88c1adb417
Fix a recursive lock acquisition in vi_reset_dev(). MFC r270434 Return the spurious interrupt vector (IRQ7 or IRQ15) if the atpic cannot find any unmasked pin with an interrupt asserted. MFC r270436 Fix a bug in the emulation of CPUID leaf 0x4. MFC r270437 Add "hw.vmm.topology.threads_per_core" and "hw.vmm.topology.cores_per_package" tunables to modify the default cpu topology advertised by bhyve. MFC r270855 Set the 'inst_length' to '0' early on before any error conditions are detected in the emulation of the task switch. If any exceptions are triggered then the guest %rip should point to instruction that caused the task switch as opposed to the one after it. MFC r270857 The "SUB" instruction used in getcc() actually does 'x -= y' so use the proper constraint for 'x'. The "+r" constraint indicates that 'x' is an input and output register operand. While here generate code for different variants of getcc() using a macro GETCC(sz) where 'sz' indicates the operand size. Update the status bits in %rflags when emulating AND and OR opcodes. MFC r271439 Initialize 'bc_rdonly' to the right value. MFC r271451 Optimize the common case of injecting an interrupt into a vcpu after a HLT by explicitly moving it out of the interrupt shadow. MFC r271888 Restructure the MSR handling so it is entirely handled by processor-specific code. MFC r271890 MSR_KGSBASE is no longer saved and restored from the guest MSR save area. This behavior was changed in r271888 so update the comment block to reflect this. MFC r271891 Add some more KTR events to help debugging. MFC r272197 mmap(2) requires either MAP_PRIVATE or MAP_SHARED for non-anonymous mappings. MFC r272395 Get rid of code that dealt with the hardware not being able to save/restore the PAT MSR on guest exit/entry. This workaround was done for a beta release of VMware Fusion 5 but is no longer needed in later versions. All Intel CPUs since Nehalem have supported saving and restoring MSR_PAT in the VM exit and entry controls. MFC r272670 Inject #UD into the guest when it executes either 'MONITOR' or 'MWAIT'. MFC r272710 Implement the FLUSH operation in the virtio-block emulation. MFC r272838 iasl(8) expects integer fields in data tables to be specified as hexadecimal values. Therefore the bit width of the "PM Timer Block" was actually being interpreted as 50-bits instead of the expected 32-bit. This eliminates an error message emitted by a Linux 3.17 guest during boot: "Invalid length for FADT/PmTimerBlock: 50, using default 32" MFC r272839 Support Intel-specific MSRs that are accessed when booting up a linux in bhyve: - MSR_PLATFORM_INFO - MSR_TURBO_RATIO_LIMITx - MSR_RAPL_POWER_UNIT MFC r273108 Emulate "POP r/m". This is needed to boot OpenBSD/i386 MP kernel in bhyve. MFC r273212 Support stopping and restarting the AHCI command list via toggling PxCMD.ST from '1' to '0' and back. This allows the driver a chance to recover if for instance a timeout occurred due to activity on the host.
947 lines
26 KiB
C
947 lines
26 KiB
C
/*-
|
|
* Copyright (c) 2014 Neel Natu <neel@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/_iovec.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <x86/psl.h>
|
|
#include <x86/segments.h>
|
|
#include <x86/specialreg.h>
|
|
#include <machine/vmm.h>
|
|
#include <machine/vmm_instruction_emul.h>
|
|
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
|
|
#include <vmmapi.h>
|
|
|
|
#include "bhyverun.h"
|
|
|
|
/*
|
|
* Using 'struct i386tss' is tempting but causes myriad sign extension
|
|
* issues because all of its fields are defined as signed integers.
|
|
*/
|
|
struct tss32 {
|
|
uint16_t tss_link;
|
|
uint16_t rsvd1;
|
|
uint32_t tss_esp0;
|
|
uint16_t tss_ss0;
|
|
uint16_t rsvd2;
|
|
uint32_t tss_esp1;
|
|
uint16_t tss_ss1;
|
|
uint16_t rsvd3;
|
|
uint32_t tss_esp2;
|
|
uint16_t tss_ss2;
|
|
uint16_t rsvd4;
|
|
uint32_t tss_cr3;
|
|
uint32_t tss_eip;
|
|
uint32_t tss_eflags;
|
|
uint32_t tss_eax;
|
|
uint32_t tss_ecx;
|
|
uint32_t tss_edx;
|
|
uint32_t tss_ebx;
|
|
uint32_t tss_esp;
|
|
uint32_t tss_ebp;
|
|
uint32_t tss_esi;
|
|
uint32_t tss_edi;
|
|
uint16_t tss_es;
|
|
uint16_t rsvd5;
|
|
uint16_t tss_cs;
|
|
uint16_t rsvd6;
|
|
uint16_t tss_ss;
|
|
uint16_t rsvd7;
|
|
uint16_t tss_ds;
|
|
uint16_t rsvd8;
|
|
uint16_t tss_fs;
|
|
uint16_t rsvd9;
|
|
uint16_t tss_gs;
|
|
uint16_t rsvd10;
|
|
uint16_t tss_ldt;
|
|
uint16_t rsvd11;
|
|
uint16_t tss_trap;
|
|
uint16_t tss_iomap;
|
|
};
|
|
CTASSERT(sizeof(struct tss32) == 104);
|
|
|
|
#define SEL_START(sel) (((sel) & ~0x7))
|
|
#define SEL_LIMIT(sel) (((sel) | 0x7))
|
|
#define TSS_BUSY(type) (((type) & 0x2) != 0)
|
|
|
|
static uint64_t
|
|
GETREG(struct vmctx *ctx, int vcpu, int reg)
|
|
{
|
|
uint64_t val;
|
|
int error;
|
|
|
|
error = vm_get_register(ctx, vcpu, reg, &val);
|
|
assert(error == 0);
|
|
return (val);
|
|
}
|
|
|
|
static void
|
|
SETREG(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
|
|
{
|
|
int error;
|
|
|
|
error = vm_set_register(ctx, vcpu, reg, val);
|
|
assert(error == 0);
|
|
}
|
|
|
|
static struct seg_desc
|
|
usd_to_seg_desc(struct user_segment_descriptor *usd)
|
|
{
|
|
struct seg_desc seg_desc;
|
|
|
|
seg_desc.base = (u_int)USD_GETBASE(usd);
|
|
if (usd->sd_gran)
|
|
seg_desc.limit = (u_int)(USD_GETLIMIT(usd) << 12) | 0xfff;
|
|
else
|
|
seg_desc.limit = (u_int)USD_GETLIMIT(usd);
|
|
seg_desc.access = usd->sd_type | usd->sd_dpl << 5 | usd->sd_p << 7;
|
|
seg_desc.access |= usd->sd_xx << 12;
|
|
seg_desc.access |= usd->sd_def32 << 14;
|
|
seg_desc.access |= usd->sd_gran << 15;
|
|
|
|
return (seg_desc);
|
|
}
|
|
|
|
/*
|
|
* Inject an exception with an error code that is a segment selector.
|
|
* The format of the error code is described in section 6.13, "Error Code",
|
|
* Intel SDM volume 3.
|
|
*
|
|
* Bit 0 (EXT) denotes whether the exception occurred during delivery
|
|
* of an external event like an interrupt.
|
|
*
|
|
* Bit 1 (IDT) indicates whether the selector points to a gate descriptor
|
|
* in the IDT.
|
|
*
|
|
* Bit 2(GDT/LDT) has the usual interpretation of Table Indicator (TI).
|
|
*/
|
|
static void
|
|
sel_exception(struct vmctx *ctx, int vcpu, int vector, uint16_t sel, int ext)
|
|
{
|
|
/*
|
|
* Bit 2 from the selector is retained as-is in the error code.
|
|
*
|
|
* Bit 1 can be safely cleared because none of the selectors
|
|
* encountered during task switch emulation refer to a task
|
|
* gate in the IDT.
|
|
*
|
|
* Bit 0 is set depending on the value of 'ext'.
|
|
*/
|
|
sel &= ~0x3;
|
|
if (ext)
|
|
sel |= 0x1;
|
|
vm_inject_fault(ctx, vcpu, vector, 1, sel);
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the selector 'sel' in within the limits of the GDT/LDT
|
|
* and non-zero otherwise.
|
|
*/
|
|
static int
|
|
desc_table_limit_check(struct vmctx *ctx, int vcpu, uint16_t sel)
|
|
{
|
|
uint64_t base;
|
|
uint32_t limit, access;
|
|
int error, reg;
|
|
|
|
reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
|
|
error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
|
|
assert(error == 0);
|
|
|
|
if (reg == VM_REG_GUEST_LDTR) {
|
|
if (SEG_DESC_UNUSABLE(access) || !SEG_DESC_PRESENT(access))
|
|
return (-1);
|
|
}
|
|
|
|
if (limit < SEL_LIMIT(sel))
|
|
return (-1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read/write the segment descriptor 'desc' into the GDT/LDT slot referenced
|
|
* by the selector 'sel'.
|
|
*
|
|
* Returns 0 on success.
|
|
* Returns 1 if an exception was injected into the guest.
|
|
* Returns -1 otherwise.
|
|
*/
|
|
static int
|
|
desc_table_rw(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
|
|
uint16_t sel, struct user_segment_descriptor *desc, bool doread)
|
|
{
|
|
struct iovec iov[2];
|
|
uint64_t base;
|
|
uint32_t limit, access;
|
|
int error, reg;
|
|
|
|
reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
|
|
error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
|
|
assert(error == 0);
|
|
assert(limit >= SEL_LIMIT(sel));
|
|
|
|
error = vm_copy_setup(ctx, vcpu, paging, base + SEL_START(sel),
|
|
sizeof(*desc), doread ? PROT_READ : PROT_WRITE, iov, nitems(iov));
|
|
if (error == 0) {
|
|
if (doread)
|
|
vm_copyin(ctx, vcpu, iov, desc, sizeof(*desc));
|
|
else
|
|
vm_copyout(ctx, vcpu, desc, iov, sizeof(*desc));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
desc_table_read(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
|
|
uint16_t sel, struct user_segment_descriptor *desc)
|
|
{
|
|
return (desc_table_rw(ctx, vcpu, paging, sel, desc, true));
|
|
}
|
|
|
|
static int
|
|
desc_table_write(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
|
|
uint16_t sel, struct user_segment_descriptor *desc)
|
|
{
|
|
return (desc_table_rw(ctx, vcpu, paging, sel, desc, false));
|
|
}
|
|
|
|
/*
|
|
* Read the TSS descriptor referenced by 'sel' into 'desc'.
|
|
*
|
|
* Returns 0 on success.
|
|
* Returns 1 if an exception was injected into the guest.
|
|
* Returns -1 otherwise.
|
|
*/
|
|
static int
|
|
read_tss_descriptor(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
|
|
uint16_t sel, struct user_segment_descriptor *desc)
|
|
{
|
|
struct vm_guest_paging sup_paging;
|
|
int error;
|
|
|
|
assert(!ISLDT(sel));
|
|
assert(IDXSEL(sel) != 0);
|
|
|
|
/* Fetch the new TSS descriptor */
|
|
if (desc_table_limit_check(ctx, vcpu, sel)) {
|
|
if (ts->reason == TSR_IRET)
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
else
|
|
sel_exception(ctx, vcpu, IDT_GP, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
|
|
sup_paging = ts->paging;
|
|
sup_paging.cpl = 0; /* implicit supervisor mode */
|
|
error = desc_table_read(ctx, vcpu, &sup_paging, sel, desc);
|
|
return (error);
|
|
}
|
|
|
|
static bool
|
|
code_desc(int sd_type)
|
|
{
|
|
/* code descriptor */
|
|
return ((sd_type & 0x18) == 0x18);
|
|
}
|
|
|
|
static bool
|
|
stack_desc(int sd_type)
|
|
{
|
|
/* writable data descriptor */
|
|
return ((sd_type & 0x1A) == 0x12);
|
|
}
|
|
|
|
static bool
|
|
data_desc(int sd_type)
|
|
{
|
|
/* data descriptor or a readable code descriptor */
|
|
return ((sd_type & 0x18) == 0x10 || (sd_type & 0x1A) == 0x1A);
|
|
}
|
|
|
|
static bool
|
|
ldt_desc(int sd_type)
|
|
{
|
|
|
|
return (sd_type == SDT_SYSLDT);
|
|
}
|
|
|
|
/*
|
|
* Validate the descriptor 'seg_desc' associated with 'segment'.
|
|
*
|
|
* Returns 0 on success.
|
|
* Returns 1 if an exception was injected into the guest.
|
|
* Returns -1 otherwise.
|
|
*/
|
|
static int
|
|
validate_seg_desc(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
|
|
int segment, struct seg_desc *seg_desc)
|
|
{
|
|
struct vm_guest_paging sup_paging;
|
|
struct user_segment_descriptor usd;
|
|
int error, idtvec;
|
|
int cpl, dpl, rpl;
|
|
uint16_t sel, cs;
|
|
bool ldtseg, codeseg, stackseg, dataseg, conforming;
|
|
|
|
ldtseg = codeseg = stackseg = dataseg = false;
|
|
switch (segment) {
|
|
case VM_REG_GUEST_LDTR:
|
|
ldtseg = true;
|
|
break;
|
|
case VM_REG_GUEST_CS:
|
|
codeseg = true;
|
|
break;
|
|
case VM_REG_GUEST_SS:
|
|
stackseg = true;
|
|
break;
|
|
case VM_REG_GUEST_DS:
|
|
case VM_REG_GUEST_ES:
|
|
case VM_REG_GUEST_FS:
|
|
case VM_REG_GUEST_GS:
|
|
dataseg = true;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
/* Get the segment selector */
|
|
sel = GETREG(ctx, vcpu, segment);
|
|
|
|
/* LDT selector must point into the GDT */
|
|
if (ldtseg && ISLDT(sel)) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
|
|
/* Descriptor table limit check */
|
|
if (desc_table_limit_check(ctx, vcpu, sel)) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
|
|
/* NULL selector */
|
|
if (IDXSEL(sel) == 0) {
|
|
/* Code and stack segment selectors cannot be NULL */
|
|
if (codeseg || stackseg) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
seg_desc->base = 0;
|
|
seg_desc->limit = 0;
|
|
seg_desc->access = 0x10000; /* unusable */
|
|
return (0);
|
|
}
|
|
|
|
/* Read the descriptor from the GDT/LDT */
|
|
sup_paging = ts->paging;
|
|
sup_paging.cpl = 0; /* implicit supervisor mode */
|
|
error = desc_table_read(ctx, vcpu, &sup_paging, sel, &usd);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Verify that the descriptor type is compatible with the segment */
|
|
if ((ldtseg && !ldt_desc(usd.sd_type)) ||
|
|
(codeseg && !code_desc(usd.sd_type)) ||
|
|
(dataseg && !data_desc(usd.sd_type)) ||
|
|
(stackseg && !stack_desc(usd.sd_type))) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
|
|
/* Segment must be marked present */
|
|
if (!usd.sd_p) {
|
|
if (ldtseg)
|
|
idtvec = IDT_TS;
|
|
else if (stackseg)
|
|
idtvec = IDT_SS;
|
|
else
|
|
idtvec = IDT_NP;
|
|
sel_exception(ctx, vcpu, idtvec, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
|
|
cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
|
|
cpl = cs & SEL_RPL_MASK;
|
|
rpl = sel & SEL_RPL_MASK;
|
|
dpl = usd.sd_dpl;
|
|
|
|
if (stackseg && (rpl != cpl || dpl != cpl)) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
|
|
if (codeseg) {
|
|
conforming = (usd.sd_type & 0x4) ? true : false;
|
|
if ((conforming && (cpl < dpl)) ||
|
|
(!conforming && (cpl != dpl))) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
if (dataseg) {
|
|
/*
|
|
* A data segment is always non-conforming except when it's
|
|
* descriptor is a readable, conforming code segment.
|
|
*/
|
|
if (code_desc(usd.sd_type) && (usd.sd_type & 0x4) != 0)
|
|
conforming = true;
|
|
else
|
|
conforming = false;
|
|
|
|
if (!conforming && (rpl > dpl || cpl > dpl)) {
|
|
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
|
|
return (1);
|
|
}
|
|
}
|
|
*seg_desc = usd_to_seg_desc(&usd);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
tss32_save(struct vmctx *ctx, int vcpu, struct vm_task_switch *task_switch,
|
|
uint32_t eip, struct tss32 *tss, struct iovec *iov)
|
|
{
|
|
|
|
/* General purpose registers */
|
|
tss->tss_eax = GETREG(ctx, vcpu, VM_REG_GUEST_RAX);
|
|
tss->tss_ecx = GETREG(ctx, vcpu, VM_REG_GUEST_RCX);
|
|
tss->tss_edx = GETREG(ctx, vcpu, VM_REG_GUEST_RDX);
|
|
tss->tss_ebx = GETREG(ctx, vcpu, VM_REG_GUEST_RBX);
|
|
tss->tss_esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
|
|
tss->tss_ebp = GETREG(ctx, vcpu, VM_REG_GUEST_RBP);
|
|
tss->tss_esi = GETREG(ctx, vcpu, VM_REG_GUEST_RSI);
|
|
tss->tss_edi = GETREG(ctx, vcpu, VM_REG_GUEST_RDI);
|
|
|
|
/* Segment selectors */
|
|
tss->tss_es = GETREG(ctx, vcpu, VM_REG_GUEST_ES);
|
|
tss->tss_cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
|
|
tss->tss_ss = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
|
|
tss->tss_ds = GETREG(ctx, vcpu, VM_REG_GUEST_DS);
|
|
tss->tss_fs = GETREG(ctx, vcpu, VM_REG_GUEST_FS);
|
|
tss->tss_gs = GETREG(ctx, vcpu, VM_REG_GUEST_GS);
|
|
|
|
/* eflags and eip */
|
|
tss->tss_eflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
|
|
if (task_switch->reason == TSR_IRET)
|
|
tss->tss_eflags &= ~PSL_NT;
|
|
tss->tss_eip = eip;
|
|
|
|
/* Copy updated old TSS into guest memory */
|
|
vm_copyout(ctx, vcpu, tss, iov, sizeof(struct tss32));
|
|
}
|
|
|
|
static void
|
|
update_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *sd)
|
|
{
|
|
int error;
|
|
|
|
error = vm_set_desc(ctx, vcpu, reg, sd->base, sd->limit, sd->access);
|
|
assert(error == 0);
|
|
}
|
|
|
|
/*
|
|
* Update the vcpu registers to reflect the state of the new task.
|
|
*
|
|
* Returns 0 on success.
|
|
* Returns 1 if an exception was injected into the guest.
|
|
* Returns -1 otherwise.
|
|
*/
|
|
static int
|
|
tss32_restore(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
|
|
uint16_t ot_sel, struct tss32 *tss, struct iovec *iov)
|
|
{
|
|
struct seg_desc seg_desc, seg_desc2;
|
|
uint64_t *pdpte, maxphyaddr, reserved;
|
|
uint32_t eflags;
|
|
int error, i;
|
|
bool nested;
|
|
|
|
nested = false;
|
|
if (ts->reason != TSR_IRET && ts->reason != TSR_JMP) {
|
|
tss->tss_link = ot_sel;
|
|
nested = true;
|
|
}
|
|
|
|
eflags = tss->tss_eflags;
|
|
if (nested)
|
|
eflags |= PSL_NT;
|
|
|
|
/* LDTR */
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_LDTR, tss->tss_ldt);
|
|
|
|
/* PBDR */
|
|
if (ts->paging.paging_mode != PAGING_MODE_FLAT) {
|
|
if (ts->paging.paging_mode == PAGING_MODE_PAE) {
|
|
/*
|
|
* XXX Assuming 36-bit MAXPHYADDR.
|
|
*/
|
|
maxphyaddr = (1UL << 36) - 1;
|
|
pdpte = paddr_guest2host(ctx, tss->tss_cr3 & ~0x1f, 32);
|
|
for (i = 0; i < 4; i++) {
|
|
/* Check reserved bits if the PDPTE is valid */
|
|
if (!(pdpte[i] & 0x1))
|
|
continue;
|
|
/*
|
|
* Bits 2:1, 8:5 and bits above the processor's
|
|
* maximum physical address are reserved.
|
|
*/
|
|
reserved = ~maxphyaddr | 0x1E6;
|
|
if (pdpte[i] & reserved) {
|
|
vm_inject_gp(ctx, vcpu);
|
|
return (1);
|
|
}
|
|
}
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE0, pdpte[0]);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE1, pdpte[1]);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE2, pdpte[2]);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE3, pdpte[3]);
|
|
}
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_CR3, tss->tss_cr3);
|
|
ts->paging.cr3 = tss->tss_cr3;
|
|
}
|
|
|
|
/* eflags and eip */
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS, eflags);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RIP, tss->tss_eip);
|
|
|
|
/* General purpose registers */
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RAX, tss->tss_eax);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RCX, tss->tss_ecx);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RDX, tss->tss_edx);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RBX, tss->tss_ebx);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RSP, tss->tss_esp);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RBP, tss->tss_ebp);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RSI, tss->tss_esi);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RDI, tss->tss_edi);
|
|
|
|
/* Segment selectors */
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_ES, tss->tss_es);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_CS, tss->tss_cs);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_SS, tss->tss_ss);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_DS, tss->tss_ds);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_FS, tss->tss_fs);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_GS, tss->tss_gs);
|
|
|
|
/*
|
|
* If this is a nested task then write out the new TSS to update
|
|
* the previous link field.
|
|
*/
|
|
if (nested)
|
|
vm_copyout(ctx, vcpu, tss, iov, sizeof(*tss));
|
|
|
|
/* Validate segment descriptors */
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_LDTR, &seg_desc);
|
|
if (error)
|
|
return (error);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_LDTR, &seg_desc);
|
|
|
|
/*
|
|
* Section "Checks on Guest Segment Registers", Intel SDM, Vol 3.
|
|
*
|
|
* The SS and CS attribute checks on VM-entry are inter-dependent so
|
|
* we need to make sure that both segments are valid before updating
|
|
* either of them. This ensures that the VMCS state can pass the
|
|
* VM-entry checks so the guest can handle any exception injected
|
|
* during task switch emulation.
|
|
*/
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_CS, &seg_desc);
|
|
if (error)
|
|
return (error);
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_SS, &seg_desc2);
|
|
if (error)
|
|
return (error);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_CS, &seg_desc);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc2);
|
|
ts->paging.cpl = tss->tss_cs & SEL_RPL_MASK;
|
|
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_DS, &seg_desc);
|
|
if (error)
|
|
return (error);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_DS, &seg_desc);
|
|
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_ES, &seg_desc);
|
|
if (error)
|
|
return (error);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_ES, &seg_desc);
|
|
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_FS, &seg_desc);
|
|
if (error)
|
|
return (error);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_FS, &seg_desc);
|
|
|
|
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_GS, &seg_desc);
|
|
if (error)
|
|
return (error);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_GS, &seg_desc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Push an error code on the stack of the new task. This is needed if the
|
|
* task switch was triggered by a hardware exception that causes an error
|
|
* code to be saved (e.g. #PF).
|
|
*
|
|
* Returns 0 on success.
|
|
* Returns 1 if an exception was injected into the guest.
|
|
* Returns -1 otherwise.
|
|
*/
|
|
static int
|
|
push_errcode(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
|
|
int task_type, uint32_t errcode)
|
|
{
|
|
struct iovec iov[2];
|
|
struct seg_desc seg_desc;
|
|
int stacksize, bytes, error;
|
|
uint64_t gla, cr0, rflags;
|
|
uint32_t esp;
|
|
uint16_t stacksel;
|
|
|
|
cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
|
|
rflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
|
|
stacksel = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
|
|
|
|
error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc.base,
|
|
&seg_desc.limit, &seg_desc.access);
|
|
assert(error == 0);
|
|
|
|
/*
|
|
* Section "Error Code" in the Intel SDM vol 3: the error code is
|
|
* pushed on the stack as a doubleword or word (depending on the
|
|
* default interrupt, trap or task gate size).
|
|
*/
|
|
if (task_type == SDT_SYS386BSY || task_type == SDT_SYS386TSS)
|
|
bytes = 4;
|
|
else
|
|
bytes = 2;
|
|
|
|
/*
|
|
* PUSH instruction from Intel SDM vol 2: the 'B' flag in the
|
|
* stack-segment descriptor determines the size of the stack
|
|
* pointer outside of 64-bit mode.
|
|
*/
|
|
if (SEG_DESC_DEF32(seg_desc.access))
|
|
stacksize = 4;
|
|
else
|
|
stacksize = 2;
|
|
|
|
esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
|
|
esp -= bytes;
|
|
|
|
if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS,
|
|
&seg_desc, esp, bytes, stacksize, PROT_WRITE, &gla)) {
|
|
sel_exception(ctx, vcpu, IDT_SS, stacksel, 1);
|
|
return (1);
|
|
}
|
|
|
|
if (vie_alignment_check(paging->cpl, bytes, cr0, rflags, gla)) {
|
|
vm_inject_ac(ctx, vcpu, 1);
|
|
return (1);
|
|
}
|
|
|
|
error = vm_copy_setup(ctx, vcpu, paging, gla, bytes, PROT_WRITE,
|
|
iov, nitems(iov));
|
|
if (error)
|
|
return (error);
|
|
|
|
vm_copyout(ctx, vcpu, &errcode, iov, bytes);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_RSP, esp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Evaluate return value from helper functions and potentially return to
|
|
* the VM run loop.
|
|
* 0: success
|
|
* +1: an exception was injected into the guest vcpu
|
|
* -1: unrecoverable/programming error
|
|
*/
|
|
#define CHKERR(x) \
|
|
do { \
|
|
assert(((x) == 0) || ((x) == 1) || ((x) == -1)); \
|
|
if ((x) == -1) \
|
|
return (VMEXIT_ABORT); \
|
|
else if ((x) == 1) \
|
|
return (VMEXIT_CONTINUE); \
|
|
} while (0)
|
|
|
|
int
|
|
vmexit_task_switch(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu)
|
|
{
|
|
struct seg_desc nt;
|
|
struct tss32 oldtss, newtss;
|
|
struct vm_task_switch *task_switch;
|
|
struct vm_guest_paging *paging, sup_paging;
|
|
struct user_segment_descriptor nt_desc, ot_desc;
|
|
struct iovec nt_iov[2], ot_iov[2];
|
|
uint64_t cr0, ot_base;
|
|
uint32_t eip, ot_lim, access;
|
|
int error, ext, minlimit, nt_type, ot_type, vcpu;
|
|
enum task_switch_reason reason;
|
|
uint16_t nt_sel, ot_sel;
|
|
|
|
task_switch = &vmexit->u.task_switch;
|
|
nt_sel = task_switch->tsssel;
|
|
ext = vmexit->u.task_switch.ext;
|
|
reason = vmexit->u.task_switch.reason;
|
|
paging = &vmexit->u.task_switch.paging;
|
|
vcpu = *pvcpu;
|
|
|
|
assert(paging->cpu_mode == CPU_MODE_PROTECTED);
|
|
|
|
/*
|
|
* Calculate the %eip to store in the old TSS before modifying the
|
|
* 'inst_length'.
|
|
*/
|
|
eip = vmexit->rip + vmexit->inst_length;
|
|
|
|
/*
|
|
* Set the 'inst_length' to '0'.
|
|
*
|
|
* If an exception is triggered during emulation of the task switch
|
|
* then the exception handler should return to the instruction that
|
|
* caused the task switch as opposed to the subsequent instruction.
|
|
*/
|
|
vmexit->inst_length = 0;
|
|
|
|
/*
|
|
* Section 4.6, "Access Rights" in Intel SDM Vol 3.
|
|
* The following page table accesses are implicitly supervisor mode:
|
|
* - accesses to GDT or LDT to load segment descriptors
|
|
* - accesses to the task state segment during task switch
|
|
*/
|
|
sup_paging = *paging;
|
|
sup_paging.cpl = 0; /* implicit supervisor mode */
|
|
|
|
/* Fetch the new TSS descriptor */
|
|
error = read_tss_descriptor(ctx, vcpu, task_switch, nt_sel, &nt_desc);
|
|
CHKERR(error);
|
|
|
|
nt = usd_to_seg_desc(&nt_desc);
|
|
|
|
/* Verify the type of the new TSS */
|
|
nt_type = SEG_DESC_TYPE(nt.access);
|
|
if (nt_type != SDT_SYS386BSY && nt_type != SDT_SYS386TSS &&
|
|
nt_type != SDT_SYS286BSY && nt_type != SDT_SYS286TSS) {
|
|
sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
|
|
goto done;
|
|
}
|
|
|
|
/* TSS descriptor must have present bit set */
|
|
if (!SEG_DESC_PRESENT(nt.access)) {
|
|
sel_exception(ctx, vcpu, IDT_NP, nt_sel, ext);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* TSS must have a minimum length of 104 bytes for a 32-bit TSS and
|
|
* 44 bytes for a 16-bit TSS.
|
|
*/
|
|
if (nt_type == SDT_SYS386BSY || nt_type == SDT_SYS386TSS)
|
|
minlimit = 104 - 1;
|
|
else if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS)
|
|
minlimit = 44 - 1;
|
|
else
|
|
minlimit = 0;
|
|
|
|
assert(minlimit > 0);
|
|
if (nt.limit < minlimit) {
|
|
sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
|
|
goto done;
|
|
}
|
|
|
|
/* TSS must be busy if task switch is due to IRET */
|
|
if (reason == TSR_IRET && !TSS_BUSY(nt_type)) {
|
|
sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* TSS must be available (not busy) if task switch reason is
|
|
* CALL, JMP, exception or interrupt.
|
|
*/
|
|
if (reason != TSR_IRET && TSS_BUSY(nt_type)) {
|
|
sel_exception(ctx, vcpu, IDT_GP, nt_sel, ext);
|
|
goto done;
|
|
}
|
|
|
|
/* Fetch the new TSS */
|
|
error = vm_copy_setup(ctx, vcpu, &sup_paging, nt.base, minlimit + 1,
|
|
PROT_READ | PROT_WRITE, nt_iov, nitems(nt_iov));
|
|
CHKERR(error);
|
|
vm_copyin(ctx, vcpu, nt_iov, &newtss, minlimit + 1);
|
|
|
|
/* Get the old TSS selector from the guest's task register */
|
|
ot_sel = GETREG(ctx, vcpu, VM_REG_GUEST_TR);
|
|
if (ISLDT(ot_sel) || IDXSEL(ot_sel) == 0) {
|
|
/*
|
|
* This might happen if a task switch was attempted without
|
|
* ever loading the task register with LTR. In this case the
|
|
* TR would contain the values from power-on:
|
|
* (sel = 0, base = 0, limit = 0xffff).
|
|
*/
|
|
sel_exception(ctx, vcpu, IDT_TS, ot_sel, task_switch->ext);
|
|
goto done;
|
|
}
|
|
|
|
/* Get the old TSS base and limit from the guest's task register */
|
|
error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_TR, &ot_base, &ot_lim,
|
|
&access);
|
|
assert(error == 0);
|
|
assert(!SEG_DESC_UNUSABLE(access) && SEG_DESC_PRESENT(access));
|
|
ot_type = SEG_DESC_TYPE(access);
|
|
assert(ot_type == SDT_SYS386BSY || ot_type == SDT_SYS286BSY);
|
|
|
|
/* Fetch the old TSS descriptor */
|
|
error = read_tss_descriptor(ctx, vcpu, task_switch, ot_sel, &ot_desc);
|
|
CHKERR(error);
|
|
|
|
/* Get the old TSS */
|
|
error = vm_copy_setup(ctx, vcpu, &sup_paging, ot_base, minlimit + 1,
|
|
PROT_READ | PROT_WRITE, ot_iov, nitems(ot_iov));
|
|
CHKERR(error);
|
|
vm_copyin(ctx, vcpu, ot_iov, &oldtss, minlimit + 1);
|
|
|
|
/*
|
|
* Clear the busy bit in the old TSS descriptor if the task switch
|
|
* due to an IRET or JMP instruction.
|
|
*/
|
|
if (reason == TSR_IRET || reason == TSR_JMP) {
|
|
ot_desc.sd_type &= ~0x2;
|
|
error = desc_table_write(ctx, vcpu, &sup_paging, ot_sel,
|
|
&ot_desc);
|
|
CHKERR(error);
|
|
}
|
|
|
|
if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) {
|
|
fprintf(stderr, "Task switch to 16-bit TSS not supported\n");
|
|
return (VMEXIT_ABORT);
|
|
}
|
|
|
|
/* Save processor state in old TSS */
|
|
tss32_save(ctx, vcpu, task_switch, eip, &oldtss, ot_iov);
|
|
|
|
/*
|
|
* If the task switch was triggered for any reason other than IRET
|
|
* then set the busy bit in the new TSS descriptor.
|
|
*/
|
|
if (reason != TSR_IRET) {
|
|
nt_desc.sd_type |= 0x2;
|
|
error = desc_table_write(ctx, vcpu, &sup_paging, nt_sel,
|
|
&nt_desc);
|
|
CHKERR(error);
|
|
}
|
|
|
|
/* Update task register to point at the new TSS */
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_TR, nt_sel);
|
|
|
|
/* Update the hidden descriptor state of the task register */
|
|
nt = usd_to_seg_desc(&nt_desc);
|
|
update_seg_desc(ctx, vcpu, VM_REG_GUEST_TR, &nt);
|
|
|
|
/* Set CR0.TS */
|
|
cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
|
|
SETREG(ctx, vcpu, VM_REG_GUEST_CR0, cr0 | CR0_TS);
|
|
|
|
/*
|
|
* We are now committed to the task switch. Any exceptions encountered
|
|
* after this point will be handled in the context of the new task and
|
|
* the saved instruction pointer will belong to the new task.
|
|
*/
|
|
vmexit->rip = newtss.tss_eip;
|
|
assert(vmexit->inst_length == 0);
|
|
|
|
/* Load processor state from new TSS */
|
|
error = tss32_restore(ctx, vcpu, task_switch, ot_sel, &newtss, nt_iov);
|
|
CHKERR(error);
|
|
|
|
/*
|
|
* Section "Interrupt Tasks" in Intel SDM, Vol 3: if an exception
|
|
* caused an error code to be generated, this error code is copied
|
|
* to the stack of the new task.
|
|
*/
|
|
if (task_switch->errcode_valid) {
|
|
assert(task_switch->ext);
|
|
assert(task_switch->reason == TSR_IDT_GATE);
|
|
error = push_errcode(ctx, vcpu, &task_switch->paging, nt_type,
|
|
task_switch->errcode);
|
|
CHKERR(error);
|
|
}
|
|
|
|
/*
|
|
* Treatment of virtual-NMI blocking if NMI is delivered through
|
|
* a task gate.
|
|
*
|
|
* Section "Architectural State Before A VM Exit", Intel SDM, Vol3:
|
|
* If the virtual NMIs VM-execution control is 1, VM entry injects
|
|
* an NMI, and delivery of the NMI causes a task switch that causes
|
|
* a VM exit, virtual-NMI blocking is in effect before the VM exit
|
|
* commences.
|
|
*
|
|
* Thus, virtual-NMI blocking is in effect at the time of the task
|
|
* switch VM exit.
|
|
*/
|
|
|
|
/*
|
|
* Treatment of virtual-NMI unblocking on IRET from NMI handler task.
|
|
*
|
|
* Section "Changes to Instruction Behavior in VMX Non-Root Operation"
|
|
* If "virtual NMIs" control is 1 IRET removes any virtual-NMI blocking.
|
|
* This unblocking of virtual-NMI occurs even if IRET causes a fault.
|
|
*
|
|
* Thus, virtual-NMI blocking is cleared at the time of the task switch
|
|
* VM exit.
|
|
*/
|
|
|
|
/*
|
|
* If the task switch was triggered by an event delivered through
|
|
* the IDT then extinguish the pending event from the vcpu's
|
|
* exitintinfo.
|
|
*/
|
|
if (task_switch->reason == TSR_IDT_GATE) {
|
|
error = vm_set_intinfo(ctx, vcpu, 0);
|
|
assert(error == 0);
|
|
}
|
|
|
|
/*
|
|
* XXX should inject debug exception if 'T' bit is 1
|
|
*/
|
|
done:
|
|
return (VMEXIT_CONTINUE);
|
|
}
|