Robert Watson e4b4bbb665 Audit file descriptors passed to fooat(2) system calls, which are used
instead of the root/current working directory as the starting point for
lookups.  Up to two such descriptors can be audited.  Add audit record
BSM encoding for fooat(2).

Note: due to an error in the OpenBSM 1.1p1 configuration file, a
further change is required to that file in order to fix openat(2)
auditing.

Approved by:	re (kib)
Reviewed by:	rdivacky (fooat(2) portions)
Obtained from:	TrustedBSD Project
MFC after:	1 month
2009-07-28 21:39:58 +00:00

1629 lines
40 KiB
C

/*
* Copyright (c) 1999-2009 Apple Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/vnode.h>
#include <sys/ipc.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/extattr.h>
#include <sys/fcntl.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <bsm/audit.h>
#include <bsm/audit_internal.h>
#include <bsm/audit_record.h>
#include <bsm/audit_kevents.h>
#include <security/audit/audit.h>
#include <security/audit/audit_private.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data");
static void audit_sys_auditon(struct audit_record *ar,
struct au_record *rec);
/*
* Initialize the BSM auditing subsystem.
*/
void
kau_init(void)
{
au_evclassmap_init();
}
/*
* This call reserves memory for the audit record. Memory must be guaranteed
* before any auditable event can be generated. The au_record structure
* maintains a reference to the memory allocated above and also the list of
* tokens associated with this record.
*/
static struct au_record *
kau_open(void)
{
struct au_record *rec;
rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK);
rec->data = NULL;
TAILQ_INIT(&rec->token_q);
rec->len = 0;
rec->used = 1;
return (rec);
}
/*
* Store the token with the record descriptor.
*/
static void
kau_write(struct au_record *rec, struct au_token *tok)
{
KASSERT(tok != NULL, ("kau_write: tok == NULL"));
TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens);
rec->len += tok->len;
}
/*
* Close out the audit record by adding the header token, identifying any
* missing tokens. Write out the tokens to the record memory.
*/
static void
kau_close(struct au_record *rec, struct timespec *ctime, short event)
{
u_char *dptr;
size_t tot_rec_size;
token_t *cur, *hdr, *trail;
struct timeval tm;
size_t hdrsize;
struct auditinfo_addr ak;
struct in6_addr *ap;
audit_get_kinfo(&ak);
hdrsize = 0;
switch (ak.ai_termid.at_type) {
case AU_IPv4:
hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ?
AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak);
break;
case AU_IPv6:
ap = (struct in6_addr *)&ak.ai_termid.at_addr[0];
hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE :
AUDIT_HEADER_EX_SIZE(&ak);
break;
default:
panic("kau_close: invalid address family");
}
tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE;
rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO);
tm.tv_usec = ctime->tv_nsec / 1000;
tm.tv_sec = ctime->tv_sec;
if (hdrsize != AUDIT_HEADER_SIZE)
hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak);
else
hdr = au_to_header32_tm(tot_rec_size, event, 0, tm);
TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens);
trail = au_to_trailer(tot_rec_size);
TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens);
rec->len = tot_rec_size;
dptr = rec->data;
TAILQ_FOREACH(cur, &rec->token_q, tokens) {
memcpy(dptr, cur->t_data, cur->len);
dptr += cur->len;
}
}
/*
* Free a BSM audit record by releasing all the tokens and clearing the audit
* record information.
*/
void
kau_free(struct au_record *rec)
{
struct au_token *tok;
/* Free the token list. */
while ((tok = TAILQ_FIRST(&rec->token_q))) {
TAILQ_REMOVE(&rec->token_q, tok, tokens);
free(tok->t_data, M_AUDITBSM);
free(tok, M_AUDITBSM);
}
rec->used = 0;
rec->len = 0;
free(rec->data, M_AUDITBSM);
free(rec, M_AUDITBSM);
}
/*
* XXX: May want turn some (or all) of these macros into functions in order
* to reduce the generated code size.
*
* XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the
* caller are OK with this.
*/
#define ATFD1_TOKENS(argnum) do { \
if (ARG_IS_VALID(kar, ARG_ATFD1)) { \
tok = au_to_arg32(argnum, "at fd 1", ar->ar_arg_atfd1); \
kau_write(rec, tok); \
} \
} while (0)
#define ATFD2_TOKENS(argnum) do { \
if (ARG_IS_VALID(kar, ARG_ATFD2)) { \
tok = au_to_arg32(argnum, "at fd 2", ar->ar_arg_atfd2); \
kau_write(rec, tok); \
} \
} while (0)
#define UPATH1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_UPATH1)) { \
tok = au_to_path(ar->ar_arg_upath1); \
kau_write(rec, tok); \
} \
} while (0)
#define UPATH2_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_UPATH2)) { \
tok = au_to_path(ar->ar_arg_upath2); \
kau_write(rec, tok); \
} \
} while (0)
#define VNODE1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_ATFD)) { \
tok = au_to_arg32(1, "at fd", ar->ar_arg_atfd); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_VNODE1)) { \
tok = au_to_attr32(&ar->ar_arg_vnode1); \
kau_write(rec, tok); \
} \
} while (0)
#define UPATH1_VNODE1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_UPATH1)) { \
UPATH1_TOKENS; \
} \
if (ARG_IS_VALID(kar, ARG_VNODE1)) { \
tok = au_to_attr32(&ar->ar_arg_vnode1); \
kau_write(rec, tok); \
} \
} while (0)
#define VNODE2_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_VNODE2)) { \
tok = au_to_attr32(&ar->ar_arg_vnode2); \
kau_write(rec, tok); \
} \
} while (0)
#define FD_VNODE1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_VNODE1)) { \
if (ARG_IS_VALID(kar, ARG_FD)) { \
tok = au_to_arg32(1, "fd", ar->ar_arg_fd); \
kau_write(rec, tok); \
} \
tok = au_to_attr32(&ar->ar_arg_vnode1); \
kau_write(rec, tok); \
} else { \
if (ARG_IS_VALID(kar, ARG_FD)) { \
tok = au_to_arg32(1, "non-file: fd", \
ar->ar_arg_fd); \
kau_write(rec, tok); \
} \
} \
} while (0)
#define PROCESS_PID_TOKENS(argn) do { \
if ((ar->ar_arg_pid > 0) /* Reference a single process */ \
&& (ARG_IS_VALID(kar, ARG_PROCESS))) { \
tok = au_to_process32_ex(ar->ar_arg_auid, \
ar->ar_arg_euid, ar->ar_arg_egid, \
ar->ar_arg_ruid, ar->ar_arg_rgid, \
ar->ar_arg_pid, ar->ar_arg_asid, \
&ar->ar_arg_termid_addr); \
kau_write(rec, tok); \
} else if (ARG_IS_VALID(kar, ARG_PID)) { \
tok = au_to_arg32(argn, "process", ar->ar_arg_pid); \
kau_write(rec, tok); \
} \
} while (0)
#define EXTATTR_TOKENS(namespace_argnum) do { \
if (ARG_IS_VALID(kar, ARG_VALUE)) { \
switch (ar->ar_arg_value) { \
case EXTATTR_NAMESPACE_USER: \
tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\
break; \
case EXTATTR_NAMESPACE_SYSTEM: \
tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\
break; \
default: \
tok = au_to_arg32((namespace_argnum), \
"attrnamespace", ar->ar_arg_value); \
break; \
} \
kau_write(rec, tok); \
} \
/* attrname is in the text field */ \
if (ARG_IS_VALID(kar, ARG_TEXT)) { \
tok = au_to_text(ar->ar_arg_text); \
kau_write(rec, tok); \
} \
} while (0)
/*
* Not all pointer arguments to system calls are of interest, but in some
* cases they reflect delegation of rights, such as mmap(2) followed by
* minherit(2) before execve(2), so do the best we can.
*/
#define ADDR_TOKEN(argnum, argname) do { \
if (ARG_IS_VALID(kar, ARG_ADDR)) { \
if (sizeof(void *) == sizeof(uint32_t)) \
tok = au_to_arg32((argnum), (argname), \
(uint32_t)(uintptr_t)ar->ar_arg_addr); \
else \
tok = au_to_arg64((argnum), (argname), \
(uint64_t)(uintptr_t)ar->ar_arg_addr); \
kau_write(rec, tok); \
} \
} while (0)
/*
* Implement auditing for the auditon() system call. The audit tokens that
* are generated depend on the command that was sent into the auditon()
* system call.
*/
static void
audit_sys_auditon(struct audit_record *ar, struct au_record *rec)
{
struct au_token *tok;
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
switch (ar->ar_arg_cmd) {
case A_OLDSETPOLICY:
if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
tok = au_to_arg64(2, "policy",
ar->ar_arg_auditon.au_policy64);
kau_write(rec, tok);
break;
}
/* FALLTHROUGH */
case A_SETPOLICY:
tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy);
kau_write(rec, tok);
break;
case A_SETKMASK:
tok = au_to_arg32(2, "setkmask:as_success",
ar->ar_arg_auditon.au_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setkmask:as_failure",
ar->ar_arg_auditon.au_mask.am_failure);
kau_write(rec, tok);
break;
case A_OLDSETQCTRL:
if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) {
tok = au_to_arg64(2, "setqctrl:aq_hiwater",
ar->ar_arg_auditon.au_qctrl64.aq64_hiwater);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_lowater",
ar->ar_arg_auditon.au_qctrl64.aq64_lowater);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_bufsz",
ar->ar_arg_auditon.au_qctrl64.aq64_bufsz);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_delay",
ar->ar_arg_auditon.au_qctrl64.aq64_delay);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_minfree",
ar->ar_arg_auditon.au_qctrl64.aq64_minfree);
kau_write(rec, tok);
break;
}
/* FALLTHROUGH */
case A_SETQCTRL:
tok = au_to_arg32(2, "setqctrl:aq_hiwater",
ar->ar_arg_auditon.au_qctrl.aq_hiwater);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_lowater",
ar->ar_arg_auditon.au_qctrl.aq_lowater);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_bufsz",
ar->ar_arg_auditon.au_qctrl.aq_bufsz);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_delay",
ar->ar_arg_auditon.au_qctrl.aq_delay);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_minfree",
ar->ar_arg_auditon.au_qctrl.aq_minfree);
kau_write(rec, tok);
break;
case A_SETUMASK:
tok = au_to_arg32(2, "setumask:as_success",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setumask:as_failure",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
kau_write(rec, tok);
break;
case A_SETSMASK:
tok = au_to_arg32(2, "setsmask:as_success",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setsmask:as_failure",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
kau_write(rec, tok);
break;
case A_OLDSETCOND:
if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
tok = au_to_arg64(2, "setcond",
ar->ar_arg_auditon.au_cond64);
kau_write(rec, tok);
break;
}
/* FALLTHROUGH */
case A_SETCOND:
tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond);
kau_write(rec, tok);
break;
case A_SETCLASS:
kau_write(rec, tok);
tok = au_to_arg32(2, "setclass:ec_event",
ar->ar_arg_auditon.au_evclass.ec_number);
kau_write(rec, tok);
tok = au_to_arg32(2, "setclass:ec_class",
ar->ar_arg_auditon.au_evclass.ec_class);
kau_write(rec, tok);
break;
case A_SETPMASK:
tok = au_to_arg32(2, "setpmask:as_success",
ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setpmask:as_failure",
ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure);
kau_write(rec, tok);
break;
case A_SETFSIZE:
tok = au_to_arg32(2, "setfsize:filesize",
ar->ar_arg_auditon.au_fstat.af_filesz);
kau_write(rec, tok);
break;
default:
break;
}
}
/*
* Convert an internal kernel audit record to a BSM record and return a
* success/failure indicator. The BSM record is passed as an out parameter to
* this function.
*
* Return conditions:
* BSM_SUCCESS: The BSM record is valid
* BSM_FAILURE: Failure; the BSM record is NULL.
* BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL.
*/
int
kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau)
{
struct au_token *tok, *subj_tok;
struct au_record *rec;
au_tid_t tid;
struct audit_record *ar;
int ctr;
KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL"));
*pau = NULL;
ar = &kar->k_ar;
rec = kau_open();
/*
* Create the subject token.
*/
switch (ar->ar_subj_term_addr.at_type) {
case AU_IPv4:
tid.port = ar->ar_subj_term_addr.at_port;
tid.machine = ar->ar_subj_term_addr.at_addr[0];
subj_tok = au_to_subject32(ar->ar_subj_auid, /* audit ID */
ar->ar_subj_cred.cr_uid, /* eff uid */
ar->ar_subj_egid, /* eff group id */
ar->ar_subj_ruid, /* real uid */
ar->ar_subj_rgid, /* real group id */
ar->ar_subj_pid, /* process id */
ar->ar_subj_asid, /* session ID */
&tid);
break;
case AU_IPv6:
subj_tok = au_to_subject32_ex(ar->ar_subj_auid,
ar->ar_subj_cred.cr_uid,
ar->ar_subj_egid,
ar->ar_subj_ruid,
ar->ar_subj_rgid,
ar->ar_subj_pid,
ar->ar_subj_asid,
&ar->ar_subj_term_addr);
break;
default:
bzero(&tid, sizeof(tid));
subj_tok = au_to_subject32(ar->ar_subj_auid,
ar->ar_subj_cred.cr_uid,
ar->ar_subj_egid,
ar->ar_subj_ruid,
ar->ar_subj_rgid,
ar->ar_subj_pid,
ar->ar_subj_asid,
&tid);
}
/*
* The logic inside each case fills in the tokens required for the
* event, except for the header, trailer, and return tokens. The
* header and trailer tokens are added by the kau_close() function.
* The return token is added outside of the switch statement.
*/
switch(ar->ar_event) {
case AUE_ACCEPT:
case AUE_BIND:
case AUE_LISTEN:
case AUE_CONNECT:
case AUE_RECV:
case AUE_RECVFROM:
case AUE_RECVMSG:
case AUE_SEND:
case AUE_SENDFILE:
case AUE_SENDMSG:
case AUE_SENDTO:
/*
* Socket-related events.
*/
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SADDRINET)) {
tok = au_to_sock_inet((struct sockaddr_in *)
&ar->ar_arg_sockaddr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) {
tok = au_to_sock_unix((struct sockaddr_un *)
&ar->ar_arg_sockaddr);
kau_write(rec, tok);
UPATH1_TOKENS;
}
/* XXX Need to handle ARG_SADDRINET6 */
break;
case AUE_SOCKET:
case AUE_SOCKETPAIR:
if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
tok = au_to_arg32(1, "domain",
ar->ar_arg_sockinfo.so_domain);
kau_write(rec, tok);
tok = au_to_arg32(2, "type",
ar->ar_arg_sockinfo.so_type);
kau_write(rec, tok);
tok = au_to_arg32(3, "protocol",
ar->ar_arg_sockinfo.so_protocol);
kau_write(rec, tok);
}
break;
case AUE_SETSOCKOPT:
case AUE_SHUTDOWN:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
break;
case AUE_ACCT:
if (ARG_IS_VALID(kar, ARG_UPATH1)) {
UPATH1_VNODE1_TOKENS;
} else {
tok = au_to_arg32(1, "accounting off", 0);
kau_write(rec, tok);
}
break;
case AUE_SETAUID:
if (ARG_IS_VALID(kar, ARG_AUID)) {
tok = au_to_arg32(2, "setauid", ar->ar_arg_auid);
kau_write(rec, tok);
}
break;
case AUE_SETAUDIT:
if (ARG_IS_VALID(kar, ARG_AUID) &&
ARG_IS_VALID(kar, ARG_ASID) &&
ARG_IS_VALID(kar, ARG_AMASK) &&
ARG_IS_VALID(kar, ARG_TERMID)) {
tok = au_to_arg32(1, "setaudit:auid",
ar->ar_arg_auid);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:port",
ar->ar_arg_termid.port);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:machine",
ar->ar_arg_termid.machine);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:as_success",
ar->ar_arg_amask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:as_failure",
ar->ar_arg_amask.am_failure);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:asid",
ar->ar_arg_asid);
kau_write(rec, tok);
}
break;
case AUE_SETAUDIT_ADDR:
if (ARG_IS_VALID(kar, ARG_AUID) &&
ARG_IS_VALID(kar, ARG_ASID) &&
ARG_IS_VALID(kar, ARG_AMASK) &&
ARG_IS_VALID(kar, ARG_TERMID_ADDR)) {
tok = au_to_arg32(1, "setaudit_addr:auid",
ar->ar_arg_auid);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:as_success",
ar->ar_arg_amask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:as_failure",
ar->ar_arg_amask.am_failure);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:asid",
ar->ar_arg_asid);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:type",
ar->ar_arg_termid_addr.at_type);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:port",
ar->ar_arg_termid_addr.at_port);
kau_write(rec, tok);
if (ar->ar_arg_termid_addr.at_type == AU_IPv6)
tok = au_to_in_addr_ex((struct in6_addr *)
&ar->ar_arg_termid_addr.at_addr[0]);
if (ar->ar_arg_termid_addr.at_type == AU_IPv4)
tok = au_to_in_addr((struct in_addr *)
&ar->ar_arg_termid_addr.at_addr[0]);
kau_write(rec, tok);
}
break;
case AUE_AUDITON:
/*
* For AUDITON commands without own event, audit the cmd.
*/
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_AUDITON_GETCAR:
case AUE_AUDITON_GETCLASS:
case AUE_AUDITON_GETCOND:
case AUE_AUDITON_GETCWD:
case AUE_AUDITON_GETKMASK:
case AUE_AUDITON_GETSTAT:
case AUE_AUDITON_GPOLICY:
case AUE_AUDITON_GQCTRL:
case AUE_AUDITON_SETCLASS:
case AUE_AUDITON_SETCOND:
case AUE_AUDITON_SETKMASK:
case AUE_AUDITON_SETSMASK:
case AUE_AUDITON_SETSTAT:
case AUE_AUDITON_SETUMASK:
case AUE_AUDITON_SPOLICY:
case AUE_AUDITON_SQCTRL:
if (ARG_IS_VALID(kar, ARG_AUDITON))
audit_sys_auditon(ar, rec);
break;
case AUE_AUDITCTL:
UPATH1_VNODE1_TOKENS;
break;
case AUE_EXIT:
if (ARG_IS_VALID(kar, ARG_EXIT)) {
tok = au_to_exit(ar->ar_arg_exitretval,
ar->ar_arg_exitstatus);
kau_write(rec, tok);
}
break;
case AUE_ADJTIME:
case AUE_CLOCK_SETTIME:
case AUE_AUDIT:
case AUE_DUP2:
case AUE_GETAUDIT:
case AUE_GETAUDIT_ADDR:
case AUE_GETAUID:
case AUE_GETCWD:
case AUE_GETFSSTAT:
case AUE_GETRESUID:
case AUE_GETRESGID:
case AUE_KQUEUE:
case AUE_MODLOAD:
case AUE_MODUNLOAD:
case AUE_MSGSYS:
case AUE_NTP_ADJTIME:
case AUE_PIPE:
case AUE_POSIX_OPENPT:
case AUE_PROFILE:
case AUE_RTPRIO:
case AUE_SEMSYS:
case AUE_SHMSYS:
case AUE_SETPGRP:
case AUE_SETRLIMIT:
case AUE_SETSID:
case AUE_SETTIMEOFDAY:
case AUE_SYSARCH:
/*
* Header, subject, and return tokens added at end.
*/
break;
case AUE_MKFIFO:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_CHDIR:
case AUE_CHROOT:
case AUE_FSTATAT:
case AUE_FUTIMESAT:
case AUE_GETATTRLIST:
case AUE_JAIL:
case AUE_LUTIMES:
case AUE_NFS_GETFH:
case AUE_LSTAT:
case AUE_PATHCONF:
case AUE_READLINK:
case AUE_REVOKE:
case AUE_RMDIR:
case AUE_SEARCHFS:
case AUE_SETATTRLIST:
case AUE_STAT:
case AUE_STATFS:
case AUE_SWAPON:
case AUE_SWAPOFF:
case AUE_TRUNCATE:
case AUE_UNDELETE:
case AUE_UNLINK:
case AUE_UNLINKAT:
case AUE_UTIMES:
ATFD1_TOKENS(1);
UPATH1_VNODE1_TOKENS;
break;
case AUE_ACCESS:
case AUE_EACCESS:
UPATH1_VNODE1_TOKENS;
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_value);
kau_write(rec, tok);
}
break;
case AUE_FHSTATFS:
case AUE_FHOPEN:
case AUE_FHSTAT:
/* XXXRW: Need to audit vnode argument. */
break;
case AUE_CHFLAGS:
case AUE_LCHFLAGS:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CHMOD:
case AUE_LCHMOD:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "new file mode",
ar->ar_arg_mode);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_FCHMODAT:
ATFD1_TOKENS(1);
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "new file mode",
ar->ar_arg_mode);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CHOWN:
case AUE_LCHOWN:
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_FCHOWNAT:
ATFD1_TOKENS(1);
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(3, "new file uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(4, "new file gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_EXCHANGEDATA:
UPATH1_VNODE1_TOKENS;
UPATH2_TOKENS;
break;
case AUE_CLOSE:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CORE:
if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
tok = au_to_arg32(1, "signal", ar->ar_arg_signum);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_EXTATTRCTL:
UPATH1_VNODE1_TOKENS;
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
/* extattrctl(2) filename parameter is in upath2/vnode2 */
UPATH2_TOKENS;
VNODE2_TOKENS;
EXTATTR_TOKENS(4);
break;
case AUE_EXTATTR_GET_FILE:
case AUE_EXTATTR_SET_FILE:
case AUE_EXTATTR_LIST_FILE:
case AUE_EXTATTR_DELETE_FILE:
case AUE_EXTATTR_GET_LINK:
case AUE_EXTATTR_SET_LINK:
case AUE_EXTATTR_LIST_LINK:
case AUE_EXTATTR_DELETE_LINK:
UPATH1_VNODE1_TOKENS;
EXTATTR_TOKENS(2);
break;
case AUE_EXTATTR_GET_FD:
case AUE_EXTATTR_SET_FD:
case AUE_EXTATTR_LIST_FD:
case AUE_EXTATTR_DELETE_FD:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(2, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
EXTATTR_TOKENS(2);
break;
case AUE_FEXECVE:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_EXECVE:
case AUE_MAC_EXECVE:
if (ARG_IS_VALID(kar, ARG_ARGV)) {
tok = au_to_exec_args(ar->ar_arg_argv,
ar->ar_arg_argc);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_ENVV)) {
tok = au_to_exec_env(ar->ar_arg_envv,
ar->ar_arg_envc);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_FCHMOD:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "new file mode",
ar->ar_arg_mode);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
/*
* XXXRW: Some of these need to handle non-vnode cases as well.
*/
case AUE_FCHDIR:
case AUE_FPATHCONF:
case AUE_FSTAT:
case AUE_FSTATFS:
case AUE_FSYNC:
case AUE_FTRUNCATE:
case AUE_FUTIMES:
case AUE_GETDIRENTRIES:
case AUE_GETDIRENTRIESATTR:
case AUE_LSEEK:
case AUE_POLL:
case AUE_READ:
case AUE_READV:
case AUE_WRITE:
case AUE_WRITEV:
FD_VNODE1_TOKENS;
break;
case AUE_FCHOWN:
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_FCNTL:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "cmd",
au_fcntl_cmd_to_bsm(ar->ar_arg_cmd));
kau_write(rec, tok);
}
if (ar->ar_arg_cmd == F_GETLK || ar->ar_arg_cmd == F_SETLK ||
ar->ar_arg_cmd == F_SETLKW) {
FD_VNODE1_TOKENS;
}
break;
case AUE_FCHFLAGS:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_FLOCK:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "operation", ar->ar_arg_cmd);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_RFORK:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(1, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_FORK:
case AUE_VFORK:
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(0, "child PID", ar->ar_arg_pid);
kau_write(rec, tok);
}
break;
case AUE_IOCTL:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VNODE1))
FD_VNODE1_TOKENS;
else {
if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
tok = kau_to_socket(&ar->ar_arg_sockinfo);
kau_write(rec, tok);
} else {
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd",
ar->ar_arg_fd);
kau_write(rec, tok);
}
}
}
break;
case AUE_KILL:
case AUE_KILLPG:
if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
tok = au_to_arg32(2, "signal", ar->ar_arg_signum);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(1);
break;
case AUE_KTRACE:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "ops", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(3, "trpoints", ar->ar_arg_value);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(4);
UPATH1_VNODE1_TOKENS;
break;
case AUE_LINK:
case AUE_LINKAT:
case AUE_RENAME:
case AUE_RENAMEAT:
ATFD1_TOKENS(1);
UPATH1_VNODE1_TOKENS;
ATFD2_TOKENS(3);
UPATH2_TOKENS;
break;
case AUE_LOADSHFILE:
ADDR_TOKEN(4, "base addr");
UPATH1_VNODE1_TOKENS;
break;
case AUE_MKDIR:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_MKNOD:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_DEV)) {
tok = au_to_arg32(3, "dev", ar->ar_arg_dev);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_MMAP:
case AUE_MUNMAP:
case AUE_MPROTECT:
case AUE_MLOCK:
case AUE_MUNLOCK:
case AUE_MINHERIT:
ADDR_TOKEN(1, "addr");
if (ARG_IS_VALID(kar, ARG_LEN)) {
tok = au_to_arg32(2, "len", ar->ar_arg_len);
kau_write(rec, tok);
}
if (ar->ar_event == AUE_MMAP)
FD_VNODE1_TOKENS;
if (ar->ar_event == AUE_MPROTECT) {
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(3, "protection",
ar->ar_arg_value);
kau_write(rec, tok);
}
}
if (ar->ar_event == AUE_MINHERIT) {
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(3, "inherit",
ar->ar_arg_value);
kau_write(rec, tok);
}
}
break;
case AUE_MOUNT:
case AUE_NMOUNT:
/* XXX Need to handle NFS mounts */
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_NFS_SVC:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "flags", ar->ar_arg_cmd);
kau_write(rec, tok);
}
break;
case AUE_UMOUNT:
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_value);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_MSGCTL:
ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd);
/* Fall through */
case AUE_MSGRCV:
case AUE_MSGSND:
tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id);
kau_write(rec, tok);
if (ar->ar_errno != EINVAL) {
tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
break;
case AUE_MSGGET:
if (ar->ar_errno == 0) {
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_ipc(AT_IPC_MSG,
ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
}
break;
case AUE_RESETSHFILE:
ADDR_TOKEN(1, "base addr");
break;
case AUE_OPEN_RC:
case AUE_OPEN_RTC:
case AUE_OPEN_RWC:
case AUE_OPEN_RWTC:
case AUE_OPEN_WC:
case AUE_OPEN_WTC:
case AUE_CREAT:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_OPEN_R:
case AUE_OPEN_RT:
case AUE_OPEN_RW:
case AUE_OPEN_RWT:
case AUE_OPEN_W:
case AUE_OPEN_WT:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPENAT_RC:
case AUE_OPENAT_RTC:
case AUE_OPENAT_RWC:
case AUE_OPENAT_RWTC:
case AUE_OPENAT_WC:
case AUE_OPENAT_WTC:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_OPENAT_R:
case AUE_OPENAT_RT:
case AUE_OPENAT_RW:
case AUE_OPENAT_RWT:
case AUE_OPENAT_W:
case AUE_OPENAT_WT:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
ATFD1_TOKENS(1);
UPATH1_VNODE1_TOKENS;
break;
case AUE_PTRACE:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "request", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(4, "data", ar->ar_arg_value);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(2);
break;
case AUE_QUOTACTL:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "command", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(3, "uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(3, "gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_REBOOT:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "howto", ar->ar_arg_cmd);
kau_write(rec, tok);
}
break;
case AUE_SEMCTL:
ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd);
/* Fall through */
case AUE_SEMOP:
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id);
kau_write(rec, tok);
if (ar->ar_errno != EINVAL) {
tok = au_to_ipc(AT_IPC_SEM,
ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
}
break;
case AUE_SEMGET:
if (ar->ar_errno == 0) {
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_ipc(AT_IPC_SEM,
ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
}
break;
case AUE_SETEGID:
if (ARG_IS_VALID(kar, ARG_EGID)) {
tok = au_to_arg32(1, "egid", ar->ar_arg_egid);
kau_write(rec, tok);
}
break;
case AUE_SETEUID:
if (ARG_IS_VALID(kar, ARG_EUID)) {
tok = au_to_arg32(1, "euid", ar->ar_arg_euid);
kau_write(rec, tok);
}
break;
case AUE_SETREGID:
if (ARG_IS_VALID(kar, ARG_RGID)) {
tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_EGID)) {
tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
kau_write(rec, tok);
}
break;
case AUE_SETREUID:
if (ARG_IS_VALID(kar, ARG_RUID)) {
tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_EUID)) {
tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
kau_write(rec, tok);
}
break;
case AUE_SETRESGID:
if (ARG_IS_VALID(kar, ARG_RGID)) {
tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_EGID)) {
tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SGID)) {
tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid);
kau_write(rec, tok);
}
break;
case AUE_SETRESUID:
if (ARG_IS_VALID(kar, ARG_RUID)) {
tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_EUID)) {
tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SUID)) {
tok = au_to_arg32(3, "suid", ar->ar_arg_suid);
kau_write(rec, tok);
}
break;
case AUE_SETGID:
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(1, "gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
break;
case AUE_SETUID:
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(1, "uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
break;
case AUE_SETGROUPS:
if (ARG_IS_VALID(kar, ARG_GROUPSET)) {
for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++)
{
tok = au_to_arg32(1, "setgroups",
ar->ar_arg_groups.gidset[ctr]);
kau_write(rec, tok);
}
}
break;
case AUE_SETLOGIN:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_SETPRIORITY:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "which", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(2, "who", ar->ar_arg_uid);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(2);
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(3, "priority", ar->ar_arg_value);
kau_write(rec, tok);
}
break;
case AUE_SETPRIVEXEC:
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(1, "flag", ar->ar_arg_value);
kau_write(rec, tok);
}
break;
/* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */
case AUE_SHMAT:
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
kau_write(rec, tok);
/* XXXAUDIT: Does having the ipc token make sense? */
tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
tok = au_to_arg32(2, "shmaddr",
(int)(uintptr_t)ar->ar_arg_svipc_addr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
kau_write(rec, tok);
}
break;
case AUE_SHMCTL:
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
kau_write(rec, tok);
/* XXXAUDIT: Does having the ipc token make sense? */
tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
switch (ar->ar_arg_svipc_cmd) {
case IPC_STAT:
ar->ar_event = AUE_SHMCTL_STAT;
break;
case IPC_RMID:
ar->ar_event = AUE_SHMCTL_RMID;
break;
case IPC_SET:
ar->ar_event = AUE_SHMCTL_SET;
if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
kau_write(rec, tok);
}
break;
default:
break; /* We will audit a bad command */
}
break;
case AUE_SHMDT:
if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
tok = au_to_arg32(1, "shmaddr",
(int)(uintptr_t)ar->ar_arg_svipc_addr);
kau_write(rec, tok);
}
break;
case AUE_SHMGET:
/* This is unusual; the return value is in an argument token */
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id);
kau_write(rec, tok);
tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
kau_write(rec, tok);
}
break;
/* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE
* and AUE_SEMUNLINK are Posix IPC */
case AUE_SHMOPEN:
if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_SHMUNLINK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
struct ipc_perm perm;
perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
perm.seq = 0;
perm.key = 0;
tok = au_to_ipc_perm(&perm);
kau_write(rec, tok);
}
break;
case AUE_SEMOPEN:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(4, "value", ar->ar_arg_value);
kau_write(rec, tok);
}
/* FALLTHROUGH */
case AUE_SEMUNLINK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
struct ipc_perm perm;
perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
perm.seq = 0;
perm.key = 0;
tok = au_to_ipc_perm(&perm);
kau_write(rec, tok);
}
break;
case AUE_SEMCLOSE:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "sem", ar->ar_arg_fd);
kau_write(rec, tok);
}
break;
case AUE_SYMLINK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_SYSCTL:
case AUE_SYSCTL_NONADMIN:
if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) {
for (ctr = 0; ctr < ar->ar_arg_len; ctr++) {
tok = au_to_arg32(1, "name",
ar->ar_arg_ctlname[ctr]);
kau_write(rec, tok);
}
}
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(5, "newval", ar->ar_arg_value);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_UMASK:
if (ARG_IS_VALID(kar, ARG_MASK)) {
tok = au_to_arg32(1, "new mask", ar->ar_arg_mask);
kau_write(rec, tok);
}
tok = au_to_arg32(0, "prev mask", ar->ar_retval);
kau_write(rec, tok);
break;
case AUE_WAIT4:
PROCESS_PID_TOKENS(1);
if (ARG_IS_VALID(kar, ARG_VALUE)) {
tok = au_to_arg32(3, "options", ar->ar_arg_value);
kau_write(rec, tok);
}
break;
case AUE_NULL:
default:
printf("BSM conversion requested for unknown event %d\n",
ar->ar_event);
/*
* Write the subject token so it is properly freed here.
*/
kau_write(rec, subj_tok);
kau_free(rec);
return (BSM_NOAUDIT);
}
kau_write(rec, subj_tok);
tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval);
kau_write(rec, tok); /* Every record gets a return token */
kau_close(rec, &ar->ar_endtime, ar->ar_event);
*pau = rec;
return (BSM_SUCCESS);
}
/*
* Verify that a record is a valid BSM record. This verification is simple
* now, but may be expanded on sometime in the future. Return 1 if the
* record is good, 0 otherwise.
*/
int
bsm_rec_verify(void *rec)
{
char c = *(char *)rec;
/*
* Check the token ID of the first token; it has to be a header
* token.
*
* XXXAUDIT There needs to be a token structure to map a token.
* XXXAUDIT 'Shouldn't be simply looking at the first char.
*/
if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) &&
(c != AUT_HEADER64) && (c != AUT_HEADER64_EX))
return (0);
return (1);
}