f6f1dfb66b
to do about the few cases where the HAL state isn't available (regdomain) or isn't yet setup (probe/attach.) The global ath_hal_debug now affects all instances of the HAL. This also restores the ability for probe/attach debugging to work; as the sysctl tree may not be attached at that point. Users can just set the global "hw.ath.hal.debug" to a suitable value to enable probe/attach related debugging.
890 lines
26 KiB
C
890 lines
26 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212phy.h"
|
|
|
|
#define AH_5212_5112
|
|
#include "ar5212/ar5212.ini"
|
|
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
|
|
struct ar5112State {
|
|
RF_HAL_FUNCS base; /* public state, must be first */
|
|
uint16_t pcdacTable[PWR_TABLE_SIZE];
|
|
|
|
uint32_t Bank1Data[N(ar5212Bank1_5112)];
|
|
uint32_t Bank2Data[N(ar5212Bank2_5112)];
|
|
uint32_t Bank3Data[N(ar5212Bank3_5112)];
|
|
uint32_t Bank6Data[N(ar5212Bank6_5112)];
|
|
uint32_t Bank7Data[N(ar5212Bank7_5112)];
|
|
};
|
|
#define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal)
|
|
|
|
static void ar5212GetLowerUpperIndex(uint16_t v,
|
|
uint16_t *lp, uint16_t listSize,
|
|
uint32_t *vlo, uint32_t *vhi);
|
|
static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
|
|
int16_t *power, int16_t maxPower, int16_t *retVals);
|
|
static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
|
|
uint16_t retVals[]);
|
|
static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
|
|
int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
|
|
static int16_t interpolate_signed(uint16_t target,
|
|
uint16_t srcLeft, uint16_t srcRight,
|
|
int16_t targetLeft, int16_t targetRight);
|
|
|
|
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
|
|
uint32_t numBits, uint32_t firstBit, uint32_t column);
|
|
|
|
static void
|
|
ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
|
|
int writes)
|
|
{
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
|
|
}
|
|
|
|
/*
|
|
* Take the MHz channel value and set the Channel value
|
|
*
|
|
* ASSUMES: Writes enabled to analog bus
|
|
*/
|
|
static HAL_BOOL
|
|
ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
uint32_t channelSel = 0;
|
|
uint32_t bModeSynth = 0;
|
|
uint32_t aModeRefSel = 0;
|
|
uint32_t reg32 = 0;
|
|
|
|
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
|
|
|
|
if (freq < 4800) {
|
|
uint32_t txctl;
|
|
|
|
if (((freq - 2192) % 5) == 0) {
|
|
channelSel = ((freq - 672) * 2 - 3040)/10;
|
|
bModeSynth = 0;
|
|
} else if (((freq - 2224) % 5) == 0) {
|
|
channelSel = ((freq - 704) * 2 - 3040) / 10;
|
|
bModeSynth = 1;
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u MHz\n",
|
|
__func__, freq);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
channelSel = (channelSel << 2) & 0xff;
|
|
channelSel = ath_hal_reverseBits(channelSel, 8);
|
|
|
|
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
|
|
if (freq == 2484) {
|
|
/* Enable channel spreading for channel 14 */
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
}
|
|
} else if (((freq % 5) == 2) && (freq <= 5435)) {
|
|
freq = freq - 2; /* Align to even 5MHz raster */
|
|
channelSel = ath_hal_reverseBits(
|
|
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
|
|
aModeRefSel = ath_hal_reverseBits(0, 2);
|
|
} else if ((freq % 20) == 0 && freq >= 5120) {
|
|
channelSel = ath_hal_reverseBits(
|
|
((freq - 4800) / 20 << 2), 8);
|
|
aModeRefSel = ath_hal_reverseBits(3, 2);
|
|
} else if ((freq % 10) == 0) {
|
|
channelSel = ath_hal_reverseBits(
|
|
((freq - 4800) / 10 << 1), 8);
|
|
aModeRefSel = ath_hal_reverseBits(2, 2);
|
|
} else if ((freq % 5) == 0) {
|
|
channelSel = ath_hal_reverseBits(
|
|
(freq - 4800) / 5, 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
|
|
__func__, freq);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
|
|
(1 << 12) | 0x1;
|
|
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
|
|
|
|
reg32 >>= 8;
|
|
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
|
|
|
|
AH_PRIVATE(ah)->ah_curchan = chan;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Return a reference to the requested RF Bank.
|
|
*/
|
|
static uint32_t *
|
|
ar5112GetRfBank(struct ath_hal *ah, int bank)
|
|
{
|
|
struct ar5112State *priv = AR5112(ah);
|
|
|
|
HALASSERT(priv != AH_NULL);
|
|
switch (bank) {
|
|
case 1: return priv->Bank1Data;
|
|
case 2: return priv->Bank2Data;
|
|
case 3: return priv->Bank3Data;
|
|
case 6: return priv->Bank6Data;
|
|
case 7: return priv->Bank7Data;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
|
|
__func__, bank);
|
|
return AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Reads EEPROM header info from device structure and programs
|
|
* all rf registers
|
|
*
|
|
* REQUIRES: Access to the analog rf device
|
|
*/
|
|
static HAL_BOOL
|
|
ar5112SetRfRegs(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
uint16_t modesIndex, uint16_t *rfXpdGain)
|
|
{
|
|
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
|
|
int i; \
|
|
for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \
|
|
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
|
|
} while (0)
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint16_t rfXpdSel, gainI;
|
|
uint16_t ob5GHz = 0, db5GHz = 0;
|
|
uint16_t ob2GHz = 0, db2GHz = 0;
|
|
struct ar5112State *priv = AR5112(ah);
|
|
GAIN_VALUES *gv = &ahp->ah_gainValues;
|
|
int regWrites = 0;
|
|
|
|
HALASSERT(priv);
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
|
|
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
|
|
|
|
/* Setup rf parameters */
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
if (freq > 4000 && freq < 5260) {
|
|
ob5GHz = ee->ee_ob1;
|
|
db5GHz = ee->ee_db1;
|
|
} else if (freq >= 5260 && freq < 5500) {
|
|
ob5GHz = ee->ee_ob2;
|
|
db5GHz = ee->ee_db2;
|
|
} else if (freq >= 5500 && freq < 5725) {
|
|
ob5GHz = ee->ee_ob3;
|
|
db5GHz = ee->ee_db3;
|
|
} else if (freq >= 5725) {
|
|
ob5GHz = ee->ee_ob4;
|
|
db5GHz = ee->ee_db4;
|
|
} else {
|
|
/* XXX else */
|
|
}
|
|
rfXpdSel = ee->ee_xpd[headerInfo11A];
|
|
gainI = ee->ee_gainI[headerInfo11A];
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
ob2GHz = ee->ee_ob2GHz[0];
|
|
db2GHz = ee->ee_db2GHz[0];
|
|
rfXpdSel = ee->ee_xpd[headerInfo11B];
|
|
gainI = ee->ee_gainI[headerInfo11B];
|
|
break;
|
|
case IEEE80211_CHAN_G:
|
|
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
|
|
ob2GHz = ee->ee_ob2GHz[1];
|
|
db2GHz = ee->ee_ob2GHz[1];
|
|
rfXpdSel = ee->ee_xpd[headerInfo11G];
|
|
gainI = ee->ee_gainI[headerInfo11G];
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Setup Bank 1 Write */
|
|
RF_BANK_SETUP(priv, 1, 1);
|
|
|
|
/* Setup Bank 2 Write */
|
|
RF_BANK_SETUP(priv, 2, modesIndex);
|
|
|
|
/* Setup Bank 3 Write */
|
|
RF_BANK_SETUP(priv, 3, modesIndex);
|
|
|
|
/* Setup Bank 6 Write */
|
|
RF_BANK_SETUP(priv, 6, modesIndex);
|
|
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0);
|
|
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
|
|
|
|
if (IEEE80211_IS_CHAN_OFDM(chan)) {
|
|
ar5212ModifyRfBuffer(priv->Bank6Data,
|
|
gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data,
|
|
gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data,
|
|
gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data,
|
|
gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data,
|
|
gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data,
|
|
gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
|
|
}
|
|
|
|
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
|
|
} else {
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
|
|
}
|
|
|
|
/* Lower synth voltage for X112 Rev 2.0 only */
|
|
if (IS_RADX112_REV2(ah)) {
|
|
/* Non-Reversed analyg registers - so values are pre-reversed */
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
|
|
}
|
|
|
|
/* Decrease Power Consumption for 5312/5213 and up */
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
|
|
}
|
|
|
|
/* Setup Bank 7 Setup */
|
|
RF_BANK_SETUP(priv, 7, modesIndex);
|
|
if (IEEE80211_IS_CHAN_OFDM(chan))
|
|
ar5212ModifyRfBuffer(priv->Bank7Data,
|
|
gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
|
|
|
|
ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
|
|
|
|
/* Adjust params for Derby TX power control */
|
|
if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
|
|
uint32_t rfDelay, rfPeriod;
|
|
|
|
rfDelay = 0xf;
|
|
rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x8 : 0xf;
|
|
ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
|
|
ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
|
|
}
|
|
|
|
#ifdef notyet
|
|
/* Analog registers are setup - EAR can modify */
|
|
if (ar5212IsEarEngaged(pDev, chan))
|
|
uint32_t modifier;
|
|
ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
|
|
#endif
|
|
/* Write Analog registers */
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
|
|
|
|
/* Now that we have reprogrammed rfgain value, clear the flag. */
|
|
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
|
|
return AH_TRUE;
|
|
#undef RF_BANK_SETUP
|
|
}
|
|
|
|
/*
|
|
* Read the transmit power levels from the structures taken from EEPROM
|
|
* Interpolate read transmit power values for this channel
|
|
* Organize the transmit power values into a table for writing into the hardware
|
|
*/
|
|
static HAL_BOOL
|
|
ar5112SetPowerTable(struct ath_hal *ah,
|
|
int16_t *pPowerMin, int16_t *pPowerMax,
|
|
const struct ieee80211_channel *chan,
|
|
uint16_t *rfXpdGain)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
|
|
uint32_t xpdGainMask = 0;
|
|
int16_t powerMid, *pPowerMid = &powerMid;
|
|
|
|
const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
|
|
const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL;
|
|
|
|
uint32_t ii, jj, kk;
|
|
int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid;
|
|
|
|
uint32_t chan_idx_L = 0, chan_idx_R = 0;
|
|
uint16_t chan_L, chan_R;
|
|
|
|
int16_t pwr_table0[64];
|
|
int16_t pwr_table1[64];
|
|
uint16_t pcdacs[10];
|
|
int16_t powers[10];
|
|
uint16_t numPcd;
|
|
int16_t powTableLXPD[2][64];
|
|
int16_t powTableHXPD[2][64];
|
|
int16_t tmpPowerTable[64];
|
|
uint16_t xgainList[2];
|
|
uint16_t xpdMask;
|
|
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
case IEEE80211_CHAN_ST:
|
|
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
|
|
xpdGainMask = ee->ee_xgain[headerInfo11A];
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
|
|
xpdGainMask = ee->ee_xgain[headerInfo11B];
|
|
break;
|
|
case IEEE80211_CHAN_G:
|
|
case IEEE80211_CHAN_108G:
|
|
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
|
|
xpdGainMask = ee->ee_xgain[headerInfo11G];
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: desired xpdGainMask 0x%x not supported by "
|
|
"calibrated xpdMask 0x%x\n", __func__,
|
|
xpdGainMask, pPowerExpn->xpdMask);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */
|
|
minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */
|
|
|
|
xgainList[0] = 0xDEAD;
|
|
xgainList[1] = 0xDEAD;
|
|
|
|
kk = 0;
|
|
xpdMask = pPowerExpn->xpdMask;
|
|
for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
|
|
if (((xpdMask >> jj) & 1) > 0) {
|
|
if (kk > 1) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"A maximum of 2 xpdGains supported"
|
|
"in pExpnPower data\n");
|
|
return AH_FALSE;
|
|
}
|
|
xgainList[kk++] = (uint16_t)jj;
|
|
}
|
|
}
|
|
|
|
ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],
|
|
pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
|
|
|
|
kk = 0;
|
|
for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
|
|
pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
|
|
if (xgainList[1] == 0xDEAD) {
|
|
jj = xgainList[0];
|
|
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
|
|
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
|
|
numPcd * sizeof(uint16_t));
|
|
OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
|
|
numPcd * sizeof(int16_t));
|
|
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
|
|
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
|
|
return AH_FALSE;
|
|
}
|
|
OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
|
|
64*sizeof(int16_t));
|
|
} else {
|
|
jj = xgainList[0];
|
|
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
|
|
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
|
|
numPcd*sizeof(uint16_t));
|
|
OS_MEMCPY(&powers[0],
|
|
&pRawCh->pDataPerXPD[jj].pwr_t4[0],
|
|
numPcd*sizeof(int16_t));
|
|
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
|
|
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
|
|
return AH_FALSE;
|
|
}
|
|
OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
|
|
64 * sizeof(int16_t));
|
|
|
|
jj = xgainList[1];
|
|
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
|
|
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
|
|
numPcd * sizeof(uint16_t));
|
|
OS_MEMCPY(&powers[0],
|
|
&pRawCh->pDataPerXPD[jj].pwr_t4[0],
|
|
numPcd * sizeof(int16_t));
|
|
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
|
|
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
|
|
return AH_FALSE;
|
|
}
|
|
OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
|
|
64 * sizeof(int16_t));
|
|
}
|
|
kk++;
|
|
}
|
|
|
|
chan_L = pPowerExpn->pChannels[chan_idx_L];
|
|
chan_R = pPowerExpn->pChannels[chan_idx_R];
|
|
kk = chan_idx_R - chan_idx_L;
|
|
|
|
if (xgainList[1] == 0xDEAD) {
|
|
for (jj = 0; jj < 64; jj++) {
|
|
pwr_table0[jj] = interpolate_signed(
|
|
freq, chan_L, chan_R,
|
|
powTableLXPD[0][jj], powTableLXPD[kk][jj]);
|
|
}
|
|
Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
|
|
ahp->ah_pcdacTable);
|
|
*pPowerMin = (int16_t) (Pmin / 2);
|
|
*pPowerMid = (int16_t) (pwr_table0[63] / 2);
|
|
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
|
|
rfXpdGain[0] = xgainList[0];
|
|
rfXpdGain[1] = rfXpdGain[0];
|
|
} else {
|
|
for (jj = 0; jj < 64; jj++) {
|
|
pwr_table0[jj] = interpolate_signed(
|
|
freq, chan_L, chan_R,
|
|
powTableLXPD[0][jj], powTableLXPD[kk][jj]);
|
|
pwr_table1[jj] = interpolate_signed(
|
|
freq, chan_L, chan_R,
|
|
powTableHXPD[0][jj], powTableHXPD[kk][jj]);
|
|
}
|
|
if (numXpdGain == 2) {
|
|
Pmin = getPminAndPcdacTableFromTwoPowerTables(
|
|
&pwr_table0[0], &pwr_table1[0],
|
|
ahp->ah_pcdacTable, &Pmid);
|
|
*pPowerMin = (int16_t) (Pmin / 2);
|
|
*pPowerMid = (int16_t) (Pmid / 2);
|
|
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
|
|
rfXpdGain[0] = xgainList[0];
|
|
rfXpdGain[1] = xgainList[1];
|
|
} else if (minPwr_t4 <= pwr_table1[63] &&
|
|
maxPwr_t4 <= pwr_table1[63]) {
|
|
Pmin = getPminAndPcdacTableFromPowerTable(
|
|
&pwr_table1[0], ahp->ah_pcdacTable);
|
|
rfXpdGain[0] = xgainList[1];
|
|
rfXpdGain[1] = rfXpdGain[0];
|
|
*pPowerMin = (int16_t) (Pmin / 2);
|
|
*pPowerMid = (int16_t) (pwr_table1[63] / 2);
|
|
*pPowerMax = (int16_t) (pwr_table1[63] / 2);
|
|
} else {
|
|
Pmin = getPminAndPcdacTableFromPowerTable(
|
|
&pwr_table0[0], ahp->ah_pcdacTable);
|
|
rfXpdGain[0] = xgainList[0];
|
|
rfXpdGain[1] = rfXpdGain[0];
|
|
*pPowerMin = (int16_t) (Pmin/2);
|
|
*pPowerMid = (int16_t) (pwr_table0[63] / 2);
|
|
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move 5112 rates to match power tables where the max
|
|
* power table entry corresponds with maxPower.
|
|
*/
|
|
HALASSERT(*pPowerMax <= PCDAC_STOP);
|
|
ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Returns interpolated or the scaled up interpolated value
|
|
*/
|
|
static int16_t
|
|
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
|
|
int16_t targetLeft, int16_t targetRight)
|
|
{
|
|
int16_t rv;
|
|
|
|
if (srcRight != srcLeft) {
|
|
rv = ((target - srcLeft)*targetRight +
|
|
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
|
|
} else {
|
|
rv = targetLeft;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Return indices surrounding the value in sorted integer lists.
|
|
*
|
|
* NB: the input list is assumed to be sorted in ascending order
|
|
*/
|
|
static void
|
|
ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
|
|
uint32_t *vlo, uint32_t *vhi)
|
|
{
|
|
uint32_t target = v;
|
|
uint16_t *ep = lp+listSize;
|
|
uint16_t *tp;
|
|
|
|
/*
|
|
* Check first and last elements for out-of-bounds conditions.
|
|
*/
|
|
if (target < lp[0]) {
|
|
*vlo = *vhi = 0;
|
|
return;
|
|
}
|
|
if (target >= ep[-1]) {
|
|
*vlo = *vhi = listSize - 1;
|
|
return;
|
|
}
|
|
|
|
/* look for value being near or between 2 values in list */
|
|
for (tp = lp; tp < ep; tp++) {
|
|
/*
|
|
* If value is close to the current value of the list
|
|
* then target is not between values, it is one of the values
|
|
*/
|
|
if (*tp == target) {
|
|
*vlo = *vhi = tp - lp;
|
|
return;
|
|
}
|
|
/*
|
|
* Look for value being between current value and next value
|
|
* if so return these 2 values
|
|
*/
|
|
if (target < tp[1]) {
|
|
*vlo = tp - lp;
|
|
*vhi = *vlo + 1;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static HAL_BOOL
|
|
getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
|
|
{
|
|
uint16_t ii;
|
|
uint16_t idxL = 0;
|
|
uint16_t idxR = 1;
|
|
|
|
if (numPcdacs < 2) {
|
|
HALDEBUG_G(AH_NULL, HAL_DEBUG_ANY,
|
|
"%s: at least 2 pcdac values needed [%d]\n",
|
|
__func__, numPcdacs);
|
|
return AH_FALSE;
|
|
}
|
|
for (ii = 0; ii < 64; ii++) {
|
|
if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
|
|
idxL++;
|
|
idxR++;
|
|
}
|
|
retVals[ii] = interpolate_signed(ii,
|
|
pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
|
|
if (retVals[ii] >= maxPower) {
|
|
while (ii < 64)
|
|
retVals[ii++] = maxPower;
|
|
}
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Takes a single calibration curve and creates a power table.
|
|
* Adjusts the new power table so the max power is relative
|
|
* to the maximum index in the power table.
|
|
*
|
|
* WARNING: rates must be adjusted for this relative power table
|
|
*/
|
|
static int16_t
|
|
getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
|
|
{
|
|
int16_t ii, jj, jjMax;
|
|
int16_t pMin, currPower, pMax;
|
|
|
|
/* If the spread is > 31.5dB, keep the upper 31.5dB range */
|
|
if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
|
|
pMin = pwrTableT4[63] - 126;
|
|
} else {
|
|
pMin = pwrTableT4[0];
|
|
}
|
|
|
|
pMax = pwrTableT4[63];
|
|
jjMax = 63;
|
|
|
|
/* Search for highest pcdac 0.25dB below maxPower */
|
|
while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
|
|
jjMax--;
|
|
}
|
|
|
|
jj = jjMax;
|
|
currPower = pMax;
|
|
for (ii = 63; ii >= 0; ii--) {
|
|
while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
|
|
jj--;
|
|
}
|
|
if (jj == 0) {
|
|
while (ii >= 0) {
|
|
retVals[ii] = retVals[ii + 1];
|
|
ii--;
|
|
}
|
|
break;
|
|
}
|
|
retVals[ii] = jj;
|
|
currPower -= 2; // corresponds to a 0.5dB step
|
|
}
|
|
return pMin;
|
|
}
|
|
|
|
/*
|
|
* Combines the XPD curves from two calibration sets into a single
|
|
* power table and adjusts the power table so the max power is relative
|
|
* to the maximum index in the power table
|
|
*
|
|
* WARNING: rates must be adjusted for this relative power table
|
|
*/
|
|
static int16_t
|
|
getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
|
|
int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
|
|
{
|
|
int16_t ii, jj, jjMax;
|
|
int16_t pMin, pMax, currPower;
|
|
int16_t *pwrTableT4;
|
|
uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac
|
|
|
|
/* If the spread is > 31.5dB, keep the upper 31.5dB range */
|
|
if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
|
|
pMin = pwrTableLXpdT4[63] - 126;
|
|
} else {
|
|
pMin = pwrTableHXpdT4[0];
|
|
}
|
|
|
|
pMax = pwrTableLXpdT4[63];
|
|
jjMax = 63;
|
|
/* Search for highest pcdac 0.25dB below maxPower */
|
|
while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
|
|
jjMax--;
|
|
}
|
|
|
|
*pMid = pwrTableHXpdT4[63];
|
|
jj = jjMax;
|
|
ii = 63;
|
|
currPower = pMax;
|
|
pwrTableT4 = &(pwrTableLXpdT4[0]);
|
|
while (ii >= 0) {
|
|
if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
|
|
msbFlag = 0x00;
|
|
pwrTableT4 = &(pwrTableHXpdT4[0]);
|
|
jj = 63;
|
|
}
|
|
while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
|
|
jj--;
|
|
}
|
|
if ((jj == 0) && (msbFlag == 0x00)) {
|
|
while (ii >= 0) {
|
|
retVals[ii] = retVals[ii+1];
|
|
ii--;
|
|
}
|
|
break;
|
|
}
|
|
retVals[ii] = jj | msbFlag;
|
|
currPower -= 2; // corresponds to a 0.5dB step
|
|
ii--;
|
|
}
|
|
return pMin;
|
|
}
|
|
|
|
static int16_t
|
|
ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
|
|
{
|
|
int i, minIndex;
|
|
int16_t minGain,minPwr,minPcdac,retVal;
|
|
|
|
/* Assume NUM_POINTS_XPD0 > 0 */
|
|
minGain = data->pDataPerXPD[0].xpd_gain;
|
|
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
|
|
if (data->pDataPerXPD[i].xpd_gain < minGain) {
|
|
minIndex = i;
|
|
minGain = data->pDataPerXPD[i].xpd_gain;
|
|
}
|
|
}
|
|
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
|
|
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
|
|
for (i=1; i<NUM_POINTS_XPD0; i++) {
|
|
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
|
|
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
|
|
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
|
|
}
|
|
}
|
|
retVal = minPwr - (minPcdac*2);
|
|
return(retVal);
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5112GetChannelMaxMinPower(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *maxPow, int16_t *minPow)
|
|
{
|
|
uint16_t freq = chan->ic_freq; /* NB: never mapped */
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
int numChannels=0,i,last;
|
|
int totalD, totalF,totalMin;
|
|
const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
|
|
const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
|
|
|
|
*maxPow = 0;
|
|
if (IEEE80211_IS_CHAN_A(chan)) {
|
|
powerArray = ee->ee_modePowerArray5112;
|
|
data = powerArray[headerInfo11A].pDataPerChannel;
|
|
numChannels = powerArray[headerInfo11A].numChannels;
|
|
} else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {
|
|
/* XXX - is this correct? Should we also use the same power for turbo G? */
|
|
powerArray = ee->ee_modePowerArray5112;
|
|
data = powerArray[headerInfo11G].pDataPerChannel;
|
|
numChannels = powerArray[headerInfo11G].numChannels;
|
|
} else if (IEEE80211_IS_CHAN_B(chan)) {
|
|
powerArray = ee->ee_modePowerArray5112;
|
|
data = powerArray[headerInfo11B].pDataPerChannel;
|
|
numChannels = powerArray[headerInfo11B].numChannels;
|
|
} else {
|
|
return (AH_TRUE);
|
|
}
|
|
/* Make sure the channel is in the range of the TP values
|
|
* (freq piers)
|
|
*/
|
|
if (numChannels < 1)
|
|
return(AH_FALSE);
|
|
|
|
if ((freq < data[0].channelValue) ||
|
|
(freq > data[numChannels-1].channelValue)) {
|
|
if (freq < data[0].channelValue) {
|
|
*maxPow = data[0].maxPower_t4;
|
|
*minPow = ar5112GetMinPower(ah, &data[0]);
|
|
return(AH_TRUE);
|
|
} else {
|
|
*maxPow = data[numChannels - 1].maxPower_t4;
|
|
*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
|
|
return(AH_TRUE);
|
|
}
|
|
}
|
|
|
|
/* Linearly interpolate the power value now */
|
|
for (last=0,i=0;
|
|
(i<numChannels) && (freq > data[i].channelValue);
|
|
last=i++);
|
|
totalD = data[i].channelValue - data[last].channelValue;
|
|
if (totalD > 0) {
|
|
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
|
|
*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
|
|
|
|
totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
|
|
*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
|
|
return (AH_TRUE);
|
|
} else {
|
|
if (freq == data[i].channelValue) {
|
|
*maxPow = data[i].maxPower_t4;
|
|
*minPow = ar5112GetMinPower(ah, &data[i]);
|
|
return(AH_TRUE);
|
|
} else
|
|
return(AH_FALSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free memory for analog bank scratch buffers
|
|
*/
|
|
static void
|
|
ar5112RfDetach(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
HALASSERT(ahp->ah_rfHal != AH_NULL);
|
|
ath_hal_free(ahp->ah_rfHal);
|
|
ahp->ah_rfHal = AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for analog bank scratch buffers
|
|
* Scratch Buffer will be reinitialized every reset so no need to zero now
|
|
*/
|
|
static HAL_BOOL
|
|
ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
struct ar5112State *priv;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
HALASSERT(ahp->ah_rfHal == AH_NULL);
|
|
priv = ath_hal_malloc(sizeof(struct ar5112State));
|
|
if (priv == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: cannot allocate private state\n", __func__);
|
|
*status = HAL_ENOMEM; /* XXX */
|
|
return AH_FALSE;
|
|
}
|
|
priv->base.rfDetach = ar5112RfDetach;
|
|
priv->base.writeRegs = ar5112WriteRegs;
|
|
priv->base.getRfBank = ar5112GetRfBank;
|
|
priv->base.setChannel = ar5112SetChannel;
|
|
priv->base.setRfRegs = ar5112SetRfRegs;
|
|
priv->base.setPowerTable = ar5112SetPowerTable;
|
|
priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
|
|
priv->base.getNfAdjust = ar5212GetNfAdjust;
|
|
|
|
ahp->ah_pcdacTable = priv->pcdacTable;
|
|
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
|
|
ahp->ah_rfHal = &priv->base;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5112Probe(struct ath_hal *ah)
|
|
{
|
|
return IS_RAD5112(ah);
|
|
}
|
|
AH_RF(RF5112, ar5112Probe, ar5112RfAttach);
|