freebsd-skq/sys/dev/ath/ath_hal/ar5212/ar5112.c
Adrian Chadd f6f1dfb66b Re-introduce a global ath_hal_debug again for now, whilst I figure out what
to do about the few cases where the HAL state isn't available (regdomain)
or isn't yet setup (probe/attach.)

The global ath_hal_debug now affects all instances of the HAL.

This also restores the ability for probe/attach debugging to work; as
the sysctl tree may not be attached at that point. Users can just set
the global "hw.ath.hal.debug" to a suitable value to enable probe/attach
related debugging.
2011-06-23 06:55:29 +00:00

890 lines
26 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v3.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#define AH_5212_5112
#include "ar5212/ar5212.ini"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar5112State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[PWR_TABLE_SIZE];
uint32_t Bank1Data[N(ar5212Bank1_5112)];
uint32_t Bank2Data[N(ar5212Bank2_5112)];
uint32_t Bank3Data[N(ar5212Bank3_5112)];
uint32_t Bank6Data[N(ar5212Bank6_5112)];
uint32_t Bank7Data[N(ar5212Bank7_5112)];
};
#define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal)
static void ar5212GetLowerUpperIndex(uint16_t v,
uint16_t *lp, uint16_t listSize,
uint32_t *vlo, uint32_t *vhi);
static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
int16_t *power, int16_t maxPower, int16_t *retVals);
static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
uint16_t retVals[]);
static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
static int16_t interpolate_signed(uint16_t target,
uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight);
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static void
ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*/
static HAL_BOOL
ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
uint32_t channelSel = 0;
uint32_t bModeSynth = 0;
uint32_t aModeRefSel = 0;
uint32_t reg32 = 0;
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
if (freq < 4800) {
uint32_t txctl;
if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040)/10;
bModeSynth = 0;
} else if (((freq - 2224) % 5) == 0) {
channelSel = ((freq - 704) * 2 - 3040) / 10;
bModeSynth = 1;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u MHz\n",
__func__, freq);
return AH_FALSE;
}
channelSel = (channelSel << 2) & 0xff;
channelSel = ath_hal_reverseBits(channelSel, 8);
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else if (((freq % 5) == 2) && (freq <= 5435)) {
freq = freq - 2; /* Align to even 5MHz raster */
channelSel = ath_hal_reverseBits(
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
aModeRefSel = ath_hal_reverseBits(0, 2);
} else if ((freq % 20) == 0 && freq >= 5120) {
channelSel = ath_hal_reverseBits(
((freq - 4800) / 20 << 2), 8);
aModeRefSel = ath_hal_reverseBits(3, 2);
} else if ((freq % 10) == 0) {
channelSel = ath_hal_reverseBits(
((freq - 4800) / 10 << 1), 8);
aModeRefSel = ath_hal_reverseBits(2, 2);
} else if ((freq % 5) == 0) {
channelSel = ath_hal_reverseBits(
(freq - 4800) / 5, 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
__func__, freq);
return AH_FALSE;
}
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 12) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
reg32 >>= 8;
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar5112GetRfBank(struct ath_hal *ah, int bank)
{
struct ar5112State *priv = AR5112(ah);
HALASSERT(priv != AH_NULL);
switch (bank) {
case 1: return priv->Bank1Data;
case 2: return priv->Bank2Data;
case 3: return priv->Bank3Data;
case 6: return priv->Bank6Data;
case 7: return priv->Bank7Data;
}
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*
* REQUIRES: Access to the analog rf device
*/
static HAL_BOOL
ar5112SetRfRegs(struct ath_hal *ah,
const struct ieee80211_channel *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
int i; \
for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
} while (0)
uint16_t freq = ath_hal_gethwchannel(ah, chan);
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint16_t rfXpdSel, gainI;
uint16_t ob5GHz = 0, db5GHz = 0;
uint16_t ob2GHz = 0, db2GHz = 0;
struct ar5112State *priv = AR5112(ah);
GAIN_VALUES *gv = &ahp->ah_gainValues;
int regWrites = 0;
HALASSERT(priv);
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
/* Setup rf parameters */
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
if (freq > 4000 && freq < 5260) {
ob5GHz = ee->ee_ob1;
db5GHz = ee->ee_db1;
} else if (freq >= 5260 && freq < 5500) {
ob5GHz = ee->ee_ob2;
db5GHz = ee->ee_db2;
} else if (freq >= 5500 && freq < 5725) {
ob5GHz = ee->ee_ob3;
db5GHz = ee->ee_db3;
} else if (freq >= 5725) {
ob5GHz = ee->ee_ob4;
db5GHz = ee->ee_db4;
} else {
/* XXX else */
}
rfXpdSel = ee->ee_xpd[headerInfo11A];
gainI = ee->ee_gainI[headerInfo11A];
break;
case IEEE80211_CHAN_B:
ob2GHz = ee->ee_ob2GHz[0];
db2GHz = ee->ee_db2GHz[0];
rfXpdSel = ee->ee_xpd[headerInfo11B];
gainI = ee->ee_gainI[headerInfo11B];
break;
case IEEE80211_CHAN_G:
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
ob2GHz = ee->ee_ob2GHz[1];
db2GHz = ee->ee_ob2GHz[1];
rfXpdSel = ee->ee_xpd[headerInfo11G];
gainI = ee->ee_gainI[headerInfo11G];
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
/* Setup Bank 1 Write */
RF_BANK_SETUP(priv, 1, 1);
/* Setup Bank 2 Write */
RF_BANK_SETUP(priv, 2, modesIndex);
/* Setup Bank 3 Write */
RF_BANK_SETUP(priv, 3, modesIndex);
/* Setup Bank 6 Write */
RF_BANK_SETUP(priv, 6, modesIndex);
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
if (IEEE80211_IS_CHAN_OFDM(chan)) {
ar5212ModifyRfBuffer(priv->Bank6Data,
gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
ar5212ModifyRfBuffer(priv->Bank6Data,
gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
ar5212ModifyRfBuffer(priv->Bank6Data,
gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
ar5212ModifyRfBuffer(priv->Bank6Data,
gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
ar5212ModifyRfBuffer(priv->Bank6Data,
gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
ar5212ModifyRfBuffer(priv->Bank6Data,
gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
}
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
} else {
ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
}
/* Lower synth voltage for X112 Rev 2.0 only */
if (IS_RADX112_REV2(ah)) {
/* Non-Reversed analyg registers - so values are pre-reversed */
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
}
/* Decrease Power Consumption for 5312/5213 and up */
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
}
/* Setup Bank 7 Setup */
RF_BANK_SETUP(priv, 7, modesIndex);
if (IEEE80211_IS_CHAN_OFDM(chan))
ar5212ModifyRfBuffer(priv->Bank7Data,
gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
/* Adjust params for Derby TX power control */
if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
uint32_t rfDelay, rfPeriod;
rfDelay = 0xf;
rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x8 : 0xf;
ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
}
#ifdef notyet
/* Analog registers are setup - EAR can modify */
if (ar5212IsEarEngaged(pDev, chan))
uint32_t modifier;
ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
#endif
/* Write Analog registers */
HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
/* Now that we have reprogrammed rfgain value, clear the flag. */
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
return AH_TRUE;
#undef RF_BANK_SETUP
}
/*
* Read the transmit power levels from the structures taken from EEPROM
* Interpolate read transmit power values for this channel
* Organize the transmit power values into a table for writing into the hardware
*/
static HAL_BOOL
ar5112SetPowerTable(struct ath_hal *ah,
int16_t *pPowerMin, int16_t *pPowerMax,
const struct ieee80211_channel *chan,
uint16_t *rfXpdGain)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
uint32_t xpdGainMask = 0;
int16_t powerMid, *pPowerMid = &powerMid;
const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL;
uint32_t ii, jj, kk;
int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid;
uint32_t chan_idx_L = 0, chan_idx_R = 0;
uint16_t chan_L, chan_R;
int16_t pwr_table0[64];
int16_t pwr_table1[64];
uint16_t pcdacs[10];
int16_t powers[10];
uint16_t numPcd;
int16_t powTableLXPD[2][64];
int16_t powTableHXPD[2][64];
int16_t tmpPowerTable[64];
uint16_t xgainList[2];
uint16_t xpdMask;
switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
case IEEE80211_CHAN_A:
case IEEE80211_CHAN_ST:
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
xpdGainMask = ee->ee_xgain[headerInfo11A];
break;
case IEEE80211_CHAN_B:
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
xpdGainMask = ee->ee_xgain[headerInfo11B];
break;
case IEEE80211_CHAN_G:
case IEEE80211_CHAN_108G:
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
xpdGainMask = ee->ee_xgain[headerInfo11G];
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: desired xpdGainMask 0x%x not supported by "
"calibrated xpdMask 0x%x\n", __func__,
xpdGainMask, pPowerExpn->xpdMask);
return AH_FALSE;
}
maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */
minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */
xgainList[0] = 0xDEAD;
xgainList[1] = 0xDEAD;
kk = 0;
xpdMask = pPowerExpn->xpdMask;
for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
if (((xpdMask >> jj) & 1) > 0) {
if (kk > 1) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"A maximum of 2 xpdGains supported"
"in pExpnPower data\n");
return AH_FALSE;
}
xgainList[kk++] = (uint16_t)jj;
}
}
ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],
pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
kk = 0;
for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
if (xgainList[1] == 0xDEAD) {
jj = xgainList[0];
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
numPcd * sizeof(uint16_t));
OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
numPcd * sizeof(int16_t));
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
return AH_FALSE;
}
OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
64*sizeof(int16_t));
} else {
jj = xgainList[0];
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
numPcd*sizeof(uint16_t));
OS_MEMCPY(&powers[0],
&pRawCh->pDataPerXPD[jj].pwr_t4[0],
numPcd*sizeof(int16_t));
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
return AH_FALSE;
}
OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
64 * sizeof(int16_t));
jj = xgainList[1];
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
numPcd * sizeof(uint16_t));
OS_MEMCPY(&powers[0],
&pRawCh->pDataPerXPD[jj].pwr_t4[0],
numPcd * sizeof(int16_t));
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
return AH_FALSE;
}
OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
64 * sizeof(int16_t));
}
kk++;
}
chan_L = pPowerExpn->pChannels[chan_idx_L];
chan_R = pPowerExpn->pChannels[chan_idx_R];
kk = chan_idx_R - chan_idx_L;
if (xgainList[1] == 0xDEAD) {
for (jj = 0; jj < 64; jj++) {
pwr_table0[jj] = interpolate_signed(
freq, chan_L, chan_R,
powTableLXPD[0][jj], powTableLXPD[kk][jj]);
}
Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
ahp->ah_pcdacTable);
*pPowerMin = (int16_t) (Pmin / 2);
*pPowerMid = (int16_t) (pwr_table0[63] / 2);
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
rfXpdGain[0] = xgainList[0];
rfXpdGain[1] = rfXpdGain[0];
} else {
for (jj = 0; jj < 64; jj++) {
pwr_table0[jj] = interpolate_signed(
freq, chan_L, chan_R,
powTableLXPD[0][jj], powTableLXPD[kk][jj]);
pwr_table1[jj] = interpolate_signed(
freq, chan_L, chan_R,
powTableHXPD[0][jj], powTableHXPD[kk][jj]);
}
if (numXpdGain == 2) {
Pmin = getPminAndPcdacTableFromTwoPowerTables(
&pwr_table0[0], &pwr_table1[0],
ahp->ah_pcdacTable, &Pmid);
*pPowerMin = (int16_t) (Pmin / 2);
*pPowerMid = (int16_t) (Pmid / 2);
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
rfXpdGain[0] = xgainList[0];
rfXpdGain[1] = xgainList[1];
} else if (minPwr_t4 <= pwr_table1[63] &&
maxPwr_t4 <= pwr_table1[63]) {
Pmin = getPminAndPcdacTableFromPowerTable(
&pwr_table1[0], ahp->ah_pcdacTable);
rfXpdGain[0] = xgainList[1];
rfXpdGain[1] = rfXpdGain[0];
*pPowerMin = (int16_t) (Pmin / 2);
*pPowerMid = (int16_t) (pwr_table1[63] / 2);
*pPowerMax = (int16_t) (pwr_table1[63] / 2);
} else {
Pmin = getPminAndPcdacTableFromPowerTable(
&pwr_table0[0], ahp->ah_pcdacTable);
rfXpdGain[0] = xgainList[0];
rfXpdGain[1] = rfXpdGain[0];
*pPowerMin = (int16_t) (Pmin/2);
*pPowerMid = (int16_t) (pwr_table0[63] / 2);
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
}
}
/*
* Move 5112 rates to match power tables where the max
* power table entry corresponds with maxPower.
*/
HALASSERT(*pPowerMax <= PCDAC_STOP);
ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
return AH_TRUE;
}
/*
* Returns interpolated or the scaled up interpolated value
*/
static int16_t
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight != srcLeft) {
rv = ((target - srcLeft)*targetRight +
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
} else {
rv = targetLeft;
}
return rv;
}
/*
* Return indices surrounding the value in sorted integer lists.
*
* NB: the input list is assumed to be sorted in ascending order
*/
static void
ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
uint32_t *vlo, uint32_t *vhi)
{
uint32_t target = v;
uint16_t *ep = lp+listSize;
uint16_t *tp;
/*
* Check first and last elements for out-of-bounds conditions.
*/
if (target < lp[0]) {
*vlo = *vhi = 0;
return;
}
if (target >= ep[-1]) {
*vlo = *vhi = listSize - 1;
return;
}
/* look for value being near or between 2 values in list */
for (tp = lp; tp < ep; tp++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (*tp == target) {
*vlo = *vhi = tp - lp;
return;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < tp[1]) {
*vlo = tp - lp;
*vhi = *vlo + 1;
return;
}
}
}
static HAL_BOOL
getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
{
uint16_t ii;
uint16_t idxL = 0;
uint16_t idxR = 1;
if (numPcdacs < 2) {
HALDEBUG_G(AH_NULL, HAL_DEBUG_ANY,
"%s: at least 2 pcdac values needed [%d]\n",
__func__, numPcdacs);
return AH_FALSE;
}
for (ii = 0; ii < 64; ii++) {
if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
idxL++;
idxR++;
}
retVals[ii] = interpolate_signed(ii,
pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
if (retVals[ii] >= maxPower) {
while (ii < 64)
retVals[ii++] = maxPower;
}
}
return AH_TRUE;
}
/*
* Takes a single calibration curve and creates a power table.
* Adjusts the new power table so the max power is relative
* to the maximum index in the power table.
*
* WARNING: rates must be adjusted for this relative power table
*/
static int16_t
getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
{
int16_t ii, jj, jjMax;
int16_t pMin, currPower, pMax;
/* If the spread is > 31.5dB, keep the upper 31.5dB range */
if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
pMin = pwrTableT4[63] - 126;
} else {
pMin = pwrTableT4[0];
}
pMax = pwrTableT4[63];
jjMax = 63;
/* Search for highest pcdac 0.25dB below maxPower */
while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
jjMax--;
}
jj = jjMax;
currPower = pMax;
for (ii = 63; ii >= 0; ii--) {
while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
jj--;
}
if (jj == 0) {
while (ii >= 0) {
retVals[ii] = retVals[ii + 1];
ii--;
}
break;
}
retVals[ii] = jj;
currPower -= 2; // corresponds to a 0.5dB step
}
return pMin;
}
/*
* Combines the XPD curves from two calibration sets into a single
* power table and adjusts the power table so the max power is relative
* to the maximum index in the power table
*
* WARNING: rates must be adjusted for this relative power table
*/
static int16_t
getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
{
int16_t ii, jj, jjMax;
int16_t pMin, pMax, currPower;
int16_t *pwrTableT4;
uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac
/* If the spread is > 31.5dB, keep the upper 31.5dB range */
if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
pMin = pwrTableLXpdT4[63] - 126;
} else {
pMin = pwrTableHXpdT4[0];
}
pMax = pwrTableLXpdT4[63];
jjMax = 63;
/* Search for highest pcdac 0.25dB below maxPower */
while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
jjMax--;
}
*pMid = pwrTableHXpdT4[63];
jj = jjMax;
ii = 63;
currPower = pMax;
pwrTableT4 = &(pwrTableLXpdT4[0]);
while (ii >= 0) {
if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
msbFlag = 0x00;
pwrTableT4 = &(pwrTableHXpdT4[0]);
jj = 63;
}
while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
jj--;
}
if ((jj == 0) && (msbFlag == 0x00)) {
while (ii >= 0) {
retVals[ii] = retVals[ii+1];
ii--;
}
break;
}
retVals[ii] = jj | msbFlag;
currPower -= 2; // corresponds to a 0.5dB step
ii--;
}
return pMin;
}
static int16_t
ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
{
int i, minIndex;
int16_t minGain,minPwr,minPcdac,retVal;
/* Assume NUM_POINTS_XPD0 > 0 */
minGain = data->pDataPerXPD[0].xpd_gain;
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
if (data->pDataPerXPD[i].xpd_gain < minGain) {
minIndex = i;
minGain = data->pDataPerXPD[i].xpd_gain;
}
}
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
for (i=1; i<NUM_POINTS_XPD0; i++) {
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
}
}
retVal = minPwr - (minPcdac*2);
return(retVal);
}
static HAL_BOOL
ar5112GetChannelMaxMinPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *maxPow, int16_t *minPow)
{
uint16_t freq = chan->ic_freq; /* NB: never mapped */
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
int numChannels=0,i,last;
int totalD, totalF,totalMin;
const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
*maxPow = 0;
if (IEEE80211_IS_CHAN_A(chan)) {
powerArray = ee->ee_modePowerArray5112;
data = powerArray[headerInfo11A].pDataPerChannel;
numChannels = powerArray[headerInfo11A].numChannels;
} else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {
/* XXX - is this correct? Should we also use the same power for turbo G? */
powerArray = ee->ee_modePowerArray5112;
data = powerArray[headerInfo11G].pDataPerChannel;
numChannels = powerArray[headerInfo11G].numChannels;
} else if (IEEE80211_IS_CHAN_B(chan)) {
powerArray = ee->ee_modePowerArray5112;
data = powerArray[headerInfo11B].pDataPerChannel;
numChannels = powerArray[headerInfo11B].numChannels;
} else {
return (AH_TRUE);
}
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if (numChannels < 1)
return(AH_FALSE);
if ((freq < data[0].channelValue) ||
(freq > data[numChannels-1].channelValue)) {
if (freq < data[0].channelValue) {
*maxPow = data[0].maxPower_t4;
*minPow = ar5112GetMinPower(ah, &data[0]);
return(AH_TRUE);
} else {
*maxPow = data[numChannels - 1].maxPower_t4;
*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
return(AH_TRUE);
}
}
/* Linearly interpolate the power value now */
for (last=0,i=0;
(i<numChannels) && (freq > data[i].channelValue);
last=i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
return (AH_TRUE);
} else {
if (freq == data[i].channelValue) {
*maxPow = data[i].maxPower_t4;
*minPow = ar5112GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar5112RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
/*
* Allocate memory for analog bank scratch buffers
* Scratch Buffer will be reinitialized every reset so no need to zero now
*/
static HAL_BOOL
ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar5112State *priv;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar5112State));
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar5112RfDetach;
priv->base.writeRegs = ar5112WriteRegs;
priv->base.getRfBank = ar5112GetRfBank;
priv->base.setChannel = ar5112SetChannel;
priv->base.setRfRegs = ar5112SetRfRegs;
priv->base.setPowerTable = ar5112SetPowerTable;
priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
priv->base.getNfAdjust = ar5212GetNfAdjust;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
return AH_TRUE;
}
static HAL_BOOL
ar5112Probe(struct ath_hal *ah)
{
return IS_RAD5112(ah);
}
AH_RF(RF5112, ar5112Probe, ar5112RfAttach);