freebsd-skq/sys/nfsclient/nfs_socket.c
Peter Wemm e8cf20c8db NFS Jumbo commit part 1. Cosmetic and structural changes only. The aim
of this part of commits is to minimize unnecessary differences between
the other NFS's of similar origin.  Yes, there are gratuitous changes here
that the style folks won't like, but it makes the catch-up less difficult.
1998-05-31 17:27:58 +00:00

2220 lines
56 KiB
C

/*
* Copyright (c) 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
* $Id: nfs_socket.c,v 1.32 1998/05/19 07:11:23 peter Exp $
*/
/*
* Socket operations for use by nfs
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/vnode.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <sys/tprintf.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfs.h>
#include <nfs/xdr_subs.h>
#include <nfs/nfsm_subs.h>
#include <nfs/nfsmount.h>
#include <nfs/nfsnode.h>
#include <nfs/nfsrtt.h>
#include <nfs/nqnfs.h>
#define TRUE 1
#define FALSE 0
/*
* Estimate rto for an nfs rpc sent via. an unreliable datagram.
* Use the mean and mean deviation of rtt for the appropriate type of rpc
* for the frequent rpcs and a default for the others.
* The justification for doing "other" this way is that these rpcs
* happen so infrequently that timer est. would probably be stale.
* Also, since many of these rpcs are
* non-idempotent, a conservative timeout is desired.
* getattr, lookup - A+2D
* read, write - A+4D
* other - nm_timeo
*/
#define NFS_RTO(n, t) \
((t) == 0 ? (n)->nm_timeo : \
((t) < 3 ? \
(((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
#define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
#define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
/*
* External data, mostly RPC constants in XDR form
*/
extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
rpc_msgaccepted, rpc_call, rpc_autherr,
rpc_auth_kerb;
extern u_long nfs_prog, nqnfs_prog;
extern time_t nqnfsstarttime;
extern struct nfsstats nfsstats;
extern int nfsv3_procid[NFS_NPROCS];
extern int nfs_ticks;
/*
* Defines which timer to use for the procnum.
* 0 - default
* 1 - getattr
* 2 - lookup
* 3 - read
* 4 - write
*/
static int proct[NFS_NPROCS] = {
0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
0, 0, 0,
};
/*
* There is a congestion window for outstanding rpcs maintained per mount
* point. The cwnd size is adjusted in roughly the way that:
* Van Jacobson, Congestion avoidance and Control, In "Proceedings of
* SIGCOMM '88". ACM, August 1988.
* describes for TCP. The cwnd size is chopped in half on a retransmit timeout
* and incremented by 1/cwnd when each rpc reply is received and a full cwnd
* of rpcs is in progress.
* (The sent count and cwnd are scaled for integer arith.)
* Variants of "slow start" were tried and were found to be too much of a
* performance hit (ave. rtt 3 times larger),
* I suspect due to the large rtt that nfs rpcs have.
*/
#define NFS_CWNDSCALE 256
#define NFS_MAXCWND (NFS_CWNDSCALE * 32)
static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
int nfsrtton = 0;
struct nfsrtt nfsrtt;
static int nfs_msg __P((struct proc *,char *,char *));
static int nfs_rcvlock __P((struct nfsreq *));
static void nfs_rcvunlock __P((int *flagp, int *statep));
static void nfs_realign __P((struct mbuf *m, int hsiz));
static int nfs_receive __P((struct nfsreq *rep, struct sockaddr **aname,
struct mbuf **mp));
static int nfs_reconnect __P((struct nfsreq *rep));
#ifndef NFS_NOSERVER
static int nfsrv_getstream __P((struct nfssvc_sock *,int));
int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *nd,
struct nfssvc_sock *slp,
struct proc *procp,
struct mbuf **mreqp)) = {
nfsrv_null,
nfsrv_getattr,
nfsrv_setattr,
nfsrv_lookup,
nfsrv3_access,
nfsrv_readlink,
nfsrv_read,
nfsrv_write,
nfsrv_create,
nfsrv_mkdir,
nfsrv_symlink,
nfsrv_mknod,
nfsrv_remove,
nfsrv_rmdir,
nfsrv_rename,
nfsrv_link,
nfsrv_readdir,
nfsrv_readdirplus,
nfsrv_statfs,
nfsrv_fsinfo,
nfsrv_pathconf,
nfsrv_commit,
nqnfsrv_getlease,
nqnfsrv_vacated,
nfsrv_noop,
nfsrv_noop
};
#endif /* NFS_NOSERVER */
/*
* Initialize sockets and congestion for a new NFS connection.
* We do not free the sockaddr if error.
*/
int
nfs_connect(nmp, rep)
register struct nfsmount *nmp;
struct nfsreq *rep;
{
register struct socket *so;
int s, error, rcvreserve, sndreserve;
struct sockaddr *saddr;
struct sockaddr_in *sin;
struct mbuf *m;
u_short tport;
struct proc *p = &proc0; /* only used for socreate and sobind */
nmp->nm_so = (struct socket *)0;
saddr = nmp->nm_nam;
error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
nmp->nm_soproto, p);
if (error)
goto bad;
so = nmp->nm_so;
nmp->nm_soflags = so->so_proto->pr_flags;
/*
* Some servers require that the client port be a reserved port number.
*/
if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
struct sockaddr_in ssin;
bzero(&ssin, sizeof ssin);
sin = &ssin;
sin->sin_len = sizeof (struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
tport = IPPORT_RESERVED - 1;
sin->sin_port = htons(tport);
while ((error = sobind(so, (struct sockaddr *)sin, p))
== EADDRINUSE &&
--tport > IPPORT_RESERVED / 2)
sin->sin_port = htons(tport);
if (error)
goto bad;
}
/*
* Protocols that do not require connections may be optionally left
* unconnected for servers that reply from a port other than NFS_PORT.
*/
if (nmp->nm_flag & NFSMNT_NOCONN) {
if (nmp->nm_soflags & PR_CONNREQUIRED) {
error = ENOTCONN;
goto bad;
}
} else {
/* XXX should not use mbuf */
error = soconnect(so, nmp->nm_nam, p);
if (error)
goto bad;
/*
* Wait for the connection to complete. Cribbed from the
* connect system call but with the wait timing out so
* that interruptible mounts don't hang here for a long time.
*/
s = splnet();
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
"nfscon", 2 * hz);
if ((so->so_state & SS_ISCONNECTING) &&
so->so_error == 0 && rep &&
(error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
so->so_state &= ~SS_ISCONNECTING;
splx(s);
goto bad;
}
}
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
splx(s);
goto bad;
}
splx(s);
}
if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
so->so_rcv.sb_timeo = (5 * hz);
so->so_snd.sb_timeo = (5 * hz);
} else {
so->so_rcv.sb_timeo = 0;
so->so_snd.sb_timeo = 0;
}
if (nmp->nm_sotype == SOCK_DGRAM) {
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
} else {
if (nmp->nm_sotype != SOCK_STREAM)
panic("nfscon sotype");
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
MGET(m, M_WAIT, MT_SOOPTS);
*mtod(m, int *) = 1;
m->m_len = sizeof(int);
sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m, p);
}
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
MGET(m, M_WAIT, MT_SOOPTS);
*mtod(m, int *) = 1;
m->m_len = sizeof(int);
sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m, p);
}
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
* 2;
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
* 2;
}
error = soreserve(so, sndreserve, rcvreserve);
if (error)
goto bad;
so->so_rcv.sb_flags |= SB_NOINTR;
so->so_snd.sb_flags |= SB_NOINTR;
/* Initialize other non-zero congestion variables */
nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
nmp->nm_srtt[4] = (NFS_TIMEO << 3);
nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
nmp->nm_sent = 0;
nmp->nm_timeouts = 0;
return (0);
bad:
nfs_disconnect(nmp);
return (error);
}
/*
* Reconnect routine:
* Called when a connection is broken on a reliable protocol.
* - clean up the old socket
* - nfs_connect() again
* - set R_MUSTRESEND for all outstanding requests on mount point
* If this fails the mount point is DEAD!
* nb: Must be called with the nfs_sndlock() set on the mount point.
*/
static int
nfs_reconnect(rep)
register struct nfsreq *rep;
{
register struct nfsreq *rp;
register struct nfsmount *nmp = rep->r_nmp;
int error;
nfs_disconnect(nmp);
while ((error = nfs_connect(nmp, rep)) != 0) {
if (error == EINTR || error == ERESTART)
return (EINTR);
(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
}
/*
* Loop through outstanding request list and fix up all requests
* on old socket.
*/
for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
if (rp->r_nmp == nmp)
rp->r_flags |= R_MUSTRESEND;
}
return (0);
}
/*
* NFS disconnect. Clean up and unlink.
*/
void
nfs_disconnect(nmp)
register struct nfsmount *nmp;
{
register struct socket *so;
if (nmp->nm_so) {
so = nmp->nm_so;
nmp->nm_so = (struct socket *)0;
soshutdown(so, 2);
soclose(so);
}
}
/*
* This is the nfs send routine. For connection based socket types, it
* must be called with an nfs_sndlock() on the socket.
* "rep == NULL" indicates that it has been called from a server.
* For the client side:
* - return EINTR if the RPC is terminated, 0 otherwise
* - set R_MUSTRESEND if the send fails for any reason
* - do any cleanup required by recoverable socket errors (???)
* For the server side:
* - return EINTR or ERESTART if interrupted by a signal
* - return EPIPE if a connection is lost for connection based sockets (TCP...)
* - do any cleanup required by recoverable socket errors (???)
*/
int
nfs_send(so, nam, top, rep)
register struct socket *so;
struct sockaddr *nam;
register struct mbuf *top;
struct nfsreq *rep;
{
struct sockaddr *sendnam;
int error, soflags, flags;
if (rep) {
if (rep->r_flags & R_SOFTTERM) {
m_freem(top);
return (EINTR);
}
if ((so = rep->r_nmp->nm_so) == NULL) {
rep->r_flags |= R_MUSTRESEND;
m_freem(top);
return (0);
}
rep->r_flags &= ~R_MUSTRESEND;
soflags = rep->r_nmp->nm_soflags;
} else
soflags = so->so_proto->pr_flags;
if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
sendnam = (struct sockaddr *)0;
else
sendnam = nam;
if (so->so_type == SOCK_SEQPACKET)
flags = MSG_EOR;
else
flags = 0;
error = so->so_proto->pr_usrreqs->pru_sosend(so, sendnam, 0, top, 0,
flags, curproc /*XXX*/);
if (error) {
if (rep) {
log(LOG_INFO, "nfs send error %d for server %s\n",error,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
/*
* Deal with errors for the client side.
*/
if (rep->r_flags & R_SOFTTERM)
error = EINTR;
else
rep->r_flags |= R_MUSTRESEND;
} else
log(LOG_INFO, "nfsd send error %d\n", error);
/*
* Handle any recoverable (soft) socket errors here. (???)
*/
if (error != EINTR && error != ERESTART &&
error != EWOULDBLOCK && error != EPIPE)
error = 0;
}
return (error);
}
/*
* Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
* done by soreceive(), but for SOCK_STREAM we must deal with the Record
* Mark and consolidate the data into a new mbuf list.
* nb: Sometimes TCP passes the data up to soreceive() in long lists of
* small mbufs.
* For SOCK_STREAM we must be very careful to read an entire record once
* we have read any of it, even if the system call has been interrupted.
*/
static int
nfs_receive(rep, aname, mp)
register struct nfsreq *rep;
struct sockaddr **aname;
struct mbuf **mp;
{
register struct socket *so;
struct uio auio;
struct iovec aio;
register struct mbuf *m;
struct mbuf *control;
u_long len;
struct sockaddr **getnam;
int error, sotype, rcvflg;
struct proc *p = curproc; /* XXX */
/*
* Set up arguments for soreceive()
*/
*mp = (struct mbuf *)0;
*aname = (struct sockaddr *)0;
sotype = rep->r_nmp->nm_sotype;
/*
* For reliable protocols, lock against other senders/receivers
* in case a reconnect is necessary.
* For SOCK_STREAM, first get the Record Mark to find out how much
* more there is to get.
* We must lock the socket against other receivers
* until we have an entire rpc request/reply.
*/
if (sotype != SOCK_DGRAM) {
error = nfs_sndlock(&rep->r_nmp->nm_flag, &rep->r_nmp->nm_state,
rep);
if (error)
return (error);
tryagain:
/*
* Check for fatal errors and resending request.
*/
/*
* Ugh: If a reconnect attempt just happened, nm_so
* would have changed. NULL indicates a failed
* attempt that has essentially shut down this
* mount point.
*/
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
nfs_sndunlock(&rep->r_nmp->nm_flag,
&rep->r_nmp->nm_state);
return (EINTR);
}
so = rep->r_nmp->nm_so;
if (!so) {
error = nfs_reconnect(rep);
if (error) {
nfs_sndunlock(&rep->r_nmp->nm_flag,
&rep->r_nmp->nm_state);
return (error);
}
goto tryagain;
}
while (rep->r_flags & R_MUSTRESEND) {
m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
nfsstats.rpcretries++;
error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
if (error) {
if (error == EINTR || error == ERESTART ||
(error = nfs_reconnect(rep)) != 0) {
nfs_sndunlock(&rep->r_nmp->nm_flag,
&rep->r_nmp->nm_state);
return (error);
}
goto tryagain;
}
}
nfs_sndunlock(&rep->r_nmp->nm_flag, &rep->r_nmp->nm_state);
if (sotype == SOCK_STREAM) {
aio.iov_base = (caddr_t) &len;
aio.iov_len = sizeof(u_long);
auio.uio_iov = &aio;
auio.uio_iovcnt = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_offset = 0;
auio.uio_resid = sizeof(u_long);
auio.uio_procp = p;
do {
rcvflg = MSG_WAITALL;
error = so->so_proto->pr_usrreqs->pru_soreceive
(so, (struct sockaddr **)0, &auio,
(struct mbuf **)0, (struct mbuf **)0,
&rcvflg);
if (error == EWOULDBLOCK && rep) {
if (rep->r_flags & R_SOFTTERM)
return (EINTR);
}
} while (error == EWOULDBLOCK);
if (!error && auio.uio_resid > 0) {
log(LOG_INFO,
"short receive (%d/%d) from nfs server %s\n",
sizeof(u_long) - auio.uio_resid,
sizeof(u_long),
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EPIPE;
}
if (error)
goto errout;
len = ntohl(len) & ~0x80000000;
/*
* This is SERIOUS! We are out of sync with the sender
* and forcing a disconnect/reconnect is all I can do.
*/
if (len > NFS_MAXPACKET) {
log(LOG_ERR, "%s (%d) from nfs server %s\n",
"impossible packet length",
len,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EFBIG;
goto errout;
}
auio.uio_resid = len;
do {
rcvflg = MSG_WAITALL;
error = so->so_proto->pr_usrreqs->pru_soreceive
(so, (struct sockaddr **)0,
&auio, mp, (struct mbuf **)0, &rcvflg);
} while (error == EWOULDBLOCK || error == EINTR ||
error == ERESTART);
if (!error && auio.uio_resid > 0) {
log(LOG_INFO,
"short receive (%d/%d) from nfs server %s\n",
len - auio.uio_resid, len,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EPIPE;
}
} else {
/*
* NB: Since uio_resid is big, MSG_WAITALL is ignored
* and soreceive() will return when it has either a
* control msg or a data msg.
* We have no use for control msg., but must grab them
* and then throw them away so we know what is going
* on.
*/
auio.uio_resid = len = 100000000; /* Anything Big */
auio.uio_procp = p;
do {
rcvflg = 0;
error = so->so_proto->pr_usrreqs->pru_soreceive
(so, (struct sockaddr **)0,
&auio, mp, &control, &rcvflg);
if (control)
m_freem(control);
if (error == EWOULDBLOCK && rep) {
if (rep->r_flags & R_SOFTTERM)
return (EINTR);
}
} while (error == EWOULDBLOCK ||
(!error && *mp == NULL && control));
if ((rcvflg & MSG_EOR) == 0)
printf("Egad!!\n");
if (!error && *mp == NULL)
error = EPIPE;
len -= auio.uio_resid;
}
errout:
if (error && error != EINTR && error != ERESTART) {
m_freem(*mp);
*mp = (struct mbuf *)0;
if (error != EPIPE)
log(LOG_INFO,
"receive error %d from nfs server %s\n",
error,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = nfs_sndlock(&rep->r_nmp->nm_flag,
&rep->r_nmp->nm_state, rep);
if (!error)
error = nfs_reconnect(rep);
if (!error)
goto tryagain;
}
} else {
if ((so = rep->r_nmp->nm_so) == NULL)
return (EACCES);
if (so->so_state & SS_ISCONNECTED)
getnam = (struct sockaddr **)0;
else
getnam = aname;
auio.uio_resid = len = 1000000;
auio.uio_procp = p;
do {
rcvflg = 0;
error = so->so_proto->pr_usrreqs->pru_soreceive
(so, getnam, &auio, mp,
(struct mbuf **)0, &rcvflg);
if (error == EWOULDBLOCK &&
(rep->r_flags & R_SOFTTERM))
return (EINTR);
} while (error == EWOULDBLOCK);
len -= auio.uio_resid;
}
if (error) {
m_freem(*mp);
*mp = (struct mbuf *)0;
}
/*
* Search for any mbufs that are not a multiple of 4 bytes long
* or with m_data not longword aligned.
* These could cause pointer alignment problems, so copy them to
* well aligned mbufs.
*/
nfs_realign(*mp, 5 * NFSX_UNSIGNED);
return (error);
}
/*
* Implement receipt of reply on a socket.
* We must search through the list of received datagrams matching them
* with outstanding requests using the xid, until ours is found.
*/
/* ARGSUSED */
int
nfs_reply(myrep)
struct nfsreq *myrep;
{
register struct nfsreq *rep;
register struct nfsmount *nmp = myrep->r_nmp;
register long t1;
struct mbuf *mrep, *md;
struct sockaddr *nam;
u_long rxid, *tl;
caddr_t dpos, cp2;
int error;
/*
* Loop around until we get our own reply
*/
for (;;) {
/*
* Lock against other receivers so that I don't get stuck in
* sbwait() after someone else has received my reply for me.
* Also necessary for connection based protocols to avoid
* race conditions during a reconnect.
* If nfs_rcvlock() returns EALREADY, that means that
* the reply has already been recieved by another
* process and we can return immediately. In this
* case, the lock is not taken to avoid races with
* other processes.
*/
error = nfs_rcvlock(myrep);
if (error == EALREADY)
return (0);
if (error)
return (error);
/*
* Get the next Rpc reply off the socket
*/
error = nfs_receive(myrep, &nam, &mrep);
nfs_rcvunlock(&nmp->nm_flag, &nmp->nm_state);
if (error) {
/*
* Ignore routing errors on connectionless protocols??
*/
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
nmp->nm_so->so_error = 0;
if (myrep->r_flags & R_GETONEREP)
return (0);
continue;
}
return (error);
}
if (nam)
FREE(nam, M_SONAME);
/*
* Get the xid and check that it is an rpc reply
*/
md = mrep;
dpos = mtod(md, caddr_t);
nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
rxid = *tl++;
if (*tl != rpc_reply) {
#ifndef NFS_NOSERVER
if (nmp->nm_flag & NFSMNT_NQNFS) {
if (nqnfs_callback(nmp, mrep, md, dpos))
nfsstats.rpcinvalid++;
} else {
nfsstats.rpcinvalid++;
m_freem(mrep);
}
#else
nfsstats.rpcinvalid++;
m_freem(mrep);
#endif
nfsmout:
if (myrep->r_flags & R_GETONEREP)
return (0);
continue;
}
/*
* Loop through the request list to match up the reply
* Iff no match, just drop the datagram
*/
for (rep = nfs_reqq.tqh_first; rep != 0;
rep = rep->r_chain.tqe_next) {
if (rep->r_mrep == NULL && rxid == rep->r_xid) {
/* Found it.. */
rep->r_mrep = mrep;
rep->r_md = md;
rep->r_dpos = dpos;
if (nfsrtton) {
struct rttl *rt;
rt = &nfsrtt.rttl[nfsrtt.pos];
rt->proc = rep->r_procnum;
rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
rt->sent = nmp->nm_sent;
rt->cwnd = nmp->nm_cwnd;
rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
getmicrotime(&rt->tstamp);
if (rep->r_flags & R_TIMING)
rt->rtt = rep->r_rtt;
else
rt->rtt = 1000000;
nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
}
/*
* Update congestion window.
* Do the additive increase of
* one rpc/rtt.
*/
if (nmp->nm_cwnd <= nmp->nm_sent) {
nmp->nm_cwnd +=
(NFS_CWNDSCALE * NFS_CWNDSCALE +
(nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
if (nmp->nm_cwnd > NFS_MAXCWND)
nmp->nm_cwnd = NFS_MAXCWND;
}
rep->r_flags &= ~R_SENT;
nmp->nm_sent -= NFS_CWNDSCALE;
/*
* Update rtt using a gain of 0.125 on the mean
* and a gain of 0.25 on the deviation.
*/
if (rep->r_flags & R_TIMING) {
/*
* Since the timer resolution of
* NFS_HZ is so course, it can often
* result in r_rtt == 0. Since
* r_rtt == N means that the actual
* rtt is between N+dt and N+2-dt ticks,
* add 1.
*/
t1 = rep->r_rtt + 1;
t1 -= (NFS_SRTT(rep) >> 3);
NFS_SRTT(rep) += t1;
if (t1 < 0)
t1 = -t1;
t1 -= (NFS_SDRTT(rep) >> 2);
NFS_SDRTT(rep) += t1;
}
nmp->nm_timeouts = 0;
break;
}
}
/*
* If not matched to a request, drop it.
* If it's mine, get out.
*/
if (rep == 0) {
nfsstats.rpcunexpected++;
m_freem(mrep);
} else if (rep == myrep) {
if (rep->r_mrep == NULL)
panic("nfsreply nil");
return (0);
}
if (myrep->r_flags & R_GETONEREP)
return (0);
}
}
/*
* nfs_request - goes something like this
* - fill in request struct
* - links it into list
* - calls nfs_send() for first transmit
* - calls nfs_receive() to get reply
* - break down rpc header and return with nfs reply pointed to
* by mrep or error
* nb: always frees up mreq mbuf list
*/
int
nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
struct vnode *vp;
struct mbuf *mrest;
int procnum;
struct proc *procp;
struct ucred *cred;
struct mbuf **mrp;
struct mbuf **mdp;
caddr_t *dposp;
{
register struct mbuf *m, *mrep;
register struct nfsreq *rep;
register u_long *tl;
register int i;
struct nfsmount *nmp;
struct mbuf *md, *mheadend;
struct nfsnode *np;
char nickv[RPCX_NICKVERF];
time_t reqtime, waituntil;
caddr_t dpos, cp2;
int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
int verf_len, verf_type;
u_long xid;
u_quad_t frev;
char *auth_str, *verf_str;
NFSKERBKEY_T key; /* save session key */
nmp = VFSTONFS(vp->v_mount);
MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
rep->r_nmp = nmp;
rep->r_vp = vp;
rep->r_procp = procp;
rep->r_procnum = procnum;
i = 0;
m = mrest;
while (m) {
i += m->m_len;
m = m->m_next;
}
mrest_len = i;
/*
* Get the RPC header with authorization.
*/
kerbauth:
verf_str = auth_str = (char *)0;
if (nmp->nm_flag & NFSMNT_KERB) {
verf_str = nickv;
verf_len = sizeof (nickv);
auth_type = RPCAUTH_KERB4;
bzero((caddr_t)key, sizeof (key));
if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
&auth_len, verf_str, verf_len)) {
error = nfs_getauth(nmp, rep, cred, &auth_str,
&auth_len, verf_str, &verf_len, key);
if (error) {
free((caddr_t)rep, M_NFSREQ);
m_freem(mrest);
return (error);
}
}
} else {
auth_type = RPCAUTH_UNIX;
if (cred->cr_ngroups < 1)
panic("nfsreq nogrps");
auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
5 * NFSX_UNSIGNED;
}
m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
if (auth_str)
free(auth_str, M_TEMP);
/*
* For stream protocols, insert a Sun RPC Record Mark.
*/
if (nmp->nm_sotype == SOCK_STREAM) {
M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
*mtod(m, u_long *) = htonl(0x80000000 |
(m->m_pkthdr.len - NFSX_UNSIGNED));
}
rep->r_mreq = m;
rep->r_xid = xid;
tryagain:
if (nmp->nm_flag & NFSMNT_SOFT)
rep->r_retry = nmp->nm_retry;
else
rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
rep->r_rtt = rep->r_rexmit = 0;
if (proct[procnum] > 0)
rep->r_flags = R_TIMING;
else
rep->r_flags = 0;
rep->r_mrep = NULL;
/*
* Do the client side RPC.
*/
nfsstats.rpcrequests++;
/*
* Chain request into list of outstanding requests. Be sure
* to put it LAST so timer finds oldest requests first.
*/
s = splsoftclock();
TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
/* Get send time for nqnfs */
reqtime = time_second;
/*
* If backing off another request or avoiding congestion, don't
* send this one now but let timer do it. If not timing a request,
* do it now.
*/
if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
nmp->nm_sent < nmp->nm_cwnd)) {
splx(s);
if (nmp->nm_soflags & PR_CONNREQUIRED)
error = nfs_sndlock(&nmp->nm_flag, &nmp->nm_state, rep);
if (!error) {
m = m_copym(m, 0, M_COPYALL, M_WAIT);
error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
if (nmp->nm_soflags & PR_CONNREQUIRED)
nfs_sndunlock(&nmp->nm_flag, &nmp->nm_state);
}
if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
nmp->nm_sent += NFS_CWNDSCALE;
rep->r_flags |= R_SENT;
}
} else {
splx(s);
rep->r_rtt = -1;
}
/*
* Wait for the reply from our send or the timer's.
*/
if (!error || error == EPIPE)
error = nfs_reply(rep);
/*
* RPC done, unlink the request.
*/
s = splsoftclock();
TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
splx(s);
/*
* Decrement the outstanding request count.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_SENT; /* paranoia */
nmp->nm_sent -= NFS_CWNDSCALE;
}
/*
* If there was a successful reply and a tprintf msg.
* tprintf a response.
*/
if (!error && (rep->r_flags & R_TPRINTFMSG))
nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
"is alive again");
mrep = rep->r_mrep;
md = rep->r_md;
dpos = rep->r_dpos;
if (error) {
m_freem(rep->r_mreq);
free((caddr_t)rep, M_NFSREQ);
return (error);
}
/*
* break down the rpc header and check if ok
*/
nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
if (*tl++ == rpc_msgdenied) {
if (*tl == rpc_mismatch)
error = EOPNOTSUPP;
else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
if (!failed_auth) {
failed_auth++;
mheadend->m_next = (struct mbuf *)0;
m_freem(mrep);
m_freem(rep->r_mreq);
goto kerbauth;
} else
error = EAUTH;
} else
error = EACCES;
m_freem(mrep);
m_freem(rep->r_mreq);
free((caddr_t)rep, M_NFSREQ);
return (error);
}
/*
* Grab any Kerberos verifier, otherwise just throw it away.
*/
verf_type = fxdr_unsigned(int, *tl++);
i = fxdr_unsigned(int, *tl);
if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
if (error)
goto nfsmout;
} else if (i > 0)
nfsm_adv(nfsm_rndup(i));
nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
/* 0 == ok */
if (*tl == 0) {
nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
if (*tl != 0) {
error = fxdr_unsigned(int, *tl);
if ((nmp->nm_flag & NFSMNT_NFSV3) &&
error == NFSERR_TRYLATER) {
m_freem(mrep);
error = 0;
waituntil = time_second + trylater_delay;
while (time_second < waituntil)
(void) tsleep((caddr_t)&lbolt,
PSOCK, "nqnfstry", 0);
trylater_delay *= nfs_backoff[trylater_cnt];
if (trylater_cnt < 7)
trylater_cnt++;
goto tryagain;
}
/*
* If the File Handle was stale, invalidate the
* lookup cache, just in case.
*/
if (error == ESTALE)
cache_purge(vp);
if (nmp->nm_flag & NFSMNT_NFSV3) {
*mrp = mrep;
*mdp = md;
*dposp = dpos;
error |= NFSERR_RETERR;
} else
m_freem(mrep);
m_freem(rep->r_mreq);
free((caddr_t)rep, M_NFSREQ);
return (error);
}
/*
* For nqnfs, get any lease in reply
*/
if (nmp->nm_flag & NFSMNT_NQNFS) {
nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
if (*tl) {
np = VTONFS(vp);
nqlflag = fxdr_unsigned(int, *tl);
nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
cachable = fxdr_unsigned(int, *tl++);
reqtime += fxdr_unsigned(int, *tl++);
if (reqtime > time_second) {
fxdr_hyper(tl, &frev);
nqnfs_clientlease(nmp, np, nqlflag,
cachable, reqtime, frev);
}
}
}
*mrp = mrep;
*mdp = md;
*dposp = dpos;
m_freem(rep->r_mreq);
FREE((caddr_t)rep, M_NFSREQ);
return (0);
}
m_freem(mrep);
error = EPROTONOSUPPORT;
nfsmout:
m_freem(rep->r_mreq);
free((caddr_t)rep, M_NFSREQ);
return (error);
}
#ifndef NFS_NOSERVER
/*
* Generate the rpc reply header
* siz arg. is used to decide if adding a cluster is worthwhile
*/
int
nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
int siz;
struct nfsrv_descript *nd;
struct nfssvc_sock *slp;
int err;
int cache;
u_quad_t *frev;
struct mbuf **mrq;
struct mbuf **mbp;
caddr_t *bposp;
{
register u_long *tl;
register struct mbuf *mreq;
caddr_t bpos;
struct mbuf *mb, *mb2;
MGETHDR(mreq, M_WAIT, MT_DATA);
mb = mreq;
/*
* If this is a big reply, use a cluster else
* try and leave leading space for the lower level headers.
*/
siz += RPC_REPLYSIZ;
if (siz >= MINCLSIZE) {
MCLGET(mreq, M_WAIT);
} else
mreq->m_data += max_hdr;
tl = mtod(mreq, u_long *);
mreq->m_len = 6 * NFSX_UNSIGNED;
bpos = ((caddr_t)tl) + mreq->m_len;
*tl++ = txdr_unsigned(nd->nd_retxid);
*tl++ = rpc_reply;
if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
*tl++ = rpc_msgdenied;
if (err & NFSERR_AUTHERR) {
*tl++ = rpc_autherr;
*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
mreq->m_len -= NFSX_UNSIGNED;
bpos -= NFSX_UNSIGNED;
} else {
*tl++ = rpc_mismatch;
*tl++ = txdr_unsigned(RPC_VER2);
*tl = txdr_unsigned(RPC_VER2);
}
} else {
*tl++ = rpc_msgaccepted;
/*
* For Kerberos authentication, we must send the nickname
* verifier back, otherwise just RPCAUTH_NULL.
*/
if (nd->nd_flag & ND_KERBFULL) {
register struct nfsuid *nuidp;
struct timeval ktvin, ktvout;
for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
(!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
&nuidp->nu_haddr, nd->nd_nam2)))
break;
}
if (nuidp) {
ktvin.tv_sec =
txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
ktvin.tv_usec =
txdr_unsigned(nuidp->nu_timestamp.tv_usec);
/*
* Encrypt the timestamp in ecb mode using the
* session key.
*/
#ifdef NFSKERB
XXX
#endif
*tl++ = rpc_auth_kerb;
*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
*tl = ktvout.tv_sec;
nfsm_build(tl, u_long *, 3 * NFSX_UNSIGNED);
*tl++ = ktvout.tv_usec;
*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
} else {
*tl++ = 0;
*tl++ = 0;
}
} else {
*tl++ = 0;
*tl++ = 0;
}
switch (err) {
case EPROGUNAVAIL:
*tl = txdr_unsigned(RPC_PROGUNAVAIL);
break;
case EPROGMISMATCH:
*tl = txdr_unsigned(RPC_PROGMISMATCH);
nfsm_build(tl, u_long *, 2 * NFSX_UNSIGNED);
if (nd->nd_flag & ND_NQNFS) {
*tl++ = txdr_unsigned(3);
*tl = txdr_unsigned(3);
} else {
*tl++ = txdr_unsigned(2);
*tl = txdr_unsigned(3);
}
break;
case EPROCUNAVAIL:
*tl = txdr_unsigned(RPC_PROCUNAVAIL);
break;
case EBADRPC:
*tl = txdr_unsigned(RPC_GARBAGE);
break;
default:
*tl = 0;
if (err != NFSERR_RETVOID) {
nfsm_build(tl, u_long *, NFSX_UNSIGNED);
if (err)
*tl = txdr_unsigned(nfsrv_errmap(nd, err));
else
*tl = 0;
}
break;
};
}
/*
* For nqnfs, piggyback lease as requested.
*/
if ((nd->nd_flag & ND_NQNFS) && err == 0) {
if (nd->nd_flag & ND_LEASE) {
nfsm_build(tl, u_long *, 5 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
*tl++ = txdr_unsigned(cache);
*tl++ = txdr_unsigned(nd->nd_duration);
txdr_hyper(frev, tl);
} else {
nfsm_build(tl, u_long *, NFSX_UNSIGNED);
*tl = 0;
}
}
if (mrq != NULL)
*mrq = mreq;
*mbp = mb;
*bposp = bpos;
if (err != 0 && err != NFSERR_RETVOID)
nfsstats.srvrpc_errs++;
return (0);
}
#endif /* NFS_NOSERVER */
/*
* Nfs timer routine
* Scan the nfsreq list and retranmit any requests that have timed out
* To avoid retransmission attempts on STREAM sockets (in the future) make
* sure to set the r_retry field to 0 (implies nm_retry == 0).
*/
void
nfs_timer(arg)
void *arg; /* never used */
{
register struct nfsreq *rep;
register struct mbuf *m;
register struct socket *so;
register struct nfsmount *nmp;
register int timeo;
int s, error;
#ifndef NFS_NOSERVER
static long lasttime = 0;
register struct nfssvc_sock *slp;
u_quad_t cur_usec;
#endif /* NFS_NOSERVER */
struct proc *p = &proc0; /* XXX for credentials, will break if sleep */
s = splnet();
for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
nmp = rep->r_nmp;
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
continue;
if (nfs_sigintr(nmp, rep, rep->r_procp)) {
rep->r_flags |= R_SOFTTERM;
continue;
}
if (rep->r_rtt >= 0) {
rep->r_rtt++;
if (nmp->nm_flag & NFSMNT_DUMBTIMR)
timeo = nmp->nm_timeo;
else
timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
if (nmp->nm_timeouts > 0)
timeo *= nfs_backoff[nmp->nm_timeouts - 1];
if (rep->r_rtt <= timeo)
continue;
if (nmp->nm_timeouts < 8)
nmp->nm_timeouts++;
}
/*
* Check for server not responding
*/
if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
rep->r_rexmit > nmp->nm_deadthresh) {
nfs_msg(rep->r_procp,
nmp->nm_mountp->mnt_stat.f_mntfromname,
"not responding");
rep->r_flags |= R_TPRINTFMSG;
}
if (rep->r_rexmit >= rep->r_retry) { /* too many */
nfsstats.rpctimeouts++;
rep->r_flags |= R_SOFTTERM;
continue;
}
if (nmp->nm_sotype != SOCK_DGRAM) {
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
continue;
}
if ((so = nmp->nm_so) == NULL)
continue;
/*
* If there is enough space and the window allows..
* Resend it
* Set r_rtt to -1 in case we fail to send it now.
*/
rep->r_rtt = -1;
if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
(rep->r_flags & R_SENT) ||
nmp->nm_sent < nmp->nm_cwnd) &&
(m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
error = (*so->so_proto->pr_usrreqs->pru_send)
(so, 0, m, (struct sockaddr *)0,
(struct mbuf *)0, p);
else
error = (*so->so_proto->pr_usrreqs->pru_send)
(so, 0, m, nmp->nm_nam, (struct mbuf *)0,
p);
if (error) {
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
so->so_error = 0;
} else {
/*
* Iff first send, start timing
* else turn timing off, backoff timer
* and divide congestion window by 2.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_TIMING;
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
nmp->nm_cwnd >>= 1;
if (nmp->nm_cwnd < NFS_CWNDSCALE)
nmp->nm_cwnd = NFS_CWNDSCALE;
nfsstats.rpcretries++;
} else {
rep->r_flags |= R_SENT;
nmp->nm_sent += NFS_CWNDSCALE;
}
rep->r_rtt = 0;
}
}
}
#ifndef NFS_NOSERVER
/*
* Call the nqnfs server timer once a second to handle leases.
*/
if (lasttime != time_second) {
lasttime = time_second;
nqnfs_serverd();
}
/*
* Scan the write gathering queues for writes that need to be
* completed now.
*/
cur_usec = nfs_curusec();
for (slp = nfssvc_sockhead.tqh_first; slp != 0;
slp = slp->ns_chain.tqe_next) {
if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
nfsrv_wakenfsd(slp);
}
#endif /* NFS_NOSERVER */
splx(s);
timeout(nfs_timer, (void *)0, nfs_ticks);
}
/*
* Test for a termination condition pending on the process.
* This is used for NFSMNT_INT mounts.
*/
int
nfs_sigintr(nmp, rep, p)
struct nfsmount *nmp;
struct nfsreq *rep;
register struct proc *p;
{
if (rep && (rep->r_flags & R_SOFTTERM))
return (EINTR);
if (!(nmp->nm_flag & NFSMNT_INT))
return (0);
if (p && p->p_siglist &&
(((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
NFSINT_SIGMASK))
return (EINTR);
return (0);
}
/*
* Lock a socket against others.
* Necessary for STREAM sockets to ensure you get an entire rpc request/reply
* and also to avoid race conditions between the processes with nfs requests
* in progress when a reconnect is necessary.
*/
int
nfs_sndlock(flagp, statep, rep)
register int *flagp;
register int *statep;
struct nfsreq *rep;
{
struct proc *p;
int slpflag = 0, slptimeo = 0;
if (rep) {
p = rep->r_procp;
if (rep->r_nmp->nm_flag & NFSMNT_INT)
slpflag = PCATCH;
} else
p = (struct proc *)0;
while (*statep & NFSSTA_SNDLOCK) {
if (nfs_sigintr(rep->r_nmp, rep, p))
return (EINTR);
*statep |= NFSSTA_WANTSND;
(void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1),
"nfsndlck", slptimeo);
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
}
*statep |= NFSSTA_SNDLOCK;
return (0);
}
/*
* Unlock the stream socket for others.
*/
void
nfs_sndunlock(flagp, statep)
register int *flagp;
register int *statep;
{
if ((*statep & NFSSTA_SNDLOCK) == 0)
panic("nfs sndunlock");
*statep &= ~NFSSTA_SNDLOCK;
if (*statep & NFSSTA_WANTSND) {
*statep &= ~NFSSTA_WANTSND;
wakeup((caddr_t)flagp);
}
}
static int
nfs_rcvlock(rep)
register struct nfsreq *rep;
{
register int *flagp = &rep->r_nmp->nm_flag;
register int *statep = &rep->r_nmp->nm_state;
int slpflag, slptimeo = 0;
if (*flagp & NFSMNT_INT)
slpflag = PCATCH;
else
slpflag = 0;
while (*statep & NFSSTA_RCVLOCK) {
if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
return (EINTR);
*statep |= NFSSTA_WANTRCV;
(void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
slptimeo);
/*
* If our reply was recieved while we were sleeping,
* then just return without taking the lock to avoid a
* situation where a single iod could 'capture' the
* recieve lock.
*/
if (rep->r_mrep != NULL)
return (EALREADY);
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
}
*statep |= NFSSTA_RCVLOCK;
return (0);
}
/*
* Unlock the stream socket for others.
*/
static void
nfs_rcvunlock(flagp, statep)
register int *flagp;
register int *statep;
{
if ((*statep & NFSSTA_RCVLOCK) == 0)
panic("nfs rcvunlock");
*statep &= ~NFSSTA_RCVLOCK;
if (*statep & NFSSTA_WANTRCV) {
*statep &= ~NFSSTA_WANTRCV;
wakeup((caddr_t)flagp);
}
}
/*
* Check for badly aligned mbuf data areas and
* realign data in an mbuf list by copying the data areas up, as required.
*/
static void
nfs_realign(m, hsiz)
register struct mbuf *m;
int hsiz;
{
register struct mbuf *m2;
register int siz, mlen, olen;
register caddr_t tcp, fcp;
struct mbuf *mnew;
while (m) {
/*
* This never happens for UDP, rarely happens for TCP
* but frequently happens for iso transport.
*/
if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
olen = m->m_len;
fcp = mtod(m, caddr_t);
if ((int)fcp & 0x3) {
m->m_flags &= ~M_PKTHDR;
if (m->m_flags & M_EXT)
m->m_data = m->m_ext.ext_buf +
((m->m_ext.ext_size - olen) & ~0x3);
else
m->m_data = m->m_dat;
}
m->m_len = 0;
tcp = mtod(m, caddr_t);
mnew = m;
m2 = m->m_next;
/*
* If possible, only put the first invariant part
* of the RPC header in the first mbuf.
*/
mlen = M_TRAILINGSPACE(m);
if (olen <= hsiz && mlen > hsiz)
mlen = hsiz;
/*
* Loop through the mbuf list consolidating data.
*/
while (m) {
while (olen > 0) {
if (mlen == 0) {
m2->m_flags &= ~M_PKTHDR;
if (m2->m_flags & M_EXT)
m2->m_data = m2->m_ext.ext_buf;
else
m2->m_data = m2->m_dat;
m2->m_len = 0;
mlen = M_TRAILINGSPACE(m2);
tcp = mtod(m2, caddr_t);
mnew = m2;
m2 = m2->m_next;
}
siz = min(mlen, olen);
if (tcp != fcp)
bcopy(fcp, tcp, siz);
mnew->m_len += siz;
mlen -= siz;
olen -= siz;
tcp += siz;
fcp += siz;
}
m = m->m_next;
if (m) {
olen = m->m_len;
fcp = mtod(m, caddr_t);
}
}
/*
* Finally, set m_len == 0 for any trailing mbufs that have
* been copied out of.
*/
while (m2) {
m2->m_len = 0;
m2 = m2->m_next;
}
return;
}
m = m->m_next;
}
}
#ifndef NFS_NOSERVER
/*
* Parse an RPC request
* - verify it
* - fill in the cred struct.
*/
int
nfs_getreq(nd, nfsd, has_header)
register struct nfsrv_descript *nd;
struct nfsd *nfsd;
int has_header;
{
register int len, i;
register u_long *tl;
register long t1;
struct uio uio;
struct iovec iov;
caddr_t dpos, cp2, cp;
u_long nfsvers, auth_type;
uid_t nickuid;
int error = 0, nqnfs = 0, ticklen;
struct mbuf *mrep, *md;
register struct nfsuid *nuidp;
struct timeval tvin, tvout;
#if 0 /* until encrypted keys are implemented */
NFSKERBKEYSCHED_T keys; /* stores key schedule */
#endif
mrep = nd->nd_mrep;
md = nd->nd_md;
dpos = nd->nd_dpos;
if (has_header) {
nfsm_dissect(tl, u_long *, 10 * NFSX_UNSIGNED);
nd->nd_retxid = fxdr_unsigned(u_long, *tl++);
if (*tl++ != rpc_call) {
m_freem(mrep);
return (EBADRPC);
}
} else
nfsm_dissect(tl, u_long *, 8 * NFSX_UNSIGNED);
nd->nd_repstat = 0;
nd->nd_flag = 0;
if (*tl++ != rpc_vers) {
nd->nd_repstat = ERPCMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (*tl != nfs_prog) {
if (*tl == nqnfs_prog)
nqnfs++;
else {
nd->nd_repstat = EPROGUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
}
tl++;
nfsvers = fxdr_unsigned(u_long, *tl++);
if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
(nfsvers != NQNFS_VER3 && nqnfs)) {
nd->nd_repstat = EPROGMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (nqnfs)
nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
else if (nfsvers == NFS_VER3)
nd->nd_flag = ND_NFSV3;
nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
if (nd->nd_procnum == NFSPROC_NULL)
return (0);
if (nd->nd_procnum >= NFS_NPROCS ||
(!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
nd->nd_repstat = EPROCUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if ((nd->nd_flag & ND_NFSV3) == 0)
nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
auth_type = *tl++;
len = fxdr_unsigned(int, *tl++);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(mrep);
return (EBADRPC);
}
nd->nd_flag &= ~ND_KERBAUTH;
/*
* Handle auth_unix or auth_kerb.
*/
if (auth_type == rpc_auth_unix) {
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > NFS_MAXNAMLEN) {
m_freem(mrep);
return (EBADRPC);
}
nfsm_adv(nfsm_rndup(len));
nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
nd->nd_cr.cr_ref = 1;
nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
len = fxdr_unsigned(int, *tl);
if (len < 0 || len > RPCAUTH_UNIXGIDS) {
m_freem(mrep);
return (EBADRPC);
}
nfsm_dissect(tl, u_long *, (len + 2) * NFSX_UNSIGNED);
for (i = 1; i <= len; i++)
if (i < NGROUPS)
nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
else
tl++;
nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
if (nd->nd_cr.cr_ngroups > 1)
nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(mrep);
return (EBADRPC);
}
if (len > 0)
nfsm_adv(nfsm_rndup(len));
} else if (auth_type == rpc_auth_kerb) {
switch (fxdr_unsigned(int, *tl++)) {
case RPCAKN_FULLNAME:
ticklen = fxdr_unsigned(int, *tl);
*((u_long *)nfsd->nfsd_authstr) = *tl;
uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
m_freem(mrep);
return (EBADRPC);
}
uio.uio_offset = 0;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_segflg = UIO_SYSSPACE;
iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
iov.iov_len = RPCAUTH_MAXSIZ - 4;
nfsm_mtouio(&uio, uio.uio_resid);
nfsm_dissect(tl, u_long *, 2 * NFSX_UNSIGNED);
if (*tl++ != rpc_auth_kerb ||
fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
printf("Bad kerb verifier\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
tl = (u_long *)cp;
if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
printf("Not fullname kerb verifier\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
cp += NFSX_UNSIGNED;
bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
nd->nd_flag |= ND_KERBFULL;
nfsd->nfsd_flag |= NFSD_NEEDAUTH;
break;
case RPCAKN_NICKNAME:
if (len != 2 * NFSX_UNSIGNED) {
printf("Kerb nickname short\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nickuid = fxdr_unsigned(uid_t, *tl);
nfsm_dissect(tl, u_long *, 2 * NFSX_UNSIGNED);
if (*tl++ != rpc_auth_kerb ||
fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
printf("Kerb nick verifier bad\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
tvin.tv_sec = *tl++;
tvin.tv_usec = *tl;
for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
if (nuidp->nu_cr.cr_uid == nickuid &&
(!nd->nd_nam2 ||
netaddr_match(NU_NETFAM(nuidp),
&nuidp->nu_haddr, nd->nd_nam2)))
break;
}
if (!nuidp) {
nd->nd_repstat =
(NFSERR_AUTHERR|AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
/*
* Now, decrypt the timestamp using the session key
* and validate it.
*/
#ifdef NFSKERB
XXX
#endif
tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
if (nuidp->nu_expire < time_second ||
nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
(nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
nuidp->nu_expire = 0;
nd->nd_repstat =
(NFSERR_AUTHERR|AUTH_REJECTVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
nd->nd_flag |= ND_KERBNICK;
};
} else {
nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
/*
* For nqnfs, get piggybacked lease request.
*/
if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
nd->nd_flag |= fxdr_unsigned(int, *tl);
if (nd->nd_flag & ND_LEASE) {
nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
nd->nd_duration = fxdr_unsigned(int, *tl);
} else
nd->nd_duration = NQ_MINLEASE;
} else
nd->nd_duration = NQ_MINLEASE;
nd->nd_md = md;
nd->nd_dpos = dpos;
return (0);
nfsmout:
return (error);
}
static int
nfs_msg(p, server, msg)
struct proc *p;
char *server, *msg;
{
tpr_t tpr;
if (p)
tpr = tprintf_open(p);
else
tpr = NULL;
tprintf(tpr, "nfs server %s: %s\n", server, msg);
tprintf_close(tpr);
return (0);
}
/*
* Socket upcall routine for the nfsd sockets.
* The caddr_t arg is a pointer to the "struct nfssvc_sock".
* Essentially do as much as possible non-blocking, else punt and it will
* be called with M_WAIT from an nfsd.
*/
void
nfsrv_rcv(so, arg, waitflag)
struct socket *so;
caddr_t arg;
int waitflag;
{
register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
register struct mbuf *m;
struct mbuf *mp;
struct sockaddr *nam;
struct uio auio;
int flags, error;
if ((slp->ns_flag & SLP_VALID) == 0)
return;
#ifdef notdef
/*
* Define this to test for nfsds handling this under heavy load.
*/
if (waitflag == M_DONTWAIT) {
slp->ns_flag |= SLP_NEEDQ; goto dorecs;
}
#endif
auio.uio_procp = NULL;
if (so->so_type == SOCK_STREAM) {
/*
* If there are already records on the queue, defer soreceive()
* to an nfsd so that there is feedback to the TCP layer that
* the nfs servers are heavily loaded.
*/
if (STAILQ_FIRST(&slp->ns_rec) && waitflag == M_DONTWAIT) {
slp->ns_flag |= SLP_NEEDQ;
goto dorecs;
}
/*
* Do soreceive().
*/
auio.uio_resid = 1000000000;
flags = MSG_DONTWAIT;
error = so->so_proto->pr_usrreqs->pru_soreceive
(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
if (error || mp == (struct mbuf *)0) {
if (error == EWOULDBLOCK)
slp->ns_flag |= SLP_NEEDQ;
else
slp->ns_flag |= SLP_DISCONN;
goto dorecs;
}
m = mp;
if (slp->ns_rawend) {
slp->ns_rawend->m_next = m;
slp->ns_cc += 1000000000 - auio.uio_resid;
} else {
slp->ns_raw = m;
slp->ns_cc = 1000000000 - auio.uio_resid;
}
while (m->m_next)
m = m->m_next;
slp->ns_rawend = m;
/*
* Now try and parse record(s) out of the raw stream data.
*/
error = nfsrv_getstream(slp, waitflag);
if (error) {
if (error == EPERM)
slp->ns_flag |= SLP_DISCONN;
else
slp->ns_flag |= SLP_NEEDQ;
}
} else {
do {
auio.uio_resid = 1000000000;
flags = MSG_DONTWAIT;
error = so->so_proto->pr_usrreqs->pru_soreceive
(so, &nam, &auio, &mp,
(struct mbuf **)0, &flags);
if (mp) {
struct nfsrv_rec *rec;
rec = malloc(sizeof(struct nfsrv_rec),
M_NFSRVDESC, waitflag);
if (!rec) {
if (nam)
FREE(nam, M_SONAME);
m_freem(mp);
continue;
}
nfs_realign(mp, 10 * NFSX_UNSIGNED);
rec->nr_address = nam;
rec->nr_packet = mp;
STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
}
if (error) {
if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
&& error != EWOULDBLOCK) {
slp->ns_flag |= SLP_DISCONN;
goto dorecs;
}
}
} while (mp);
}
/*
* Now try and process the request records, non-blocking.
*/
dorecs:
if (waitflag == M_DONTWAIT &&
(STAILQ_FIRST(&slp->ns_rec)
|| (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
nfsrv_wakenfsd(slp);
}
/*
* Try and extract an RPC request from the mbuf data list received on a
* stream socket. The "waitflag" argument indicates whether or not it
* can sleep.
*/
static int
nfsrv_getstream(slp, waitflag)
register struct nfssvc_sock *slp;
int waitflag;
{
register struct mbuf *m, **mpp;
register char *cp1, *cp2;
register int len;
struct mbuf *om, *m2, *recm = 0;
u_long recmark;
if (slp->ns_flag & SLP_GETSTREAM)
panic("nfs getstream");
slp->ns_flag |= SLP_GETSTREAM;
for (;;) {
if (slp->ns_reclen == 0) {
if (slp->ns_cc < NFSX_UNSIGNED) {
slp->ns_flag &= ~SLP_GETSTREAM;
return (0);
}
m = slp->ns_raw;
if (m->m_len >= NFSX_UNSIGNED) {
bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
m->m_data += NFSX_UNSIGNED;
m->m_len -= NFSX_UNSIGNED;
} else {
cp1 = (caddr_t)&recmark;
cp2 = mtod(m, caddr_t);
while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
while (m->m_len == 0) {
m = m->m_next;
cp2 = mtod(m, caddr_t);
}
*cp1++ = *cp2++;
m->m_data++;
m->m_len--;
}
}
slp->ns_cc -= NFSX_UNSIGNED;
recmark = ntohl(recmark);
slp->ns_reclen = recmark & ~0x80000000;
if (recmark & 0x80000000)
slp->ns_flag |= SLP_LASTFRAG;
else
slp->ns_flag &= ~SLP_LASTFRAG;
if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
slp->ns_flag &= ~SLP_GETSTREAM;
return (EPERM);
}
}
/*
* Now get the record part.
*/
if (slp->ns_cc == slp->ns_reclen) {
recm = slp->ns_raw;
slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
slp->ns_cc = slp->ns_reclen = 0;
} else if (slp->ns_cc > slp->ns_reclen) {
len = 0;
m = slp->ns_raw;
om = (struct mbuf *)0;
while (len < slp->ns_reclen) {
if ((len + m->m_len) > slp->ns_reclen) {
m2 = m_copym(m, 0, slp->ns_reclen - len,
waitflag);
if (m2) {
if (om) {
om->m_next = m2;
recm = slp->ns_raw;
} else
recm = m2;
m->m_data += slp->ns_reclen - len;
m->m_len -= slp->ns_reclen - len;
len = slp->ns_reclen;
} else {
slp->ns_flag &= ~SLP_GETSTREAM;
return (EWOULDBLOCK);
}
} else if ((len + m->m_len) == slp->ns_reclen) {
om = m;
len += m->m_len;
m = m->m_next;
recm = slp->ns_raw;
om->m_next = (struct mbuf *)0;
} else {
om = m;
len += m->m_len;
m = m->m_next;
}
}
slp->ns_raw = m;
slp->ns_cc -= len;
slp->ns_reclen = 0;
} else {
slp->ns_flag &= ~SLP_GETSTREAM;
return (0);
}
/*
* Accumulate the fragments into a record.
*/
mpp = &slp->ns_frag;
while (*mpp)
mpp = &((*mpp)->m_next);
*mpp = recm;
if (slp->ns_flag & SLP_LASTFRAG) {
struct nfsrv_rec *rec;
rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, waitflag);
if (!rec) {
m_freem(slp->ns_frag);
} else {
nfs_realign(slp->ns_frag, 10 * NFSX_UNSIGNED);
rec->nr_address = (struct sockaddr *)0;
rec->nr_packet = slp->ns_frag;
STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
}
slp->ns_frag = (struct mbuf *)0;
}
}
}
/*
* Parse an RPC header.
*/
int
nfsrv_dorec(slp, nfsd, ndp)
register struct nfssvc_sock *slp;
struct nfsd *nfsd;
struct nfsrv_descript **ndp;
{
struct nfsrv_rec *rec;
register struct mbuf *m;
struct sockaddr *nam;
register struct nfsrv_descript *nd;
int error;
*ndp = NULL;
if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
return (ENOBUFS);
rec = STAILQ_FIRST(&slp->ns_rec);
STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
nam = rec->nr_address;
m = rec->nr_packet;
free(rec, M_NFSRVDESC);
MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
M_NFSRVDESC, M_WAITOK);
nd->nd_md = nd->nd_mrep = m;
nd->nd_nam2 = nam;
nd->nd_dpos = mtod(m, caddr_t);
error = nfs_getreq(nd, nfsd, TRUE);
if (error) {
FREE(nam, M_SONAME);
free((caddr_t)nd, M_NFSRVDESC);
return (error);
}
*ndp = nd;
nfsd->nfsd_nd = nd;
return (0);
}
/*
* Search for a sleeping nfsd and wake it up.
* SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
* running nfsds will go look for the work in the nfssvc_sock list.
*/
void
nfsrv_wakenfsd(slp)
struct nfssvc_sock *slp;
{
register struct nfsd *nd;
if ((slp->ns_flag & SLP_VALID) == 0)
return;
for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
if (nd->nfsd_flag & NFSD_WAITING) {
nd->nfsd_flag &= ~NFSD_WAITING;
if (nd->nfsd_slp)
panic("nfsd wakeup");
slp->ns_sref++;
nd->nfsd_slp = slp;
wakeup((caddr_t)nd);
return;
}
}
slp->ns_flag |= SLP_DOREC;
nfsd_head_flag |= NFSD_CHECKSLP;
}
#endif /* NFS_NOSERVER */