freebsd-skq/sys/geom/bde/g_bde_lock.c

479 lines
12 KiB
C

/*-
* Copyright (c) 2002 Poul-Henning Kamp
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Poul-Henning Kamp
* and NAI Labs, the Security Research Division of Network Associates, Inc.
* under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
* DARPA CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*
* This souce file contains routines which operates on the lock sectors, both
* for the kernel and the userland program gbde(1).
*
*/
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/endian.h>
#include <sys/md5.h>
#ifdef _KERNEL
#include <sys/malloc.h>
#include <sys/systm.h>
#else
#include <err.h>
#define CTASSERT(foo)
#define KASSERT(foo, bar) do { if(!(foo)) { warn bar ; exit (1); } } while (0)
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#define g_free(foo) free(foo)
#endif
#include <crypto/rijndael/rijndael.h>
#include <crypto/sha2/sha2.h>
#include <geom/geom.h>
#include <geom/bde/g_bde.h>
/*
* Hash the raw pass-phrase.
*
* Security objectives: produce from the pass-phrase a fixed length
* bytesequence with PRN like properties in a reproducible way retaining
* as much entropy from the pass-phrase as possible.
*
* SHA2-512 makes this easy.
*/
void
g_bde_hash_pass(struct g_bde_softc *sc, const void *input, u_int len)
{
SHA512_CTX cx;
SHA512_Init(&cx);
SHA512_Update(&cx, input, len);
SHA512_Final(sc->sha2, &cx);
}
/*
* Encode/Decode the lock structure in byte-sequence format.
*
* Security objectives: Store in pass-phrase dependent variant format.
*
* C-structure packing and byte-endianess depends on architecture, compiler
* and compiler options. Writing raw structures to disk is therefore a bad
* idea in these enlightend days.
*
* We spend a fraction of the key-material on shuffling the fields around
* so they will be stored in an unpredictable sequence.
*
* For each byte of the key-material we derive two field indexes, and swap
* the position of those two fields.
*
* I have not worked out the statistical properties of this shuffle, but
* given that the key-material has PRN properties, the primary objective
* of making it hard to figure out which bits are where in the lock sector
* is sufficiently fulfilled.
*
* We include (and shuffle) an extra hash field in the stored version for
* identification and versioning purposes. This field contains the MD5 hash
* of a version identifier (currently "0000") followed by the stored lock
* sector byte-sequence substituting zero bytes for the hash field.
*
* The stored keysequence is protected by AES/256/CBC elsewhere in the code
* so the fact that the generated byte sequence has a much higher than
* average density of zero bits (from the numeric fields) is not currently
* a concern.
*
* Should this later become a concern, a simple software update and
* pass-phrase change can remedy the situation. One possible solution
* could be to XOR the numeric fields with a key-material derived PRN.
*
* The chosen shuffle algorithm only works as long as we have no more than 16
* fields in the stored part of the lock structure (hence the CTASSERT below).
*/
CTASSERT(NLOCK_FIELDS <= 16);
static void
g_bde_shuffle_lock(u_char *sha2, int *buf)
{
int j, k, l;
u_int u;
/* Assign the fields sequential positions */
for(u = 0; u < NLOCK_FIELDS; u++)
buf[u] = u;
/* Then mix it all up */
for(u = 48; u < SHA512_DIGEST_LENGTH; u++) {
j = sha2[u] % NLOCK_FIELDS;
k = (sha2[u] / NLOCK_FIELDS) % NLOCK_FIELDS;
l = buf[j];
buf[j] = buf[k];
buf[k] = l;
}
}
int
g_bde_encode_lock(u_char *sha2, struct g_bde_key *gl, u_char *ptr)
{
int shuffle[NLOCK_FIELDS];
u_char *hash, *p;
int i;
MD5_CTX c;
p = ptr;
hash = NULL;
g_bde_shuffle_lock(sha2, shuffle);
for (i = 0; i < NLOCK_FIELDS; i++) {
switch(shuffle[i]) {
case 0:
le64enc(p, gl->sector0);
p += 8;
break;
case 1:
le64enc(p, gl->sectorN);
p += 8;
break;
case 2:
le64enc(p, gl->keyoffset);
p += 8;
break;
case 3:
le32enc(p, gl->sectorsize);
p += 4;
break;
case 4:
le32enc(p, gl->flags);
p += 4;
break;
case 5:
case 6:
case 7:
case 8:
le64enc(p, gl->lsector[shuffle[i] - 5]);
p += 8;
break;
case 9:
bcopy(gl->spare, p, sizeof gl->spare);
p += sizeof gl->spare;
break;
case 10:
bcopy(gl->salt, p, sizeof gl->salt);
p += sizeof gl->salt;
break;
case 11:
bcopy(gl->mkey, p, sizeof gl->mkey);
p += sizeof gl->mkey;
break;
case 12:
bzero(p, 16);
hash = p;
p += 16;
break;
}
}
if(ptr + G_BDE_LOCKSIZE != p)
return(-1);
if (hash == NULL)
return(-1);
MD5Init(&c);
MD5Update(&c, "0000", 4); /* Versioning */
MD5Update(&c, ptr, G_BDE_LOCKSIZE);
MD5Final(hash, &c);
return(0);
}
int
g_bde_decode_lock(struct g_bde_softc *sc, struct g_bde_key *gl, u_char *ptr)
{
int shuffle[NLOCK_FIELDS];
u_char *p;
u_char hash[16], hash2[16];
MD5_CTX c;
int i;
p = ptr;
g_bde_shuffle_lock(sc->sha2, shuffle);
for (i = 0; i < NLOCK_FIELDS; i++) {
switch(shuffle[i]) {
case 0:
gl->sector0 = le64dec(p);
p += 8;
break;
case 1:
gl->sectorN = le64dec(p);
p += 8;
break;
case 2:
gl->keyoffset = le64dec(p);
p += 8;
break;
case 3:
gl->sectorsize = le32dec(p);
p += 4;
break;
case 4:
gl->flags = le32dec(p);
p += 4;
break;
case 5:
case 6:
case 7:
case 8:
gl->lsector[shuffle[i] - 5] = le64dec(p);
p += 8;
break;
case 9:
bcopy(p, gl->spare, sizeof gl->spare);
p += sizeof gl->spare;
break;
case 10:
bcopy(p, gl->salt, sizeof gl->salt);
p += sizeof gl->salt;
break;
case 11:
bcopy(p, gl->mkey, sizeof gl->mkey);
p += sizeof gl->mkey;
break;
case 12:
bcopy(p, hash2, sizeof hash2);
bzero(p, sizeof hash2);
p += sizeof hash2;
break;
}
}
if(ptr + G_BDE_LOCKSIZE != p)
return(-1);
MD5Init(&c);
MD5Update(&c, "0000", 4); /* Versioning */
MD5Update(&c, ptr, G_BDE_LOCKSIZE);
MD5Final(hash, &c);
if (bcmp(hash, hash2, sizeof hash2))
return (1);
return (0);
}
/*
* Encode/Decode the locksector address ("metadata") with key-material.
*
* Security objectives: Encode/Decode the metadata encrypted by key-material.
*
* A simple AES/128/CBC will do. We take care to always store the metadata
* in the same endianess to make it MI.
*
* In the typical case the metadata is stored in encrypted format in sector
* zero on the media, but at the users discretion or if the piece of the
* device used (sector0...sectorN) does not contain sector zero, it can
* be stored in a filesystem or on a PostIt.
*
* The inability to easily locate the lock sectors makes an attack on a
* cold disk much less attractive, without unduly inconveniencing the
* legitimate user who can feasibly do a brute-force scan if the metadata
* was lost.
*/
int
g_bde_keyloc_encrypt(u_char *sha2, uint64_t v0, uint64_t v1, void *output)
{
u_char buf[16];
keyInstance ki;
cipherInstance ci;
le64enc(buf, v0);
le64enc(buf + 8, v1);
AES_init(&ci);
AES_makekey(&ki, DIR_ENCRYPT, G_BDE_KKEYBITS, sha2 + 0);
AES_encrypt(&ci, &ki, buf, output, sizeof buf);
bzero(buf, sizeof buf);
bzero(&ci, sizeof ci);
bzero(&ki, sizeof ki);
return (0);
}
int
g_bde_keyloc_decrypt(u_char *sha2, void *input, uint64_t *output)
{
keyInstance ki;
cipherInstance ci;
u_char buf[16];
AES_init(&ci);
AES_makekey(&ki, DIR_DECRYPT, G_BDE_KKEYBITS, sha2 + 0);
AES_decrypt(&ci, &ki, input, buf, sizeof buf);
*output = le64dec(buf);
bzero(buf, sizeof buf);
bzero(&ci, sizeof ci);
bzero(&ki, sizeof ki);
return(0);
}
/*
* Find and Encode/Decode lock sectors.
*
* Security objective: given the pass-phrase, find, decrypt, decode and
* validate the lock sector contents.
*
* For ondisk metadata we cannot know beforehand which of the lock sectors
* a given pass-phrase opens so we must try each of the metadata copies in
* sector zero in turn. If metadata was passed as an argument, we don't
* have this problem.
*
*/
static int
g_bde_decrypt_lockx(struct g_bde_softc *sc, u_char *meta, off_t mediasize, u_int sectorsize, u_int *nkey)
{
u_char *buf, *q;
struct g_bde_key *gl;
uint64_t off, q1;
int error, m, i;
keyInstance ki;
cipherInstance ci;
gl = &sc->key;
/* Try to decrypt the metadata */
error = g_bde_keyloc_decrypt(sc->sha2, meta, &off);
if (error)
return (error);
/* If it points ito thin blue air, forget it */
if (off + G_BDE_LOCKSIZE > (uint64_t)mediasize) {
off = 0;
return (EINVAL);
}
/* The lock data may span two physical sectors. */
m = 1;
if (off % sectorsize > sectorsize - G_BDE_LOCKSIZE)
m++;
/* Read the suspected sector(s) */
buf = g_read_data(sc->consumer,
off - (off % sectorsize),
m * sectorsize, &error);
if (buf == NULL) {
off = 0;
return(error);
}
/* Find the byte-offset of the stored byte sequence */
q = buf + off % sectorsize;
/* If it is all zero, somebody nuked our lock sector */
q1 = 0;
for (i = 0; i < G_BDE_LOCKSIZE; i++)
q1 += q[i];
if (q1 == 0) {
off = 0;
g_free(buf);
return (ESRCH);
}
/* Decrypt the byte-sequence in place */
AES_init(&ci);
AES_makekey(&ki, DIR_DECRYPT, 256, sc->sha2 + 16);
AES_decrypt(&ci, &ki, q, q, G_BDE_LOCKSIZE);
/* Decode the byte-sequence */
i = g_bde_decode_lock(sc, gl, q);
q = NULL;
if (i < 0) {
off = 0;
return (EDOOFUS); /* Programming error */
} else if (i > 0) {
off = 0;
return (ENOTDIR); /* Hash didn't match */
}
bzero(buf, sectorsize * m);
g_free(buf);
/* If the masterkey is all zeros, user destroyed it */
q1 = 0;
for (i = 0; i < (int)sizeof(gl->mkey); i++)
q1 += gl->mkey[i];
if (q1 == 0)
return (ENOENT);
/* If we have an unsorted lock-sequence, refuse */
for (i = 0; i < G_BDE_MAXKEYS - 1; i++)
if (gl->lsector[i] >= gl->lsector[i + 1])
return (EINVAL);
/* Finally, find out which key was used by matching the byte offset */
for (i = 0; i < G_BDE_MAXKEYS; i++)
if (nkey != NULL && off == gl->lsector[i])
*nkey = i;
off = 0;
return (0);
}
int
g_bde_decrypt_lock(struct g_bde_softc *sc, u_char *keymat, u_char *meta, off_t mediasize, u_int sectorsize, u_int *nkey)
{
u_char *buf, buf1[16];
int error, e, i;
/* set up the key-material */
bcopy(keymat, sc->sha2, SHA512_DIGEST_LENGTH);
/* If passed-in metadata is non-zero, use it */
bzero(buf1, sizeof buf1);
if (meta != NULL && bcmp(buf1, meta, sizeof buf1))
return (g_bde_decrypt_lockx(sc, meta, mediasize,
sectorsize, nkey));
/* Read sector zero */
buf = g_read_data(sc->consumer, 0, sectorsize, &error);
if (buf == NULL)
return(error);
/* Try each index in turn, save indicative errors for final result */
error = EINVAL;
for (i = 0; i < G_BDE_MAXKEYS; i++) {
e = g_bde_decrypt_lockx(sc, buf + i * 16, mediasize,
sectorsize, nkey);
/* Success or destroyed master key terminates */
if (e == 0 || e == ENOENT) {
error = e;
break;
}
if (e != 0 && error == EINVAL)
error = e;
}
g_free(buf);
return (error);
}