476cf9ae6e
used in polled-mode. The callout invokes uart_intr, which rearms the timeout. Implemented for bhyve, but generically useful for e.g. embedded bringup when the interrupt controller hasn't been setup, or if it's not deemed worthy to wire an interrupt line from a serial port. Submitted by: neel Reviewed by: marcel Obtained from: NetApp MFC after: 3 weeks
593 lines
15 KiB
C
593 lines
15 KiB
C
/*-
|
|
* Copyright (c) 2003 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/reboot.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
#include <dev/uart/uart.h>
|
|
#include <dev/uart/uart_bus.h>
|
|
#include <dev/uart/uart_cpu.h>
|
|
|
|
#include "uart_if.h"
|
|
|
|
devclass_t uart_devclass;
|
|
char uart_driver_name[] = "uart";
|
|
|
|
SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
|
|
SLIST_HEAD_INITIALIZER(uart_sysdevs);
|
|
|
|
static MALLOC_DEFINE(M_UART, "UART", "UART driver");
|
|
|
|
#ifndef UART_POLL_FREQ
|
|
#define UART_POLL_FREQ 50
|
|
#endif
|
|
static int uart_poll_freq = UART_POLL_FREQ;
|
|
TUNABLE_INT("debug.uart_poll_freq", &uart_poll_freq);
|
|
|
|
void
|
|
uart_add_sysdev(struct uart_devinfo *di)
|
|
{
|
|
SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
|
|
}
|
|
|
|
const char *
|
|
uart_getname(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->name : NULL);
|
|
}
|
|
|
|
struct uart_ops *
|
|
uart_getops(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->uc_ops : NULL);
|
|
}
|
|
|
|
int
|
|
uart_getrange(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->uc_range : 0);
|
|
}
|
|
|
|
/*
|
|
* Schedule a soft interrupt. We do this on the 0 to !0 transition
|
|
* of the TTY pending interrupt status.
|
|
*/
|
|
void
|
|
uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
|
|
{
|
|
uint32_t new, old;
|
|
|
|
do {
|
|
old = sc->sc_ttypend;
|
|
new = old | ipend;
|
|
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
|
|
|
|
if ((old & SER_INT_MASK) == 0)
|
|
swi_sched(sc->sc_softih, 0);
|
|
}
|
|
|
|
/*
|
|
* A break condition has been detected. We treat the break condition as
|
|
* a special case that should not happen during normal operation. When
|
|
* the break condition is to be passed to higher levels in the form of
|
|
* a NUL character, we really want the break to be in the right place in
|
|
* the input stream. The overhead to achieve that is not in relation to
|
|
* the exceptional nature of the break condition, so we permit ourselves
|
|
* to be sloppy.
|
|
*/
|
|
static __inline int
|
|
uart_intr_break(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
|
|
#if defined(KDB)
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
|
|
if (kdb_break())
|
|
return (0);
|
|
}
|
|
#endif
|
|
if (sc->sc_opened)
|
|
uart_sched_softih(sc, SER_INT_BREAK);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle a receiver overrun situation. We lost at least 1 byte in the
|
|
* input stream and it's our job to contain the situation. We grab as
|
|
* much of the data we can, but otherwise flush the receiver FIFO to
|
|
* create some breathing room. The net effect is that we avoid the
|
|
* overrun condition to happen for the next X characters, where X is
|
|
* related to the FIFO size at the cost of loosing data right away.
|
|
* So, instead of having multiple overrun interrupts in close proximity
|
|
* to each other and possibly pessimizing UART interrupt latency for
|
|
* other UARTs in a multiport configuration, we create a longer segment
|
|
* of missing characters by freeing up the FIFO.
|
|
* Each overrun condition is marked in the input buffer by a token. The
|
|
* token represents the loss of at least one, but possible more bytes in
|
|
* the input stream.
|
|
*/
|
|
static __inline int
|
|
uart_intr_overrun(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
|
|
if (sc->sc_opened) {
|
|
UART_RECEIVE(sc);
|
|
if (uart_rx_put(sc, UART_STAT_OVERRUN))
|
|
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
|
|
uart_sched_softih(sc, SER_INT_RXREADY);
|
|
}
|
|
UART_FLUSH(sc, UART_FLUSH_RECEIVER);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Received data ready.
|
|
*/
|
|
static __inline int
|
|
uart_intr_rxready(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
int rxp;
|
|
|
|
rxp = sc->sc_rxput;
|
|
UART_RECEIVE(sc);
|
|
#if defined(KDB)
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
|
|
while (rxp != sc->sc_rxput) {
|
|
kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
|
|
if (rxp == sc->sc_rxbufsz)
|
|
rxp = 0;
|
|
}
|
|
}
|
|
#endif
|
|
if (sc->sc_opened)
|
|
uart_sched_softih(sc, SER_INT_RXREADY);
|
|
else
|
|
sc->sc_rxput = sc->sc_rxget; /* Ignore received data. */
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Line or modem status change (OOB signalling).
|
|
* We pass the signals to the software interrupt handler for further
|
|
* processing. Note that we merge the delta bits, but set the state
|
|
* bits. This is to avoid loosing state transitions due to having more
|
|
* than 1 hardware interrupt between software interrupts.
|
|
*/
|
|
static __inline int
|
|
uart_intr_sigchg(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
int new, old, sig;
|
|
|
|
sig = UART_GETSIG(sc);
|
|
|
|
if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
|
|
if (sig & UART_SIG_DPPS) {
|
|
pps_capture(&sc->sc_pps);
|
|
pps_event(&sc->sc_pps, (sig & UART_SIG_PPS) ?
|
|
PPS_CAPTUREASSERT : PPS_CAPTURECLEAR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Keep track of signal changes, even when the device is not
|
|
* opened. This allows us to inform upper layers about a
|
|
* possible loss of DCD and thus the existence of a (possibly)
|
|
* different connection when we have DCD back, during the time
|
|
* that the device was closed.
|
|
*/
|
|
do {
|
|
old = sc->sc_ttypend;
|
|
new = old & ~SER_MASK_STATE;
|
|
new |= sig & SER_INT_SIGMASK;
|
|
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
|
|
|
|
if (sc->sc_opened)
|
|
uart_sched_softih(sc, SER_INT_SIGCHG);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* The transmitter can accept more data.
|
|
*/
|
|
static __inline int
|
|
uart_intr_txidle(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
|
|
if (sc->sc_txbusy) {
|
|
sc->sc_txbusy = 0;
|
|
uart_sched_softih(sc, SER_INT_TXIDLE);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uart_intr(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
int flag = 0, ipend;
|
|
|
|
while (!sc->sc_leaving && (ipend = UART_IPEND(sc)) != 0) {
|
|
flag = 1;
|
|
if (ipend & SER_INT_OVERRUN)
|
|
uart_intr_overrun(sc);
|
|
if (ipend & SER_INT_BREAK)
|
|
uart_intr_break(sc);
|
|
if (ipend & SER_INT_RXREADY)
|
|
uart_intr_rxready(sc);
|
|
if (ipend & SER_INT_SIGCHG)
|
|
uart_intr_sigchg(sc);
|
|
if (ipend & SER_INT_TXIDLE)
|
|
uart_intr_txidle(sc);
|
|
}
|
|
|
|
if (sc->sc_polled) {
|
|
callout_reset(&sc->sc_timer, hz / uart_poll_freq,
|
|
(timeout_t *)uart_intr, sc);
|
|
}
|
|
|
|
return((flag)?FILTER_HANDLED:FILTER_STRAY);
|
|
}
|
|
|
|
serdev_intr_t *
|
|
uart_bus_ihand(device_t dev, int ipend)
|
|
{
|
|
|
|
switch (ipend) {
|
|
case SER_INT_BREAK:
|
|
return (uart_intr_break);
|
|
case SER_INT_OVERRUN:
|
|
return (uart_intr_overrun);
|
|
case SER_INT_RXREADY:
|
|
return (uart_intr_rxready);
|
|
case SER_INT_SIGCHG:
|
|
return (uart_intr_sigchg);
|
|
case SER_INT_TXIDLE:
|
|
return (uart_intr_txidle);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
uart_bus_ipend(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
return (UART_IPEND(sc));
|
|
}
|
|
|
|
int
|
|
uart_bus_sysdev(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
return ((sc->sc_sysdev != NULL) ? 1 : 0);
|
|
}
|
|
|
|
int
|
|
uart_bus_probe(device_t dev, int regshft, int rclk, int rid, int chan)
|
|
{
|
|
struct uart_softc *sc;
|
|
struct uart_devinfo *sysdev;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/*
|
|
* All uart_class references are weak. Check that the needed
|
|
* class has been compiled-in. Fail if not.
|
|
*/
|
|
if (sc->sc_class == NULL)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Initialize the instance. Note that the instance (=softc) does
|
|
* not necessarily match the hardware specific softc. We can't do
|
|
* anything about it now, because we may not attach to the device.
|
|
* Hardware drivers cannot use any of the class specific fields
|
|
* while probing.
|
|
*/
|
|
kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
|
|
sc->sc_dev = dev;
|
|
if (device_get_desc(dev) == NULL)
|
|
device_set_desc(dev, uart_getname(sc->sc_class));
|
|
|
|
/*
|
|
* Allocate the register resource. We assume that all UARTs have
|
|
* a single register window in either I/O port space or memory
|
|
* mapped I/O space. Any UART that needs multiple windows will
|
|
* consequently not be supported by this driver as-is. We try I/O
|
|
* port space first because that's the common case.
|
|
*/
|
|
sc->sc_rrid = rid;
|
|
sc->sc_rtype = SYS_RES_IOPORT;
|
|
sc->sc_rres = bus_alloc_resource(dev, sc->sc_rtype, &sc->sc_rrid,
|
|
0, ~0, uart_getrange(sc->sc_class), RF_ACTIVE);
|
|
if (sc->sc_rres == NULL) {
|
|
sc->sc_rrid = rid;
|
|
sc->sc_rtype = SYS_RES_MEMORY;
|
|
sc->sc_rres = bus_alloc_resource(dev, sc->sc_rtype,
|
|
&sc->sc_rrid, 0, ~0, uart_getrange(sc->sc_class),
|
|
RF_ACTIVE);
|
|
if (sc->sc_rres == NULL)
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Fill in the bus access structure and compare this device with
|
|
* a possible console device and/or a debug port. We set the flags
|
|
* in the softc so that the hardware dependent probe can adjust
|
|
* accordingly. In general, you don't want to permanently disrupt
|
|
* console I/O.
|
|
*/
|
|
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
|
|
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
|
|
sc->sc_bas.chan = chan;
|
|
sc->sc_bas.regshft = regshft;
|
|
sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
|
|
|
|
SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
|
|
if (chan == sysdev->bas.chan &&
|
|
uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
|
|
/* XXX check if ops matches class. */
|
|
sc->sc_sysdev = sysdev;
|
|
sysdev->bas.rclk = sc->sc_bas.rclk;
|
|
}
|
|
}
|
|
|
|
error = UART_PROBE(sc);
|
|
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
|
|
return ((error) ? error : BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
int
|
|
uart_bus_attach(device_t dev)
|
|
{
|
|
struct uart_softc *sc, *sc0;
|
|
const char *sep;
|
|
int error;
|
|
|
|
/*
|
|
* The sc_class field defines the type of UART we're going to work
|
|
* with and thus the size of the softc. Replace the generic softc
|
|
* with one that matches the UART now that we're certain we handle
|
|
* the device.
|
|
*/
|
|
sc0 = device_get_softc(dev);
|
|
if (sc0->sc_class->size > sizeof(*sc)) {
|
|
sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
|
|
bcopy(sc0, sc, sizeof(*sc));
|
|
device_set_softc(dev, sc);
|
|
} else
|
|
sc = sc0;
|
|
|
|
/*
|
|
* Protect ourselves against interrupts while we're not completely
|
|
* finished attaching and initializing. We don't expect interrupts
|
|
* until after UART_ATTACH() though.
|
|
*/
|
|
sc->sc_leaving = 1;
|
|
|
|
mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
|
|
if (sc->sc_hwmtx == NULL)
|
|
sc->sc_hwmtx = &sc->sc_hwmtx_s;
|
|
|
|
/*
|
|
* Re-allocate. We expect that the softc contains the information
|
|
* collected by uart_bus_probe() intact.
|
|
*/
|
|
sc->sc_rres = bus_alloc_resource(dev, sc->sc_rtype, &sc->sc_rrid,
|
|
0, ~0, uart_getrange(sc->sc_class), RF_ACTIVE);
|
|
if (sc->sc_rres == NULL) {
|
|
mtx_destroy(&sc->sc_hwmtx_s);
|
|
return (ENXIO);
|
|
}
|
|
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
|
|
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
|
|
|
|
sc->sc_irid = 0;
|
|
sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irid,
|
|
RF_ACTIVE | RF_SHAREABLE);
|
|
if (sc->sc_ires != NULL) {
|
|
error = bus_setup_intr(dev,
|
|
sc->sc_ires, INTR_TYPE_TTY,
|
|
uart_intr, NULL, sc, &sc->sc_icookie);
|
|
if (error)
|
|
error = bus_setup_intr(dev,
|
|
sc->sc_ires, INTR_TYPE_TTY | INTR_MPSAFE,
|
|
NULL, (driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
|
|
else
|
|
sc->sc_fastintr = 1;
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not activate interrupt\n");
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
|
|
sc->sc_ires);
|
|
sc->sc_ires = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_ires == NULL) {
|
|
/* No interrupt resource. Force polled mode. */
|
|
sc->sc_polled = 1;
|
|
callout_init(&sc->sc_timer, 1);
|
|
}
|
|
|
|
sc->sc_rxbufsz = 384;
|
|
sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
|
|
M_UART, M_WAITOK);
|
|
sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
|
|
M_UART, M_WAITOK);
|
|
|
|
error = UART_ATTACH(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
if (sc->sc_hwiflow || sc->sc_hwoflow) {
|
|
sep = "";
|
|
device_print_prettyname(dev);
|
|
if (sc->sc_hwiflow) {
|
|
printf("%sRTS iflow", sep);
|
|
sep = ", ";
|
|
}
|
|
if (sc->sc_hwoflow) {
|
|
printf("%sCTS oflow", sep);
|
|
sep = ", ";
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
|
|
sep = "";
|
|
device_print_prettyname(dev);
|
|
if (sc->sc_fastintr) {
|
|
printf("%sfast interrupt", sep);
|
|
sep = ", ";
|
|
}
|
|
if (sc->sc_polled) {
|
|
printf("%spolled mode", sep);
|
|
sep = ", ";
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (sc->sc_sysdev != NULL) {
|
|
if (sc->sc_sysdev->baudrate == 0) {
|
|
if (UART_IOCTL(sc, UART_IOCTL_BAUD,
|
|
(intptr_t)&sc->sc_sysdev->baudrate) != 0)
|
|
sc->sc_sysdev->baudrate = -1;
|
|
}
|
|
switch (sc->sc_sysdev->type) {
|
|
case UART_DEV_CONSOLE:
|
|
device_printf(dev, "console");
|
|
break;
|
|
case UART_DEV_DBGPORT:
|
|
device_printf(dev, "debug port");
|
|
break;
|
|
case UART_DEV_KEYBOARD:
|
|
device_printf(dev, "keyboard");
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown system device");
|
|
break;
|
|
}
|
|
printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
|
|
"noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
|
|
sc->sc_sysdev->stopbits);
|
|
}
|
|
|
|
sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
|
|
pps_init(&sc->sc_pps);
|
|
|
|
error = (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL)
|
|
? (*sc->sc_sysdev->attach)(sc) : uart_tty_attach(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
if (sc->sc_sysdev != NULL)
|
|
sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
|
|
|
|
sc->sc_leaving = 0;
|
|
uart_intr(sc);
|
|
return (0);
|
|
|
|
fail:
|
|
free(sc->sc_txbuf, M_UART);
|
|
free(sc->sc_rxbuf, M_UART);
|
|
|
|
if (sc->sc_ires != NULL) {
|
|
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
|
|
sc->sc_ires);
|
|
}
|
|
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
|
|
|
|
mtx_destroy(&sc->sc_hwmtx_s);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
uart_bus_detach(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
sc->sc_leaving = 1;
|
|
|
|
if (sc->sc_sysdev != NULL)
|
|
sc->sc_sysdev->hwmtx = NULL;
|
|
|
|
UART_DETACH(sc);
|
|
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
|
|
(*sc->sc_sysdev->detach)(sc);
|
|
else
|
|
uart_tty_detach(sc);
|
|
|
|
free(sc->sc_txbuf, M_UART);
|
|
free(sc->sc_rxbuf, M_UART);
|
|
|
|
if (sc->sc_ires != NULL) {
|
|
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
|
|
sc->sc_ires);
|
|
}
|
|
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
|
|
|
|
mtx_destroy(&sc->sc_hwmtx_s);
|
|
|
|
if (sc->sc_class->size > sizeof(*sc)) {
|
|
device_set_softc(dev, NULL);
|
|
free(sc, M_UART);
|
|
} else
|
|
device_set_softc(dev, NULL);
|
|
|
|
return (0);
|
|
}
|