_pa;
ctrl->msrpm_base_pa = msrpm_base_pa;
/* Enable nested paging */
ctrl->np_enable = 1;
ctrl->n_cr3 = np_pml4;
/*
* Intercept accesses to the control registers that are not shadowed
* in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
*/
for (n = 0; n < 16; n++) {
mask = (BIT(n) << 16) | BIT(n);
if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
else
svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
}
/*
* Intercept everything when tracing guest exceptions otherwise
* just intercept machine check exception.
*/
if (vcpu_trace_exceptions(sc->vm, vcpu)) {
for (n = 0; n < 32; n++) {
/*
* Skip unimplemented vectors in the exception bitmap.
*/
if (n == 2 || n == 9) {
continue;
}
svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
}
} else {
svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
}
/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_FERR_FREEZE);
svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
/*
* From section "Canonicalization and Consistency Checks" in APMv2
* the VMRUN intercept bit must be set to pass the consistency check.
*/
svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
/*
* The ASID will be set to a non-zero value just before VMRUN.
*/
ctrl->asid = 0;
/*
* Section 15.21.1, Interrupt Masking in EFLAGS
* Section 15.21.2, Virtualizing APIC.TPR
*
* This must be set for %rflag and %cr8 isolation of guest and host.
*/
ctrl->v_intr_masking = 1;
/* Enable Last Branch Record aka LBR for debugging */
ctrl->lbr_virt_en = 1;
state->dbgctl = BIT(0);
/* EFER_SVM must always be set when the guest is executing */
state->efer = EFER_SVM;
/* Set up the PAT to power-on state */
state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) |
PAT_VALUE(1, PAT_WRITE_THROUGH) |
PAT_VALUE(2, PAT_UNCACHED) |
PAT_VALUE(3, PAT_UNCACHEABLE) |
PAT_VALUE(4, PAT_WRITE_BACK) |
PAT_VALUE(5, PAT_WRITE_THROUGH) |
PAT_VALUE(6, PAT_UNCACHED) |
PAT_VALUE(7, PAT_UNCACHEABLE);
}
/*
* Initialize a virtual machine.
*/
static void *
svm_vminit(struct vm *vm, pmap_t pmap)
{
struct svm_softc *svm_sc;
struct svm_vcpu *vcpu;
vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
int i;
svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
svm_sc->vm = vm;
svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
/*
* Intercept read and write accesses to all MSRs.
*/
memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
/*
* Access to the following MSRs is redirected to the VMCB when the
* guest is executing. Therefore it is safe to allow the guest to
* read/write these MSRs directly without hypervisor involvement.
*/
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
/*
* Intercept writes to make sure that the EFER_SVM bit is not cleared.
*/
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
/* Intercept access to all I/O ports. */
memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
iopm_pa = vtophys(svm_sc->iopm_bitmap);
msrpm_pa = vtophys(svm_sc->msr_bitmap);
pml4_pa = svm_sc->nptp;
for (i = 0; i < VM_MAXCPU; i++) {
vcpu = svm_get_vcpu(svm_sc, i);
vcpu->nextrip = ~0;
vcpu->lastcpu = NOCPU;
vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
svm_msr_guest_init(svm_sc, i);
}
return (svm_sc);
}
static int
svm_cpl(struct vmcb_state *state)
{
/*
* From APMv2:
* "Retrieve the CPL from the CPL field in the VMCB, not
* from any segment DPL"
*/
return (state->cpl);
}
static enum vm_cpu_mode
svm_vcpu_mode(struct vmcb *vmcb)
{
struct vmcb_segment seg;
struct vmcb_state *state;
int error;
state = &vmcb->state;
if (state->efer & EFER_LMA) {
error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
error));
/*
* Section 4.8.1 for APM2, check if Code Segment has
* Long attribute set in descriptor.
*/
if (seg.attrib & VMCB_CS_ATTRIB_L)
return (CPU_MODE_64BIT);
else
return (CPU_MODE_COMPATIBILITY);
} else if (state->cr0 & CR0_PE) {
return (CPU_MODE_PROTECTED);
} else {
return (CPU_MODE_REAL);
}
}
static enum vm_paging_mode
svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
{
if ((cr0 & CR0_PG) == 0)
return (PAGING_MODE_FLAT);
if ((cr4 & CR4_PAE) == 0)
return (PAGING_MODE_32);
if (efer & EFER_LME)
return (PAGING_MODE_64);
else
return (PAGING_MODE_PAE);
}
/*
* ins/outs utility routines
*/
static uint64_t
svm_inout_str_index(struct svm_regctx *regs, int in)
{
uint64_t val;
val = in ? regs->sctx_rdi : regs->sctx_rsi;
return (val);
}
static uint64_t
svm_inout_str_count(struct svm_regctx *regs, int rep)
{
uint64_t val;
val = rep ? regs->sctx_rcx : 1;
return (val);
}
static void
svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
int in, struct vm_inout_str *vis)
{
int error, s;
if (in) {
vis->seg_name = VM_REG_GUEST_ES;
} else {
/* The segment field has standard encoding */
s = (info1 >> 10) & 0x7;
vis->seg_name = vm_segment_name(s);
}
error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
}
static int
svm_inout_str_addrsize(uint64_t info1)
{
uint32_t size;
size = (info1 >> 7) & 0x7;
switch (size) {
case 1:
return (2); /* 16 bit */
case 2:
return (4); /* 32 bit */
case 4:
return (8); /* 64 bit */
default:
panic("%s: invalid size encoding %d", __func__, size);
}
}
static void
svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
{
struct vmcb_state *state;
state = &vmcb->state;
paging->cr3 = state->cr3;
paging->cpl = svm_cpl(state);
paging->cpu_mode = svm_vcpu_mode(vmcb);
paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
state->efer);
}
#define UNHANDLED 0
/*
* Handle guest I/O intercept.
*/
static int
svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
struct svm_regctx *regs;
struct vm_inout_str *vis;
uint64_t info1;
int inout_string;
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
regs = svm_get_guest_regctx(svm_sc, vcpu);
info1 = ctrl->exitinfo1;
inout_string = info1 & BIT(2) ? 1 : 0;
/*
* The effective segment number in EXITINFO1[12:10] is populated
* only if the processor has the DecodeAssist capability.
*
* XXX this is not specified explicitly in APMv2 but can be verified
* empirically.
*/
if (inout_string && !decode_assist())
return (UNHANDLED);
vmexit->exitcode = VM_EXITCODE_INOUT;
vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0;
vmexit->u.inout.string = inout_string;
vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0;
vmexit->u.inout.bytes = (info1 >> 4) & 0x7;
vmexit->u.inout.port = (uint16_t)(info1 >> 16);
vmexit->u.inout.eax = (uint32_t)(state->rax);
if (inout_string) {
vmexit->exitcode = VM_EXITCODE_INOUT_STR;
vis = &vmexit->u.inout_str;
svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
vis->rflags = state->rflags;
vis->cr0 = state->cr0;
vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
vis->addrsize = svm_inout_str_addrsize(info1);
svm_inout_str_seginfo(svm_sc, vcpu, info1,
vmexit->u.inout.in, vis);
}
return (UNHANDLED);
}
static int
npf_fault_type(uint64_t exitinfo1)
{
if (exitinfo1 & VMCB_NPF_INFO1_W)
return (VM_PROT_WRITE);
else if (exitinfo1 & VMCB_NPF_INFO1_ID)
return (VM_PROT_EXECUTE);
else
return (VM_PROT_READ);
}
static bool
svm_npf_emul_fault(uint64_t exitinfo1)
{
if (exitinfo1 & VMCB_NPF_INFO1_ID) {
return (false);
}
if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
return (false);
}
if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
return (false);
}
return (true);
}
static void
svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
{
struct vm_guest_paging *paging;
struct vmcb_segment seg;
struct vmcb_ctrl *ctrl;
char *inst_bytes;
int error, inst_len;
ctrl = &vmcb->ctrl;
paging = &vmexit->u.inst_emul.paging;
vmexit->exitcode = VM_EXITCODE_INST_EMUL;
vmexit->u.inst_emul.gpa = gpa;
vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
svm_paging_info(vmcb, paging);
error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
switch(paging->cpu_mode) {
case CPU_MODE_PROTECTED:
case CPU_MODE_COMPATIBILITY:
/*
* Section 4.8.1 of APM2, Default Operand Size or D bit.
*/
vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
1 : 0;
break;
default:
vmexit->u.inst_emul.cs_d = 0;
break;
}
/*
* Copy the instruction bytes into 'vie' if available.
*/
if (decode_assist() && !disable_npf_assist) {
inst_len = ctrl->inst_len;
inst_bytes = ctrl->inst_bytes;
} else {
inst_len = 0;
inst_bytes = NULL;
}
vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
}
#ifdef KTR
static const char *
intrtype_to_str(int intr_type)
{
switch (intr_type) {
case VMCB_EVENTINJ_TYPE_INTR:
return ("hwintr");
case VMCB_EVENTINJ_TYPE_NMI:
return ("nmi");
case VMCB_EVENTINJ_TYPE_INTn:
return ("swintr");
case VMCB_EVENTINJ_TYPE_EXCEPTION:
return ("exception");
default:
panic("%s: unknown intr_type %d", __func__, intr_type);
}
}
#endif
/*
* Inject an event to vcpu as described in section 15.20, "Event injection".
*/
static void
svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
uint32_t error, bool ec_valid)
{
struct vmcb_ctrl *ctrl;
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
("%s: event already pending %#lx", __func__, ctrl->eventinj));
KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
__func__, vector));
switch (intr_type) {
case VMCB_EVENTINJ_TYPE_INTR:
case VMCB_EVENTINJ_TYPE_NMI:
case VMCB_EVENTINJ_TYPE_INTn:
break;
case VMCB_EVENTINJ_TYPE_EXCEPTION:
if (vector >= 0 && vector <= 31 && vector != 2)
break;
/* FALLTHROUGH */
default:
panic("%s: invalid intr_type/vector: %d/%d", __func__,
intr_type, vector);
}
ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
if (ec_valid) {
ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
ctrl->eventinj |= (uint64_t)error << 32;
VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
intrtype_to_str(intr_type), vector, error);
} else {
VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
intrtype_to_str(intr_type), vector);
}
}
static void
svm_update_virqinfo(struct svm_softc *sc, int vcpu)
{
struct vm *vm;
struct vlapic *vlapic;
struct vmcb_ctrl *ctrl;
int pending;
vm = sc->vm;
vlapic = vm_lapic(vm, vcpu);
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
/* Update %cr8 in the emulated vlapic */
vlapic_set_cr8(vlapic, ctrl->v_tpr);
/*
* If V_IRQ indicates that the interrupt injection attempted on then
* last VMRUN was successful then update the vlapic accordingly.
*/
if (ctrl->v_intr_vector != 0) {
pending = ctrl->v_irq;
KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
"v_intr_vector %d", __func__, ctrl->v_intr_vector));
KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
pending ? "pending" : "accepted");
if (!pending)
vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
}
}
static void
svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
uint64_t intinfo;
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
intinfo = ctrl->exitintinfo;
if (!VMCB_EXITINTINFO_VALID(intinfo))
return;
/*
* From APMv2, Section "Intercepts during IDT interrupt delivery"
*
* If a #VMEXIT happened during event delivery then record the event
* that was being delivered.
*/
VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
}
static __inline int
vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
{
return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_VINTR));
}
static __inline void
enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
KASSERT(vintr_intercept_enabled(sc, vcpu),
("%s: vintr intercept should be enabled", __func__));
return;
}
VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
ctrl->v_irq = 1;
ctrl->v_ign_tpr = 1;
ctrl->v_intr_vector = 0;
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
}
static __inline void
disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
KASSERT(!vintr_intercept_enabled(sc, vcpu),
("%s: vintr intercept should be disabled", __func__));
return;
}
#ifdef KTR
if (ctrl->v_intr_vector == 0)
VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
else
VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
#endif
ctrl->v_irq = 0;
ctrl->v_intr_vector = 0;
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
}
static int
svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
{
struct vmcb_ctrl *ctrl;
int oldval, newval;
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
oldval = ctrl->intr_shadow;
newval = val ? 1 : 0;
if (newval != oldval) {
ctrl->intr_shadow = newval;
VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
}
return (0);
}
static int
svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
{
struct vmcb_ctrl *ctrl;
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
*val = ctrl->intr_shadow;
return (0);
}
/*
* Once an NMI is injected it blocks delivery of further NMIs until the handler
* executes an IRET. The IRET intercept is enabled when an NMI is injected to
* to track when the vcpu is done handling the NMI.
*/
static int
nmi_blocked(struct svm_softc *sc, int vcpu)
{
int blocked;
blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_IRET);
return (blocked);
}
static void
enable_nmi_blocking(struct svm_softc *sc, int vcpu)
{
KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
}
static void
clear_nmi_blocking(struct svm_softc *sc, int vcpu)
{
int error;
KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
/*
* When the IRET intercept is cleared the vcpu will attempt to execute
* the "iret" when it runs next. However, it is possible to inject
* another NMI into the vcpu before the "iret" has actually executed.
*
* For e.g. if the "iret" encounters a #NPF when accessing the stack
* it will trap back into the hypervisor. If an NMI is pending for
* the vcpu it will be injected into the guest.
*
* XXX this needs to be fixed
*/
svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
/*
* Set 'intr_shadow' to prevent an NMI from being injected on the
* immediate VMRUN.
*/
error = svm_modify_intr_shadow(sc, vcpu, 1);
KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
}
static int
emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
bool *retu)
{
int error;
if (lapic_msr(num))
error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
else if (num == MSR_EFER)
error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val);
else
error = svm_wrmsr(sc, vcpu, num, val, retu);
return (error);
}
static int
emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
{
struct vmcb_state *state;
struct svm_regctx *ctx;
uint64_t result;
int error;
if (lapic_msr(num))
error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
else
error = svm_rdmsr(sc, vcpu, num, &result, retu);
if (error == 0) {
state = svm_get_vmcb_state(sc, vcpu);
ctx = svm_get_guest_regctx(sc, vcpu);
state->rax = result & 0xffffffff;
ctx->sctx_rdx = result >> 32;
}
return (error);
}
#ifdef KTR
static const char *
exit_reason_to_str(uint64_t reason)
{
static char reasonbuf[32];
switch (reason) {
case VMCB_EXIT_INVALID:
return ("invalvmcb");
case VMCB_EXIT_SHUTDOWN:
return ("shutdown");
case VMCB_EXIT_NPF:
return ("nptfault");
case VMCB_EXIT_PAUSE:
return ("pause");
case VMCB_EXIT_HLT:
return ("hlt");
case VMCB_EXIT_CPUID:
return ("cpuid");
case VMCB_EXIT_IO:
return ("inout");
case VMCB_EXIT_MC:
return ("mchk");
case VMCB_EXIT_INTR:
return ("extintr");
case VMCB_EXIT_NMI:
return ("nmi");
case VMCB_EXIT_VINTR:
return ("vintr");
case VMCB_EXIT_MSR:
return ("msr");
case VMCB_EXIT_IRET:
return ("iret");
case VMCB_EXIT_MONITOR:
return ("monitor");
case VMCB_EXIT_MWAIT:
return ("mwait");
default:
snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
return (reasonbuf);
}
}
#endif /* KTR */
/*
* From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
* that are due to instruction intercepts as well as MSR and IOIO intercepts
* and exceptions caused by INT3, INTO and BOUND instructions.
*
* Return 1 if the nRIP is valid and 0 otherwise.
*/
static int
nrip_valid(uint64_t exitcode)
{
switch (exitcode) {
case 0x00 ... 0x0F: /* read of CR0 through CR15 */
case 0x10 ... 0x1F: /* write of CR0 through CR15 */
case 0x20 ... 0x2F: /* read of DR0 through DR15 */
case 0x30 ... 0x3F: /* write of DR0 through DR15 */
case 0x43: /* INT3 */
case 0x44: /* INTO */
case 0x45: /* BOUND */
case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */
return (1);
default:
return (0);
}
}
/*
* Collateral for a generic SVM VM-exit.
*/
static void
vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
{
vme->exitcode = VM_EXITCODE_SVM;
vme->u.svm.exitcode = code;
vme->u.svm.exitinfo1 = info1;
vme->u.svm.exitinfo2 = info2;
}
static int
svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
{
struct vmcb *vmcb;
struct vmcb_state *state;
struct vmcb_ctrl *ctrl;
struct svm_regctx *ctx;
struct vm_exception exception;
uint64_t code, info1, info2, val;
uint32_t eax, ecx, edx;
int error, errcode_valid, handled, idtvec, reflect;
bool retu;
ctx = svm_get_guest_regctx(svm_sc, vcpu);
vmcb = svm_get_vmcb(svm_sc, vcpu);
state = &vmcb->state;
ctrl = &vmcb->ctrl;
handled = 0;
code = ctrl->exitcode;
info1 = ctrl->exitinfo1;
info2 = ctrl->exitinfo2;
vmexit->exitcode = VM_EXITCODE_BOGUS;
vmexit->rip = state->rip;
vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
/*
* #VMEXIT(INVALID) needs to be handled early because the VMCB is
* in an inconsistent state and can trigger assertions that would
* never happen otherwise.
*/
if (code == VMCB_EXIT_INVALID) {
vm_exit_svm(vmexit, code, info1, info2);
return (0);
}
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
"injection valid bit is set %#lx", __func__, ctrl->eventinj));
KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
vmexit->inst_length, code, info1, info2));
svm_update_virqinfo(svm_sc, vcpu);
svm_save_intinfo(svm_sc, vcpu);
switch (code) {
case VMCB_EXIT_IRET:
/*
* Restart execution at "iret" but with the intercept cleared.
*/
vmexit->inst_length = 0;
clear_nmi_blocking(svm_sc, vcpu);
handled = 1;
break;
case VMCB_EXIT_VINTR: /* interrupt window exiting */
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
handled = 1;
break;
case VMCB_EXIT_INTR: /* external interrupt */
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
handled = 1;
break;
case VMCB_EXIT_NMI: /* external NMI */
handled = 1;
break;
case 0x40 ... 0x5F:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
reflect = 1;
idtvec = code - 0x40;
switch (idtvec) {
case IDT_MC:
/*
* Call the machine check handler by hand. Also don't
* reflect the machine check back into the guest.
*/
reflect = 0;
VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
__asm __volatile("int $18");
break;
case IDT_PF:
error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
info2);
KASSERT(error == 0, ("%s: error %d updating cr2",
__func__, error));
/* fallthru */
case IDT_NP:
case IDT_SS:
case IDT_GP:
case IDT_AC:
case IDT_TS:
errcode_valid = 1;
break;
case IDT_DF:
errcode_valid = 1;
info1 = 0;
break;
case IDT_BP:
case IDT_OF:
case IDT_BR:
/*
* The 'nrip' field is populated for INT3, INTO and
* BOUND exceptions and this also implies that
* 'inst_length' is non-zero.
*
* Reset 'inst_length' to zero so the guest %rip at
* event injection is identical to what it was when
* the exception originally happened.
*/
VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
"to zero before injecting exception %d",
vmexit->inst_length, idtvec);
vmexit->inst_length = 0;
/* fallthru */
default:
errcode_valid = 0;
break;
}
KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
"when reflecting exception %d into guest",
vmexit->inst_length, idtvec));
if (reflect) {
/* Reflect the exception back into the guest */
bzero(&exception, sizeof(struct vm_exception));
exception.vector = idtvec;
if (errcode_valid) {
exception.error_code = info1;
exception.error_code_valid = 1;
}
VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
"%d/%#x into the guest", exception.vector,
exception.error_code);
error = vm_inject_exception(svm_sc->vm, vcpu,
&exception);
KASSERT(error == 0, ("%s: vm_inject_exception error %d",
__func__, error));
}
handled = 1;
break;
case VMCB_EXIT_MSR: /* MSR access. */
eax = state->rax;
ecx = ctx->sctx_rcx;
edx = ctx->sctx_rdx;
retu = false;
if (info1) {
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
val = (uint64_t)edx << 32 | eax;
VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
ecx, val);
if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
vmexit->exitcode = VM_EXITCODE_WRMSR;
vmexit->u.msr.code = ecx;
vmexit->u.msr.wval = val;
} else if (!retu) {
handled = 1;
} else {
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
("emulate_wrmsr retu with bogus exitcode"));
}
} else {
VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
vmexit->exitcode = VM_EXITCODE_RDMSR;
vmexit->u.msr.code = ecx;
} else if (!retu) {
handled = 1;
} else {
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
("emulate_rdmsr retu with bogus exitcode"));
}
}
break;
case VMCB_EXIT_IO:
handled = svm_handle_io(svm_sc, vcpu, vmexit);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
break;
case VMCB_EXIT_CPUID:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
(uint32_t *)&state->rax,
(uint32_t *)&ctx->sctx_rbx,
(uint32_t *)&ctx->sctx_rcx,
(uint32_t *)&ctx->sctx_rdx);
break;
case VMCB_EXIT_HLT:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
vmexit->exitcode = VM_EXITCODE_HLT;
vmexit->u.hlt.rflags = state->rflags;
break;
case VMCB_EXIT_PAUSE:
vmexit->exitcode = VM_EXITCODE_PAUSE;
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
break;
case VMCB_EXIT_NPF:
/* EXITINFO2 contains the faulting guest physical address */
if (info1 & VMCB_NPF_INFO1_RSV) {
VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
"reserved bits set: info1(%#lx) info2(%#lx)",
info1, info2);
} else if (vm_mem_allocated(svm_sc->vm, info2)) {
vmexit->exitcode = VM_EXITCODE_PAGING;
vmexit->u.paging.gpa = info2;
vmexit->u.paging.fault_type = npf_fault_type(info1);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
"on gpa %#lx/%#lx at rip %#lx",
info2, info1, state->rip);
} else if (svm_npf_emul_fault(info1)) {
svm_handle_inst_emul(vmcb, info2, vmexit);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
"for gpa %#lx/%#lx at rip %#lx",
info2, info1, state->rip);
}
break;
case VMCB_EXIT_MONITOR:
vmexit->exitcode = VM_EXITCODE_MONITOR;
break;
case VMCB_EXIT_MWAIT:
vmexit->exitcode = VM_EXITCODE_MWAIT;
break;
default:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
break;
}
VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
handled ? "handled" : "unhandled", exit_reason_to_str(code),
vmexit->rip, vmexit->inst_length);
if (handled) {
vmexit->rip += vmexit->inst_length;
vmexit->inst_length = 0;
state->rip = vmexit->rip;
} else {
if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
/*
* If this VM exit was not claimed by anybody then
* treat it as a generic SVM exit.
*/
vm_exit_svm(vmexit, code, info1, info2);
} else {
/*
* The exitcode and collateral have been populated.
* The VM exit will be processed further in userland.
*/
}
}
return (handled);
}
static void
svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
{
uint64_t intinfo;
if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
return;
KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
"valid: %#lx", __func__, intinfo));
svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
VMCB_EXITINTINFO_VECTOR(intinfo),
VMCB_EXITINTINFO_EC(intinfo),
VMCB_EXITINTINFO_EC_VALID(intinfo));
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
}
/*
* Inject event to virtual cpu.
*/
static void
svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
struct svm_vcpu *vcpustate;
uint8_t v_tpr;
int vector, need_intr_window, pending_apic_vector;
state = svm_get_vmcb_state(sc, vcpu);
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
vcpustate = svm_get_vcpu(sc, vcpu);
need_intr_window = 0;
pending_apic_vector = 0;
if (vcpustate->nextrip != state->rip) {
ctrl->intr_shadow = 0;
VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
"cleared due to rip change: %#lx/%#lx",
vcpustate->nextrip, state->rip);
}
/*
* Inject pending events or exceptions for this vcpu.
*
* An event might be pending because the previous #VMEXIT happened
* during event delivery (i.e. ctrl->exitintinfo).
*
* An event might also be pending because an exception was injected
* by the hypervisor (e.g. #PF during instruction emulation).
*/
svm_inj_intinfo(sc, vcpu);
/* NMI event has priority over interrupts. */
if (vm_nmi_pending(sc->vm, vcpu)) {
if (nmi_blocked(sc, vcpu)) {
/*
* Can't inject another NMI if the guest has not
* yet executed an "iret" after the last NMI.
*/
VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
"to NMI-blocking");
} else if (ctrl->intr_shadow) {
/*
* Can't inject an NMI if the vcpu is in an intr_shadow.
*/
VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
"interrupt shadow");
need_intr_window = 1;
goto done;
} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
/*
* If there is already an exception/interrupt pending
* then defer the NMI until after that.
*/
VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
"eventinj %#lx", ctrl->eventinj);
/*
* Use self-IPI to trigger a VM-exit as soon as
* possible after the event injection is completed.
*
* This works only if the external interrupt exiting
* is at a lower priority than the event injection.
*
* Although not explicitly specified in APMv2 the
* relative priorities were verified empirically.
*/
ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */
} else {
vm_nmi_clear(sc->vm, vcpu);
/* Inject NMI, vector number is not used */
svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
IDT_NMI, 0, false);
/* virtual NMI blocking is now in effect */
enable_nmi_blocking(sc, vcpu);
VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
}
}
if (!vm_extint_pending(sc->vm, vcpu)) {
/*
* APIC interrupts are delivered using the V_IRQ offload.
*
* The primary benefit is that the hypervisor doesn't need to
* deal with the various conditions that inhibit interrupts.
* It also means that TPR changes via CR8 will be handled
* without any hypervisor involvement.
*
* Note that the APIC vector must remain pending in the vIRR
* until it is confirmed that it was delivered to the guest.
* This can be confirmed based on the value of V_IRQ at the
* next #VMEXIT (1 = pending, 0 = delivered).
*
* Also note that it is possible that another higher priority
* vector can become pending before this vector is delivered
* to the guest. This is alright because vcpu_notify_event()
* will send an IPI and force the vcpu to trap back into the
* hypervisor. The higher priority vector will be injected on
* the next VMRUN.
*/
if (vlapic_pending_intr(vlapic, &vector)) {
KASSERT(vector >= 16 && vector <= 255,
("invalid vector %d from local APIC", vector));
pending_apic_vector = vector;
}
goto done;
}
/* Ask the legacy pic for a vector to inject */
vatpic_pending_intr(sc->vm, &vector);
KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
vector));
/*
* If the guest has disabled interrupts or is in an interrupt shadow
* then we cannot inject the pending interrupt.
*/
if ((state->rflags & PSL_I) == 0) {
VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
"rflags %#lx", vector, state->rflags);
need_intr_window = 1;
goto done;
}
if (ctrl->intr_shadow) {
VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
"interrupt shadow", vector);
need_intr_window = 1;
goto done;
}
if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
"eventinj %#lx", vector, ctrl->eventinj);
need_intr_window = 1;
goto done;
}
/*
* Legacy PIC interrupts are delivered via the event injection
* mechanism.
*/
svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
vm_extint_clear(sc->vm, vcpu);
vatpic_intr_accepted(sc->vm, vector);
/*
* Force a VM-exit as soon as the vcpu is ready to accept another
* interrupt. This is done because the PIC might have another vector
* that it wants to inject. Also, if the APIC has a pending interrupt
* that was preempted by the ExtInt then it allows us to inject the
* APIC vector as soon as possible.
*/
need_intr_window = 1;
done:
/*
* The guest can modify the TPR by writing to %CR8. In guest mode
* the processor reflects this write to V_TPR without hypervisor
* intervention.
*
* The guest can also modify the TPR by writing to it via the memory
* mapped APIC page. In this case, the write will be emulated by the
* hypervisor. For this reason V_TPR must be updated before every
* VMRUN.
*/
v_tpr = vlapic_get_cr8(vlapic);
KASSERT(v_tpr >= 0 && v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
if (ctrl->v_tpr != v_tpr) {
VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
ctrl->v_tpr, v_tpr);
ctrl->v_tpr = v_tpr;
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
}
if (pending_apic_vector) {
/*
* If an APIC vector is being injected then interrupt window
* exiting is not possible on this VMRUN.
*/
KASSERT(!need_intr_window, ("intr_window exiting impossible"));
VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
pending_apic_vector);
ctrl->v_irq = 1;
ctrl->v_ign_tpr = 0;
ctrl->v_intr_vector = pending_apic_vector;
ctrl->v_intr_prio = pending_apic_vector >> 4;
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
} else if (need_intr_window) {
/*
* We use V_IRQ in conjunction with the VINTR intercept to
* trap into the hypervisor as soon as a virtual interrupt
* can be delivered.
*
* Since injected events are not subject to intercept checks
* we need to ensure that the V_IRQ is not actually going to
* be delivered on VM entry. The KASSERT below enforces this.
*/
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
(state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
("Bogus intr_window_exiting: eventinj (%#lx), "
"intr_shadow (%u), rflags (%#lx)",
ctrl->eventinj, ctrl->intr_shadow, state->rflags));
enable_intr_window_exiting(sc, vcpu);
} else {
disable_intr_window_exiting(sc, vcpu);
}
}
static __inline void
restore_host_tss(void)
{
struct system_segment_descriptor *tss_sd;
/*
* The TSS descriptor was in use prior to launching the guest so it
* has been marked busy.
*
* 'ltr' requires the descriptor to be marked available so change the
* type to "64-bit available TSS".
*/
tss_sd = PCPU_GET(tss);
tss_sd->sd_type = SDT_SYSTSS;
ltr(GSEL(GPROC0_SEL, SEL_KPL));
}
static void
check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
{
struct svm_vcpu *vcpustate;
struct vmcb_ctrl *ctrl;
long eptgen;
bool alloc_asid;
KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
"active on cpu %u", __func__, thiscpu));
vcpustate = svm_get_vcpu(sc, vcpuid);
ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
/*
* The TLB entries associated with the vcpu's ASID are not valid
* if either of the following conditions is true:
*
* 1. The vcpu's ASID generation is different than the host cpu's
* ASID generation. This happens when the vcpu migrates to a new
* host cpu. It can also happen when the number of vcpus executing
* on a host cpu is greater than the number of ASIDs available.
*
* 2. The pmap generation number is different than the value cached in
* the 'vcpustate'. This happens when the host invalidates pages
* belonging to the guest.
*
* asidgen eptgen Action
* mismatch mismatch
* 0 0 (a)
* 0 1 (b1) or (b2)
* 1 0 (c)
* 1 1 (d)
*
* (a) There is no mismatch in eptgen or ASID generation and therefore
* no further action is needed.
*
* (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
* retained and the TLB entries associated with this ASID
* are flushed by VMRUN.
*
* (b2) If the cpu does not support FlushByAsid then a new ASID is
* allocated.
*
* (c) A new ASID is allocated.
*
* (d) A new ASID is allocated.
*/
alloc_asid = false;
eptgen = pmap->pm_eptgen;
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
if (vcpustate->asid.gen != asid[thiscpu].gen) {
alloc_asid = true; /* (c) and (d) */
} else if (vcpustate->eptgen != eptgen) {
if (flush_by_asid())
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */
else
alloc_asid = true; /* (b2) */
} else {
/*
* This is the common case (a).
*/
KASSERT(!alloc_asid, ("ASID allocation not necessary"));
KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
}
if (alloc_asid) {
if (++asid[thiscpu].num >= nasid) {
asid[thiscpu].num = 1;
if (++asid[thiscpu].gen == 0)
asid[thiscpu].gen = 1;
/*
* If this cpu does not support "flush-by-asid"
* then flush the entire TLB on a generation
* bump. Subsequent ASID allocation in this
* generation can be done without a TLB flush.
*/
if (!flush_by_asid())
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
}
vcpustate->asid.gen = asid[thiscpu].gen;
vcpustate->asid.num = asid[thiscpu].num;
ctrl->asid = vcpustate->asid.num;
svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
/*
* If this cpu supports "flush-by-asid" then the TLB
* was not flushed after the generation bump. The TLB
* is flushed selectively after every new ASID allocation.
*/
if (flush_by_asid())
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
}
vcpustate->eptgen = eptgen;
KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
KASSERT(ctrl->asid == vcpustate->asid.num,
("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
}
static __inline void
disable_gintr(void)
{
__asm __volatile("clgi" : : :);
}
static __inline void
enable_gintr(void)
{
__asm __volatile("stgi" : : :);
}
/*
* Start vcpu with specified RIP.
*/
static int
svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
void *rend_cookie, void *suspended_cookie)
{
struct svm_regctx *gctx;
struct svm_softc *svm_sc;
struct svm_vcpu *vcpustate;
struct vmcb_state *state;
struct vmcb_ctrl *ctrl;
struct vm_exit *vmexit;
struct vlapic *vlapic;
struct vm *vm;
uint64_t vmcb_pa;
u_int thiscpu;
int handled;
svm_sc = arg;
vm = svm_sc->vm;
vcpustate = svm_get_vcpu(svm_sc, vcpu);
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
vmexit = vm_exitinfo(vm, vcpu);
vlapic = vm_lapic(vm, vcpu);
/*
* Stash 'curcpu' on the stack as 'thiscpu'.
*
* The per-cpu data area is not accessible until MSR_GSBASE is restored
* after the #VMEXIT. Since VMRUN is executed inside a critical section
* 'curcpu' and 'thiscpu' are guaranteed to identical.
*/
thiscpu = curcpu;
gctx = svm_get_guest_regctx(svm_sc, vcpu);
vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
if (vcpustate->lastcpu != thiscpu) {
/*
* Force new ASID allocation by invalidating the generation.
*/
vcpustate->asid.gen = 0;
/*
* Invalidate the VMCB state cache by marking all fields dirty.
*/
svm_set_dirty(svm_sc, vcpu, 0xffffffff);
/*
* XXX
* Setting 'vcpustate->lastcpu' here is bit premature because
* we may return from this function without actually executing
* the VMRUN instruction. This could happen if a rendezvous
* or an AST is pending on the first time through the loop.
*
* This works for now but any new side-effects of vcpu
* migration should take this case into account.
*/
vcpustate->lastcpu = thiscpu;
vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
}
svm_msr_guest_enter(svm_sc, vcpu);
/* Update Guest RIP */
state->rip = rip;
do {
/*
* Disable global interrupts to guarantee atomicity during
* loading of guest state. This includes not only the state
* loaded by the "vmrun" instruction but also software state
* maintained by the hypervisor: suspended and rendezvous
* state, NPT generation number, vlapic interrupts etc.
*/
disable_gintr();
if (vcpu_suspended(suspended_cookie)) {
enable_gintr();
vm_exit_suspended(vm, vcpu, state->rip);
break;
}
if (vcpu_rendezvous_pending(rend_cookie)) {
enable_gintr();
vm_exit_rendezvous(vm, vcpu, state->rip);
break;
}
/* We are asked to give the cpu by scheduler. */
if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
enable_gintr();
vm_exit_astpending(vm, vcpu, state->rip);
break;
}
svm_inj_interrupts(svm_sc, vcpu, vlapic);
/* Activate the nested pmap on 'thiscpu' */
CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
/*
* Check the pmap generation and the ASID generation to
* ensure that the vcpu does not use stale TLB mappings.
*/
check_asid(svm_sc, vcpu, pmap, thiscpu);
ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
vcpustate->dirty = 0;
VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
/* Launch Virtual Machine. */
VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
svm_launch(vmcb_pa, gctx);
CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
/*
* Restore MSR_GSBASE to point to the pcpu data area.
*
* Note that accesses done via PCPU_GET/PCPU_SET will work
* only after MSR_GSBASE is restored.
*
* Also note that we don't bother restoring MSR_KGSBASE
* since it is not used in the kernel and will be restored
* when the VMRUN ioctl returns to userspace.
*/
wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
thiscpu, curcpu));
/*
* The host GDTR and IDTR is saved by VMRUN and restored
* automatically on #VMEXIT. However, the host TSS needs
* to be restored explicitly.
*/
restore_host_tss();
/* #VMEXIT disables interrupts so re-enable them here. */
enable_gintr();
/* Update 'nextrip' */
vcpustate->nextrip = state->rip;
/* Handle #VMEXIT and if required return to user space. */
handled = svm_vmexit(svm_sc, vcpu, vmexit);
} while (handled);
svm_msr_guest_exit(svm_sc, vcpu);
return (0);
}
static void
svm_vmcleanup(void *arg)
{
struct svm_softc *sc = arg;
free(sc, M_SVM);
}
static register_t *
swctx_regptr(struct svm_regctx *regctx, int reg)
{
switch (reg) {
case VM_REG_GUEST_RBX:
return (&regctx->sctx_rbx);
case VM_REG_GUEST_RCX:
return (&regctx->sctx_rcx);
case VM_REG_GUEST_RDX:
return (&regctx->sctx_rdx);
case VM_REG_GUEST_RDI:
return (&regctx->sctx_rdi);
case VM_REG_GUEST_RSI:
return (&regctx->sctx_rsi);
case VM_REG_GUEST_RBP:
return (&regctx->sctx_rbp);
case VM_REG_GUEST_R8:
return (&regctx->sctx_r8);
case VM_REG_GUEST_R9:
return (&regctx->sctx_r9);
case VM_REG_GUEST_R10:
return (&regctx->sctx_r10);
case VM_REG_GUEST_R11:
return (&regctx->sctx_r11);
case VM_REG_GUEST_R12:
return (&regctx->sctx_r12);
case VM_REG_GUEST_R13:
return (&regctx->sctx_r13);
case VM_REG_GUEST_R14:
return (&regctx->sctx_r14);
case VM_REG_GUEST_R15:
return (&regctx->sctx_r15);
default:
return (NULL);
}
}
static int
svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
{
struct svm_softc *svm_sc;
register_t *reg;
svm_sc = arg;
if (ident == VM_REG_GUEST_INTR_SHADOW) {
return (svm_get_intr_shadow(svm_sc, vcpu, val));
}
if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
return (0);
}
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
if (reg != NULL) {
*val = *reg;
return (0);
}
VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
return (EINVAL);
}
static int
svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
{
struct svm_softc *svm_sc;
register_t *reg;
svm_sc = arg;
if (ident == VM_REG_GUEST_INTR_SHADOW) {
return (svm_modify_intr_shadow(svm_sc, vcpu, val));
}
if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
return (0);
}
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
if (reg != NULL) {
*reg = val;
return (0);
}
/*
* XXX deal with CR3 and invalidate TLB entries tagged with the
* vcpu's ASID. This needs to be treated differently depending on
* whether 'running' is true/false.
*/
VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
return (EINVAL);
}
static int
svm_setcap(void *arg, int vcpu, int type, int val)
{
struct svm_softc *sc;
int error;
sc = arg;
error = 0;
switch (type) {
case VM_CAP_HALT_EXIT:
svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_HLT, val);
break;
case VM_CAP_PAUSE_EXIT:
svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_PAUSE, val);
break;
case VM_CAP_UNRESTRICTED_GUEST:
/* Unrestricted guest execution cannot be disabled in SVM */
if (val == 0)
error = EINVAL;
break;
default:
error = ENOENT;
break;
}
return (error);
}
static int
svm_getcap(void *arg, int vcpu, int type, int *retval)
{
struct svm_softc *sc;
int error;
sc = arg;
error = 0;
switch (type) {
case VM_CAP_HALT_EXIT:
*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_HLT);
break;
case VM_CAP_PAUSE_EXIT:
*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
VMCB_INTCPT_PAUSE);
break;
case VM_CAP_UNRESTRICTED_GUEST:
*retval = 1; /* unrestricted guest is always enabled */
break;
default:
error = ENOENT;
break;
}
return (error);
}
static struct vlapic *
svm_vlapic_init(void *arg, int vcpuid)
{
struct svm_softc *svm_sc;
struct vlapic *vlapic;
svm_sc = arg;
vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
vlapic->vm = svm_sc->vm;
vlapic->vcpuid = vcpuid;
vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
vlapic_init(vlapic);
return (vlapic);
}
static void
svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
{
vlapic_cleanup(vlapic);
free(vlapic, M_SVM_VLAPIC);
}
struct vmm_ops vmm_ops_amd = {
svm_init,
svm_cleanup,
svm_restore,
svm_vminit,
svm_vmrun,
svm_vmcleanup,
svm_getreg,
svm_setreg,
vmcb_getdesc,
vmcb_setdesc,
svm_getcap,
svm_setcap,
svm_npt_alloc,
svm_npt_free,
svm_vlapic_init,
svm_vlapic_cleanup
};