ea690c232d
2.2 candidate.
1570 lines
44 KiB
C
1570 lines
44 KiB
C
/*-
|
|
* Copyright (c) 1992 Terrence R. Lambert.
|
|
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
|
|
* $Id: machdep.c,v 1.18 1996/12/11 16:51:15 kato Exp $
|
|
*/
|
|
|
|
#include "npx.h"
|
|
#include "opt_sysvipc.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_bounce.h"
|
|
#include "opt_machdep.h"
|
|
#include "opt_perfmon.h"
|
|
#include "opt_userconfig.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#ifdef SYSVSHM
|
|
#include <sys/shm.h>
|
|
#endif
|
|
|
|
#ifdef SYSVMSG
|
|
#include <sys/msg.h>
|
|
#endif
|
|
|
|
#ifdef SYSVSEM
|
|
#include <sys/sem.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_prot.h>
|
|
#include <vm/lock.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <sys/user.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <net/netisr.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/npx.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/sysarch.h>
|
|
#include <machine/cons.h>
|
|
#include <machine/bootinfo.h>
|
|
#include <machine/md_var.h>
|
|
#ifdef PERFMON
|
|
#include <machine/perfmon.h>
|
|
#endif
|
|
|
|
#include <i386/isa/isa_device.h>
|
|
#ifdef PC98
|
|
#include <pc98/pc98/pc98_machdep.h>
|
|
#else
|
|
#include <i386/isa/rtc.h>
|
|
#endif
|
|
#include <machine/random.h>
|
|
|
|
extern void init386 __P((int first));
|
|
extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
|
|
extern int ptrace_single_step __P((struct proc *p));
|
|
extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
|
|
extern void dblfault_handler __P((void));
|
|
|
|
extern void identifycpu(void); /* XXX header file */
|
|
extern void earlysetcpuclass(void); /* same header file */
|
|
|
|
static void cpu_startup __P((void *));
|
|
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
|
|
|
|
|
|
#ifdef BOUNCE_BUFFERS
|
|
extern char *bouncememory;
|
|
extern int maxbkva;
|
|
#ifdef BOUNCEPAGES
|
|
int bouncepages = BOUNCEPAGES;
|
|
#else
|
|
int bouncepages = 0;
|
|
#endif
|
|
#endif /* BOUNCE_BUFFERS */
|
|
|
|
extern int freebufspace;
|
|
int msgbufmapped = 0; /* set when safe to use msgbuf */
|
|
int _udatasel, _ucodesel;
|
|
u_int atdevbase;
|
|
|
|
|
|
int physmem = 0;
|
|
int cold = 1;
|
|
|
|
static int
|
|
sysctl_hw_physmem SYSCTL_HANDLER_ARGS
|
|
{
|
|
int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
|
|
0, 0, sysctl_hw_physmem, "I", "");
|
|
|
|
static int
|
|
sysctl_hw_usermem SYSCTL_HANDLER_ARGS
|
|
{
|
|
int error = sysctl_handle_int(oidp, 0,
|
|
ctob(physmem - cnt.v_wire_count), req);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
|
|
0, 0, sysctl_hw_usermem, "I", "");
|
|
|
|
int boothowto = 0, bootverbose = 0, Maxmem = 0;
|
|
static int badpages = 0;
|
|
#ifdef PC98
|
|
int Maxmem_under16M = 0;
|
|
#endif
|
|
long dumplo;
|
|
extern int bootdev;
|
|
|
|
vm_offset_t phys_avail[10];
|
|
|
|
/* must be 2 less so 0 0 can signal end of chunks */
|
|
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
|
|
|
|
static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
|
|
|
|
static vm_offset_t buffer_sva, buffer_eva;
|
|
vm_offset_t clean_sva, clean_eva;
|
|
static vm_offset_t pager_sva, pager_eva;
|
|
extern struct linker_set netisr_set;
|
|
|
|
#define offsetof(type, member) ((size_t)(&((type *)0)->member))
|
|
|
|
static void
|
|
cpu_startup(dummy)
|
|
void *dummy;
|
|
{
|
|
register unsigned i;
|
|
register caddr_t v;
|
|
vm_offset_t maxaddr;
|
|
vm_size_t size = 0;
|
|
int firstaddr;
|
|
vm_offset_t minaddr;
|
|
|
|
if (boothowto & RB_VERBOSE)
|
|
bootverbose++;
|
|
|
|
/*
|
|
* Good {morning,afternoon,evening,night}.
|
|
*/
|
|
printf(version);
|
|
earlysetcpuclass();
|
|
startrtclock();
|
|
identifycpu();
|
|
#ifdef PERFMON
|
|
perfmon_init();
|
|
#endif
|
|
printf("real memory = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
|
|
/*
|
|
* Display any holes after the first chunk of extended memory.
|
|
*/
|
|
if (badpages != 0) {
|
|
int indx = 1;
|
|
|
|
/*
|
|
* XXX skip reporting ISA hole & unmanaged kernel memory
|
|
*/
|
|
if (phys_avail[0] == PAGE_SIZE)
|
|
indx += 2;
|
|
|
|
printf("Physical memory hole(s):\n");
|
|
for (; phys_avail[indx + 1] != 0; indx += 2) {
|
|
int size = phys_avail[indx + 1] - phys_avail[indx];
|
|
|
|
printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
|
|
phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Quickly wire in netisrs.
|
|
*/
|
|
setup_netisrs(&netisr_set);
|
|
|
|
/*
|
|
* Allocate space for system data structures.
|
|
* The first available kernel virtual address is in "v".
|
|
* As pages of kernel virtual memory are allocated, "v" is incremented.
|
|
* As pages of memory are allocated and cleared,
|
|
* "firstaddr" is incremented.
|
|
* An index into the kernel page table corresponding to the
|
|
* virtual memory address maintained in "v" is kept in "mapaddr".
|
|
*/
|
|
|
|
/*
|
|
* Make two passes. The first pass calculates how much memory is
|
|
* needed and allocates it. The second pass assigns virtual
|
|
* addresses to the various data structures.
|
|
*/
|
|
firstaddr = 0;
|
|
again:
|
|
v = (caddr_t)firstaddr;
|
|
|
|
#define valloc(name, type, num) \
|
|
(name) = (type *)v; v = (caddr_t)((name)+(num))
|
|
#define valloclim(name, type, num, lim) \
|
|
(name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
|
|
valloc(callout, struct callout, ncallout);
|
|
#ifdef SYSVSHM
|
|
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
valloc(sema, struct semid_ds, seminfo.semmni);
|
|
valloc(sem, struct sem, seminfo.semmns);
|
|
/* This is pretty disgusting! */
|
|
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
|
|
#endif
|
|
#ifdef SYSVMSG
|
|
valloc(msgpool, char, msginfo.msgmax);
|
|
valloc(msgmaps, struct msgmap, msginfo.msgseg);
|
|
valloc(msghdrs, struct msg, msginfo.msgtql);
|
|
valloc(msqids, struct msqid_ds, msginfo.msgmni);
|
|
#endif
|
|
|
|
if (nbuf == 0) {
|
|
nbuf = 30;
|
|
if( physmem > 1024)
|
|
nbuf += min((physmem - 1024) / 4, 2048);
|
|
}
|
|
nswbuf = max(min(nbuf/4, 128), 16);
|
|
|
|
valloc(swbuf, struct buf, nswbuf);
|
|
valloc(buf, struct buf, nbuf);
|
|
|
|
#ifdef BOUNCE_BUFFERS
|
|
/*
|
|
* If there is more than 16MB of memory, allocate some bounce buffers
|
|
*/
|
|
if (Maxmem > 4096) {
|
|
if (bouncepages == 0) {
|
|
bouncepages = 64;
|
|
bouncepages += ((Maxmem - 4096) / 2048) * 32;
|
|
}
|
|
v = (caddr_t)((vm_offset_t)round_page(v));
|
|
valloc(bouncememory, char, bouncepages * PAGE_SIZE);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* End of first pass, size has been calculated so allocate memory
|
|
*/
|
|
if (firstaddr == 0) {
|
|
size = (vm_size_t)(v - firstaddr);
|
|
firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
|
|
if (firstaddr == 0)
|
|
panic("startup: no room for tables");
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* End of second pass, addresses have been assigned
|
|
*/
|
|
if ((vm_size_t)(v - firstaddr) != size)
|
|
panic("startup: table size inconsistency");
|
|
|
|
#ifdef BOUNCE_BUFFERS
|
|
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
|
|
(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
|
|
maxbkva + pager_map_size, TRUE);
|
|
io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
|
|
#else
|
|
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
|
|
(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
|
|
#endif
|
|
buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
|
|
(nbuf*BKVASIZE), TRUE);
|
|
pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
|
|
(nswbuf*MAXPHYS) + pager_map_size, TRUE);
|
|
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
|
|
(16*ARG_MAX), TRUE);
|
|
exech_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
|
|
(16*PAGE_SIZE), TRUE);
|
|
u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
|
|
(maxproc*UPAGES*PAGE_SIZE), FALSE);
|
|
|
|
/*
|
|
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
|
|
* we use the more space efficient malloc in place of kmem_alloc.
|
|
*/
|
|
mclrefcnt = (char *)malloc(nmbclusters+PAGE_SIZE/MCLBYTES,
|
|
M_MBUF, M_NOWAIT);
|
|
bzero(mclrefcnt, nmbclusters+PAGE_SIZE/MCLBYTES);
|
|
mcl_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
|
|
nmbclusters * MCLBYTES, FALSE);
|
|
{
|
|
vm_size_t mb_map_size;
|
|
mb_map_size = nmbufs * MSIZE;
|
|
mb_map = kmem_suballoc(kmem_map, &minaddr, &maxaddr,
|
|
round_page(mb_map_size), FALSE);
|
|
}
|
|
|
|
/*
|
|
* Initialize callouts
|
|
*/
|
|
callfree = callout;
|
|
for (i = 1; i < ncallout; i++)
|
|
callout[i-1].c_next = &callout[i];
|
|
|
|
#if defined(USERCONFIG_BOOT) && defined(USERCONFIG)
|
|
boothowto |= RB_CONFIG;
|
|
#endif
|
|
|
|
if (boothowto & RB_CONFIG) {
|
|
#ifdef USERCONFIG
|
|
userconfig();
|
|
cninit(); /* the preferred console may have changed */
|
|
#else
|
|
printf("Sorry! no userconfig in this kernel\n");
|
|
#endif
|
|
}
|
|
|
|
#ifdef BOUNCE_BUFFERS
|
|
/*
|
|
* init bounce buffers
|
|
*/
|
|
vm_bounce_init();
|
|
#endif
|
|
|
|
printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
|
|
ptoa(cnt.v_free_count) / 1024);
|
|
|
|
/*
|
|
* Set up buffers, so they can be used to read disk labels.
|
|
*/
|
|
bufinit();
|
|
vm_pager_bufferinit();
|
|
|
|
/*
|
|
* In verbose mode, print out the BIOS's idea of the disk geometries.
|
|
*/
|
|
if (bootverbose) {
|
|
printf("BIOS Geometries:\n");
|
|
for (i = 0; i < N_BIOS_GEOM; i++) {
|
|
unsigned long bios_geom;
|
|
int max_cylinder, max_head, max_sector;
|
|
|
|
bios_geom = bootinfo.bi_bios_geom[i];
|
|
|
|
/*
|
|
* XXX the bootstrap punts a 1200K floppy geometry
|
|
* when the get-disk-geometry interrupt fails. Skip
|
|
* drives that have this geometry.
|
|
*/
|
|
if (bios_geom == 0x4f010f)
|
|
continue;
|
|
|
|
printf(" %x:%08lx ", i, bios_geom);
|
|
max_cylinder = bios_geom >> 16;
|
|
max_head = (bios_geom >> 8) & 0xff;
|
|
max_sector = bios_geom & 0xff;
|
|
printf(
|
|
"0..%d=%d cylinders, 0..%d=%d heads, 1..%d=%d sectors\n",
|
|
max_cylinder, max_cylinder + 1,
|
|
max_head, max_head + 1,
|
|
max_sector, max_sector);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
register_netisr(num, handler)
|
|
int num;
|
|
netisr_t *handler;
|
|
{
|
|
|
|
if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
|
|
printf("register_netisr: bad isr number: %d\n", num);
|
|
return (EINVAL);
|
|
}
|
|
netisrs[num] = handler;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
setup_netisrs(ls)
|
|
struct linker_set *ls;
|
|
{
|
|
int i;
|
|
const struct netisrtab *nit;
|
|
|
|
for(i = 0; ls->ls_items[i]; i++) {
|
|
nit = (const struct netisrtab *)ls->ls_items[i];
|
|
register_netisr(nit->nit_num, nit->nit_isr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send an interrupt to process.
|
|
*
|
|
* Stack is set up to allow sigcode stored
|
|
* at top to call routine, followed by kcall
|
|
* to sigreturn routine below. After sigreturn
|
|
* resets the signal mask, the stack, and the
|
|
* frame pointer, it returns to the user
|
|
* specified pc, psl.
|
|
*/
|
|
void
|
|
sendsig(catcher, sig, mask, code)
|
|
sig_t catcher;
|
|
int sig, mask;
|
|
u_long code;
|
|
{
|
|
register struct proc *p = curproc;
|
|
register int *regs;
|
|
register struct sigframe *fp;
|
|
struct sigframe sf;
|
|
struct sigacts *psp = p->p_sigacts;
|
|
int oonstack;
|
|
|
|
regs = p->p_md.md_regs;
|
|
oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
|
|
/*
|
|
* Allocate and validate space for the signal handler context.
|
|
*/
|
|
if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
|
|
(psp->ps_sigonstack & sigmask(sig))) {
|
|
fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
|
|
psp->ps_sigstk.ss_size - sizeof(struct sigframe));
|
|
psp->ps_sigstk.ss_flags |= SS_ONSTACK;
|
|
} else {
|
|
fp = (struct sigframe *)regs[tESP] - 1;
|
|
}
|
|
|
|
/*
|
|
* grow() will return FALSE if the fp will not fit inside the stack
|
|
* and the stack can not be grown. useracc will return FALSE
|
|
* if access is denied.
|
|
*/
|
|
if ((grow(p, (int)fp) == FALSE) ||
|
|
(useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
|
|
/*
|
|
* Process has trashed its stack; give it an illegal
|
|
* instruction to halt it in its tracks.
|
|
*/
|
|
SIGACTION(p, SIGILL) = SIG_DFL;
|
|
sig = sigmask(SIGILL);
|
|
p->p_sigignore &= ~sig;
|
|
p->p_sigcatch &= ~sig;
|
|
p->p_sigmask &= ~sig;
|
|
psignal(p, SIGILL);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Build the argument list for the signal handler.
|
|
*/
|
|
if (p->p_sysent->sv_sigtbl) {
|
|
if (sig < p->p_sysent->sv_sigsize)
|
|
sig = p->p_sysent->sv_sigtbl[sig];
|
|
else
|
|
sig = p->p_sysent->sv_sigsize + 1;
|
|
}
|
|
sf.sf_signum = sig;
|
|
sf.sf_code = code;
|
|
sf.sf_scp = &fp->sf_sc;
|
|
sf.sf_addr = (char *) regs[tERR];
|
|
sf.sf_handler = catcher;
|
|
|
|
/* save scratch registers */
|
|
sf.sf_sc.sc_eax = regs[tEAX];
|
|
sf.sf_sc.sc_ebx = regs[tEBX];
|
|
sf.sf_sc.sc_ecx = regs[tECX];
|
|
sf.sf_sc.sc_edx = regs[tEDX];
|
|
sf.sf_sc.sc_esi = regs[tESI];
|
|
sf.sf_sc.sc_edi = regs[tEDI];
|
|
sf.sf_sc.sc_cs = regs[tCS];
|
|
sf.sf_sc.sc_ds = regs[tDS];
|
|
sf.sf_sc.sc_ss = regs[tSS];
|
|
sf.sf_sc.sc_es = regs[tES];
|
|
sf.sf_sc.sc_isp = regs[tISP];
|
|
|
|
/*
|
|
* Build the signal context to be used by sigreturn.
|
|
*/
|
|
sf.sf_sc.sc_onstack = oonstack;
|
|
sf.sf_sc.sc_mask = mask;
|
|
sf.sf_sc.sc_sp = regs[tESP];
|
|
sf.sf_sc.sc_fp = regs[tEBP];
|
|
sf.sf_sc.sc_pc = regs[tEIP];
|
|
sf.sf_sc.sc_ps = regs[tEFLAGS];
|
|
|
|
/*
|
|
* Copy the sigframe out to the user's stack.
|
|
*/
|
|
if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
|
|
/*
|
|
* Something is wrong with the stack pointer.
|
|
* ...Kill the process.
|
|
*/
|
|
sigexit(p, SIGILL);
|
|
};
|
|
|
|
regs[tESP] = (int)fp;
|
|
regs[tEIP] = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
|
|
regs[tEFLAGS] &= ~PSL_VM;
|
|
regs[tCS] = _ucodesel;
|
|
regs[tDS] = _udatasel;
|
|
regs[tES] = _udatasel;
|
|
regs[tSS] = _udatasel;
|
|
}
|
|
|
|
/*
|
|
* System call to cleanup state after a signal
|
|
* has been taken. Reset signal mask and
|
|
* stack state from context left by sendsig (above).
|
|
* Return to previous pc and psl as specified by
|
|
* context left by sendsig. Check carefully to
|
|
* make sure that the user has not modified the
|
|
* state to gain improper privileges.
|
|
*/
|
|
int
|
|
sigreturn(p, uap, retval)
|
|
struct proc *p;
|
|
struct sigreturn_args /* {
|
|
struct sigcontext *sigcntxp;
|
|
} */ *uap;
|
|
int *retval;
|
|
{
|
|
register struct sigcontext *scp;
|
|
register struct sigframe *fp;
|
|
register int *regs = p->p_md.md_regs;
|
|
int eflags;
|
|
|
|
/*
|
|
* (XXX old comment) regs[tESP] points to the return address.
|
|
* The user scp pointer is above that.
|
|
* The return address is faked in the signal trampoline code
|
|
* for consistency.
|
|
*/
|
|
scp = uap->sigcntxp;
|
|
fp = (struct sigframe *)
|
|
((caddr_t)scp - offsetof(struct sigframe, sf_sc));
|
|
|
|
if (useracc((caddr_t)fp, sizeof (*fp), 0) == 0)
|
|
return(EINVAL);
|
|
|
|
/*
|
|
* Don't allow users to change privileged or reserved flags.
|
|
*/
|
|
#define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
|
|
eflags = scp->sc_ps;
|
|
/*
|
|
* XXX do allow users to change the privileged flag PSL_RF. The
|
|
* cpu sets PSL_RF in tf_eflags for faults. Debuggers should
|
|
* sometimes set it there too. tf_eflags is kept in the signal
|
|
* context during signal handling and there is no other place
|
|
* to remember it, so the PSL_RF bit may be corrupted by the
|
|
* signal handler without us knowing. Corruption of the PSL_RF
|
|
* bit at worst causes one more or one less debugger trap, so
|
|
* allowing it is fairly harmless.
|
|
*/
|
|
if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs[tEFLAGS] & ~PSL_RF)) {
|
|
#ifdef DEBUG
|
|
printf("sigreturn: eflags = 0x%x\n", eflags);
|
|
#endif
|
|
return(EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Don't allow users to load a valid privileged %cs. Let the
|
|
* hardware check for invalid selectors, excess privilege in
|
|
* other selectors, invalid %eip's and invalid %esp's.
|
|
*/
|
|
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
|
|
if (!CS_SECURE(scp->sc_cs)) {
|
|
#ifdef DEBUG
|
|
printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
|
|
#endif
|
|
trapsignal(p, SIGBUS, T_PROTFLT);
|
|
return(EINVAL);
|
|
}
|
|
|
|
/* restore scratch registers */
|
|
regs[tEAX] = scp->sc_eax;
|
|
regs[tEBX] = scp->sc_ebx;
|
|
regs[tECX] = scp->sc_ecx;
|
|
regs[tEDX] = scp->sc_edx;
|
|
regs[tESI] = scp->sc_esi;
|
|
regs[tEDI] = scp->sc_edi;
|
|
regs[tCS] = scp->sc_cs;
|
|
regs[tDS] = scp->sc_ds;
|
|
regs[tES] = scp->sc_es;
|
|
regs[tSS] = scp->sc_ss;
|
|
regs[tISP] = scp->sc_isp;
|
|
|
|
if (useracc((caddr_t)scp, sizeof (*scp), 0) == 0)
|
|
return(EINVAL);
|
|
|
|
if (scp->sc_onstack & 01)
|
|
p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
p->p_sigmask = scp->sc_mask & ~sigcantmask;
|
|
regs[tEBP] = scp->sc_fp;
|
|
regs[tESP] = scp->sc_sp;
|
|
regs[tEIP] = scp->sc_pc;
|
|
regs[tEFLAGS] = eflags;
|
|
return(EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* Machine depdnetnt boot() routine
|
|
*
|
|
* I haven't seen anything too put here yet
|
|
* Possibly some stuff might be grafted back here from boot()
|
|
*/
|
|
void
|
|
cpu_boot(int howto)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Shutdown the CPU as much as possible
|
|
*/
|
|
void
|
|
cpu_halt(void)
|
|
{
|
|
for (;;)
|
|
__asm__ ("hlt");
|
|
}
|
|
|
|
/*
|
|
* Clear registers on exec
|
|
*/
|
|
void
|
|
setregs(p, entry, stack)
|
|
struct proc *p;
|
|
u_long entry;
|
|
u_long stack;
|
|
{
|
|
int *regs = p->p_md.md_regs;
|
|
|
|
#ifdef USER_LDT
|
|
struct pcb *pcb = &p->p_addr->u_pcb;
|
|
|
|
/* was i386_user_cleanup() in NetBSD */
|
|
if (pcb->pcb_ldt) {
|
|
if (pcb == curpcb)
|
|
lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
|
|
kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
|
|
pcb->pcb_ldt_len * sizeof(union descriptor));
|
|
pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
|
|
}
|
|
#endif
|
|
|
|
bzero(regs, sizeof(struct trapframe));
|
|
regs[tEIP] = entry;
|
|
regs[tESP] = stack;
|
|
regs[tEFLAGS] = PSL_USER | (regs[tEFLAGS] & PSL_T);
|
|
regs[tSS] = _udatasel;
|
|
regs[tDS] = _udatasel;
|
|
regs[tES] = _udatasel;
|
|
regs[tCS] = _ucodesel;
|
|
|
|
p->p_addr->u_pcb.pcb_flags = 0; /* no fp at all */
|
|
load_cr0(rcr0() | CR0_TS); /* start emulating */
|
|
#if NNPX > 0
|
|
npxinit(__INITIAL_NPXCW__);
|
|
#endif /* NNPX > 0 */
|
|
}
|
|
|
|
static int
|
|
sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
|
|
{
|
|
int error;
|
|
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
|
|
req);
|
|
if (!error && req->newptr)
|
|
resettodr();
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
|
|
&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
|
|
|
|
SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
|
|
CTLFLAG_RW, &disable_rtc_set, 0, "");
|
|
|
|
SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
|
|
CTLFLAG_RD, &bootinfo, bootinfo, "");
|
|
|
|
SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
|
|
CTLFLAG_RW, &wall_cmos_clock, 0, "");
|
|
|
|
/*
|
|
* Initialize 386 and configure to run kernel
|
|
*/
|
|
|
|
/*
|
|
* Initialize segments & interrupt table
|
|
*/
|
|
|
|
int currentldt;
|
|
int _default_ldt;
|
|
union descriptor gdt[NGDT]; /* global descriptor table */
|
|
struct gate_descriptor idt[NIDT]; /* interrupt descriptor table */
|
|
union descriptor ldt[NLDT]; /* local descriptor table */
|
|
|
|
static struct i386tss dblfault_tss;
|
|
static char dblfault_stack[PAGE_SIZE];
|
|
|
|
extern struct user *proc0paddr;
|
|
|
|
/* software prototypes -- in more palatable form */
|
|
struct soft_segment_descriptor gdt_segs[] = {
|
|
/* GNULL_SEL 0 Null Descriptor */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GCODE_SEL 1 Code Descriptor for kernel */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMERA, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GDATA_SEL 2 Data Descriptor for kernel */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMRWA, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GLDT_SEL 3 LDT Descriptor */
|
|
{ (int) ldt, /* segment base address */
|
|
sizeof(ldt)-1, /* length - all address space */
|
|
SDT_SYSLDT, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* unused - default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GTGATE_SEL 4 Null Descriptor - Placeholder */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length - all address space */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GPANIC_SEL 5 Panic Tss Descriptor */
|
|
{ (int) &dblfault_tss, /* segment base address */
|
|
sizeof(struct i386tss)-1,/* length - all address space */
|
|
SDT_SYS386TSS, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* unused - default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GPROC0_SEL 6 Proc 0 Tss Descriptor */
|
|
{ (int) kstack, /* segment base address */
|
|
sizeof(struct i386tss)-1,/* length - all address space */
|
|
SDT_SYS386TSS, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* unused - default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GUSERLDT_SEL 7 User LDT Descriptor per process */
|
|
{ (int) ldt, /* segment base address */
|
|
(512 * sizeof(union descriptor)-1), /* length */
|
|
SDT_SYSLDT, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* unused - default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
|
|
{ 0, /* segment base address (overwritten by APM) */
|
|
0xfffff, /* length */
|
|
SDT_MEMERA, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
|
|
{ 0, /* segment base address (overwritten by APM) */
|
|
0xfffff, /* length */
|
|
SDT_MEMERA, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GAPMDATA_SEL 10 APM BIOS 32-bit interface (Data) */
|
|
{ 0, /* segment base address (overwritten by APM) */
|
|
0xfffff, /* length */
|
|
SDT_MEMRWA, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
};
|
|
|
|
static struct soft_segment_descriptor ldt_segs[] = {
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length - all address space */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length - all address space */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length - all address space */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, 0,
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* Code Descriptor for user */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMERA, /* segment type */
|
|
SEL_UPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* Data Descriptor for user */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMRWA, /* segment type */
|
|
SEL_UPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, 0,
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
};
|
|
|
|
void
|
|
setidt(idx, func, typ, dpl, selec)
|
|
int idx;
|
|
inthand_t *func;
|
|
int typ;
|
|
int dpl;
|
|
int selec;
|
|
{
|
|
struct gate_descriptor *ip = idt + idx;
|
|
|
|
ip->gd_looffset = (int)func;
|
|
ip->gd_selector = selec;
|
|
ip->gd_stkcpy = 0;
|
|
ip->gd_xx = 0;
|
|
ip->gd_type = typ;
|
|
ip->gd_dpl = dpl;
|
|
ip->gd_p = 1;
|
|
ip->gd_hioffset = ((int)func)>>16 ;
|
|
}
|
|
|
|
#define IDTVEC(name) __CONCAT(X,name)
|
|
|
|
extern inthand_t
|
|
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
|
|
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
|
|
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
|
|
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
|
|
IDTVEC(syscall), IDTVEC(int0x80_syscall);
|
|
|
|
void
|
|
sdtossd(sd, ssd)
|
|
struct segment_descriptor *sd;
|
|
struct soft_segment_descriptor *ssd;
|
|
{
|
|
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
|
|
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
|
|
ssd->ssd_type = sd->sd_type;
|
|
ssd->ssd_dpl = sd->sd_dpl;
|
|
ssd->ssd_p = sd->sd_p;
|
|
ssd->ssd_def32 = sd->sd_def32;
|
|
ssd->ssd_gran = sd->sd_gran;
|
|
}
|
|
|
|
void
|
|
init386(first)
|
|
int first;
|
|
{
|
|
int x;
|
|
unsigned biosbasemem, biosextmem;
|
|
struct gate_descriptor *gdp;
|
|
int gsel_tss;
|
|
struct isa_device *idp;
|
|
/* table descriptors - used to load tables by microp */
|
|
struct region_descriptor r_gdt, r_idt;
|
|
int pagesinbase, pagesinext;
|
|
int target_page, pa_indx;
|
|
int off;
|
|
|
|
proc0.p_addr = proc0paddr;
|
|
|
|
atdevbase = ISA_HOLE_START + KERNBASE;
|
|
|
|
/*
|
|
* Initialize the console before we print anything out.
|
|
*/
|
|
cninit();
|
|
|
|
#ifdef PC98
|
|
/*
|
|
* Initialize DMAC
|
|
*/
|
|
pc98_init_dmac();
|
|
#endif
|
|
|
|
/*
|
|
* make gdt memory segments, the code segment goes up to end of the
|
|
* page with etext in it, the data segment goes to the end of
|
|
* the address space
|
|
*/
|
|
/*
|
|
* XXX text protection is temporarily (?) disabled. The limit was
|
|
* i386_btop(round_page(etext)) - 1.
|
|
*/
|
|
gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
|
|
gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
|
|
for (x = 0; x < NGDT; x++)
|
|
ssdtosd(&gdt_segs[x], &gdt[x].sd);
|
|
|
|
/* make ldt memory segments */
|
|
/*
|
|
* The data segment limit must not cover the user area because we
|
|
* don't want the user area to be writable in copyout() etc. (page
|
|
* level protection is lost in kernel mode on 386's). Also, we
|
|
* don't want the user area to be writable directly (page level
|
|
* protection of the user area is not available on 486's with
|
|
* CR0_WP set, because there is no user-read/kernel-write mode).
|
|
*
|
|
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
|
|
* should be spelled ...MAX_USER...
|
|
*/
|
|
#define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS
|
|
/*
|
|
* The code segment limit has to cover the user area until we move
|
|
* the signal trampoline out of the user area. This is safe because
|
|
* the code segment cannot be written to directly.
|
|
*/
|
|
#define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
|
|
ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
|
|
ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
|
|
/* Note. eventually want private ldts per process */
|
|
for (x = 0; x < NLDT; x++)
|
|
ssdtosd(&ldt_segs[x], &ldt[x].sd);
|
|
|
|
/* exceptions */
|
|
for (x = 0; x < NIDT; x++)
|
|
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
|
|
setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
#if defined(CYRIX_486DLC) || defined(CYRIX_5X86)
|
|
setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
#else
|
|
setidt(14, &IDTVEC(page), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
#endif
|
|
setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(0x80, &IDTVEC(int0x80_syscall),
|
|
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
#include "isa.h"
|
|
#if NISA >0
|
|
isa_defaultirq();
|
|
#endif
|
|
rand_initialize();
|
|
|
|
r_gdt.rd_limit = sizeof(gdt) - 1;
|
|
r_gdt.rd_base = (int) gdt;
|
|
lgdt(&r_gdt);
|
|
|
|
r_idt.rd_limit = sizeof(idt) - 1;
|
|
r_idt.rd_base = (int) idt;
|
|
lidt(&r_idt);
|
|
|
|
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
|
|
lldt(_default_ldt);
|
|
currentldt = _default_ldt;
|
|
|
|
#ifdef DDB
|
|
kdb_init();
|
|
if (boothowto & RB_KDB)
|
|
Debugger("Boot flags requested debugger");
|
|
#endif
|
|
|
|
#ifdef PC98
|
|
pc98_getmemsize();
|
|
biosbasemem = 640; /* 640KB */
|
|
biosextmem = (Maxmem * PAGE_SIZE - 0x100000)/1024; /* extent memory */
|
|
#else /* IBM-PC */
|
|
/* Use BIOS values stored in RTC CMOS RAM, since probing
|
|
* breaks certain 386 AT relics.
|
|
*/
|
|
biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
|
|
biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
|
|
|
|
/*
|
|
* If BIOS tells us that it has more than 640k in the basemem,
|
|
* don't believe it - set it to 640k.
|
|
*/
|
|
if (biosbasemem > 640) {
|
|
printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
|
|
biosbasemem);
|
|
biosbasemem = 640;
|
|
}
|
|
if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
|
|
printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
|
|
bootinfo.bi_basemem);
|
|
bootinfo.bi_basemem = 640;
|
|
}
|
|
|
|
/*
|
|
* Warn if the official BIOS interface disagrees with the RTC
|
|
* interface used above about the amount of base memory or the
|
|
* amount of extended memory. Prefer the BIOS value for the base
|
|
* memory. This is necessary for machines that `steal' base
|
|
* memory for use as BIOS memory, at least if we are going to use
|
|
* the BIOS for apm. Prefer the RTC value for extended memory.
|
|
* Eventually the hackish interface shouldn't even be looked at.
|
|
*/
|
|
if (bootinfo.bi_memsizes_valid) {
|
|
if (bootinfo.bi_basemem != biosbasemem) {
|
|
vm_offset_t pa;
|
|
|
|
printf(
|
|
"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
|
|
bootinfo.bi_basemem, biosbasemem);
|
|
biosbasemem = bootinfo.bi_basemem;
|
|
|
|
/*
|
|
* XXX if biosbasemem is now < 640, there is `hole'
|
|
* between the end of base memory and the start of
|
|
* ISA memory. The hole may be empty or it may
|
|
* contain BIOS code or data. Map it read/write so
|
|
* that the BIOS can write to it. (Memory from 0 to
|
|
* the physical end of the kernel is mapped read-only
|
|
* to begin with and then parts of it are remapped.
|
|
* The parts that aren't remapped form holes that
|
|
* remain read-only and are unused by the kernel.
|
|
* The base memory area is below the physical end of
|
|
* the kernel and right now forms a read-only hole.
|
|
* The part of it from 0 to
|
|
* (trunc_page(biosbasemem * 1024) - 1) will be
|
|
* remapped and used by the kernel later.)
|
|
*
|
|
* This code is similar to the code used in
|
|
* pmap_mapdev, but since no memory needs to be
|
|
* allocated we simply change the mapping.
|
|
*/
|
|
for (pa = trunc_page(biosbasemem * 1024);
|
|
pa < ISA_HOLE_START; pa += PAGE_SIZE) {
|
|
unsigned *pte;
|
|
|
|
pte = (unsigned *)vtopte(pa + KERNBASE);
|
|
*pte = pa | PG_RW | PG_V;
|
|
}
|
|
}
|
|
if (bootinfo.bi_extmem != biosextmem)
|
|
printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
|
|
bootinfo.bi_extmem, biosextmem);
|
|
}
|
|
#endif
|
|
|
|
pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
|
|
pagesinext = biosextmem * 1024 / PAGE_SIZE;
|
|
|
|
/*
|
|
* Special hack for chipsets that still remap the 384k hole when
|
|
* there's 16MB of memory - this really confuses people that
|
|
* are trying to use bus mastering ISA controllers with the
|
|
* "16MB limit"; they only have 16MB, but the remapping puts
|
|
* them beyond the limit.
|
|
*/
|
|
#ifndef PC98
|
|
/*
|
|
* If extended memory is between 15-16MB (16-17MB phys address range),
|
|
* chop it to 15MB.
|
|
*/
|
|
if ((pagesinext > 3840) && (pagesinext < 4096))
|
|
pagesinext = 3840;
|
|
#endif
|
|
|
|
/*
|
|
* Maxmem isn't the "maximum memory", it's one larger than the
|
|
* highest page of the physical address space. It should be
|
|
* called something like "Maxphyspage".
|
|
*/
|
|
Maxmem = pagesinext + 0x100000/PAGE_SIZE;
|
|
|
|
#ifdef MAXMEM
|
|
Maxmem = MAXMEM/4;
|
|
#endif
|
|
|
|
idp = find_isadev(isa_devtab_null, &npxdriver, 0);
|
|
if (idp != NULL && idp->id_msize != 0)
|
|
Maxmem = idp->id_msize / 4;
|
|
|
|
/* call pmap initialization to make new kernel address space */
|
|
pmap_bootstrap (first, 0);
|
|
|
|
/*
|
|
* Size up each available chunk of physical memory.
|
|
*/
|
|
|
|
/*
|
|
* We currently don't bother testing base memory.
|
|
* XXX ...but we probably should.
|
|
*/
|
|
pa_indx = 0;
|
|
badpages = 0;
|
|
if (pagesinbase > 1) {
|
|
phys_avail[pa_indx++] = PAGE_SIZE; /* skip first page of memory */
|
|
phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
|
|
physmem = pagesinbase - 1;
|
|
} else {
|
|
/* point at first chunk end */
|
|
pa_indx++;
|
|
}
|
|
|
|
for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
|
|
int tmp, page_bad = FALSE;
|
|
|
|
#ifdef PC98
|
|
/* skip system area */
|
|
if (target_page>=ptoa(Maxmem_under16M) &&
|
|
target_page < ptoa(4096))
|
|
page_bad = TRUE;
|
|
#endif
|
|
/*
|
|
* map page into kernel: valid, read/write, non-cacheable
|
|
*/
|
|
*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
|
|
invltlb();
|
|
|
|
tmp = *(int *)CADDR1;
|
|
/*
|
|
* Test for alternating 1's and 0's
|
|
*/
|
|
*(volatile int *)CADDR1 = 0xaaaaaaaa;
|
|
if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
|
|
page_bad = TRUE;
|
|
}
|
|
/*
|
|
* Test for alternating 0's and 1's
|
|
*/
|
|
*(volatile int *)CADDR1 = 0x55555555;
|
|
if (*(volatile int *)CADDR1 != 0x55555555) {
|
|
page_bad = TRUE;
|
|
}
|
|
/*
|
|
* Test for all 1's
|
|
*/
|
|
*(volatile int *)CADDR1 = 0xffffffff;
|
|
if (*(volatile int *)CADDR1 != 0xffffffff) {
|
|
page_bad = TRUE;
|
|
}
|
|
/*
|
|
* Test for all 0's
|
|
*/
|
|
*(volatile int *)CADDR1 = 0x0;
|
|
if (*(volatile int *)CADDR1 != 0x0) {
|
|
/*
|
|
* test of page failed
|
|
*/
|
|
page_bad = TRUE;
|
|
}
|
|
/*
|
|
* Restore original value.
|
|
*/
|
|
*(int *)CADDR1 = tmp;
|
|
|
|
/*
|
|
* Adjust array of valid/good pages.
|
|
*/
|
|
if (page_bad == FALSE) {
|
|
/*
|
|
* If this good page is a continuation of the
|
|
* previous set of good pages, then just increase
|
|
* the end pointer. Otherwise start a new chunk.
|
|
* Note that "end" points one higher than end,
|
|
* making the range >= start and < end.
|
|
*/
|
|
if (phys_avail[pa_indx] == target_page) {
|
|
phys_avail[pa_indx] += PAGE_SIZE;
|
|
} else {
|
|
pa_indx++;
|
|
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
|
|
printf("Too many holes in the physical address space, giving up\n");
|
|
pa_indx--;
|
|
break;
|
|
}
|
|
phys_avail[pa_indx++] = target_page; /* start */
|
|
phys_avail[pa_indx] = target_page + PAGE_SIZE; /* end */
|
|
}
|
|
physmem++;
|
|
} else {
|
|
badpages++;
|
|
page_bad = FALSE;
|
|
}
|
|
}
|
|
|
|
*(int *)CMAP1 = 0;
|
|
invltlb();
|
|
|
|
/*
|
|
* XXX
|
|
* The last chunk must contain at least one page plus the message
|
|
* buffer to avoid complicating other code (message buffer address
|
|
* calculation, etc.).
|
|
*/
|
|
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
|
|
round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
|
|
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
|
|
phys_avail[pa_indx--] = 0;
|
|
phys_avail[pa_indx--] = 0;
|
|
}
|
|
|
|
Maxmem = atop(phys_avail[pa_indx]);
|
|
|
|
/* Trim off space for the message buffer. */
|
|
phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
|
|
|
|
avail_end = phys_avail[pa_indx];
|
|
|
|
/* now running on new page tables, configured,and u/iom is accessible */
|
|
|
|
/* Map the message buffer. */
|
|
for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
|
|
pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
|
|
avail_end + off, VM_PROT_ALL, TRUE);
|
|
msgbufmapped = 1;
|
|
|
|
/* make a initial tss so microp can get interrupt stack on syscall! */
|
|
proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*PAGE_SIZE;
|
|
proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
|
|
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
|
|
dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
|
|
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
|
|
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
|
|
dblfault_tss.tss_cr3 = IdlePTD;
|
|
dblfault_tss.tss_eip = (int) dblfault_handler;
|
|
dblfault_tss.tss_eflags = PSL_KERNEL;
|
|
dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs = dblfault_tss.tss_gs =
|
|
GSEL(GDATA_SEL, SEL_KPL);
|
|
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
|
|
|
|
((struct i386tss *)gdt_segs[GPROC0_SEL].ssd_base)->tss_ioopt =
|
|
(sizeof(struct i386tss))<<16;
|
|
|
|
ltr(gsel_tss);
|
|
|
|
/* make a call gate to reenter kernel with */
|
|
gdp = &ldt[LSYS5CALLS_SEL].gd;
|
|
|
|
x = (int) &IDTVEC(syscall);
|
|
gdp->gd_looffset = x++;
|
|
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
|
|
gdp->gd_stkcpy = 1;
|
|
gdp->gd_type = SDT_SYS386CGT;
|
|
gdp->gd_dpl = SEL_UPL;
|
|
gdp->gd_p = 1;
|
|
gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
|
|
|
|
/* XXX does this work? */
|
|
ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
|
|
|
|
/* transfer to user mode */
|
|
|
|
_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
|
|
_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
|
|
|
|
/* setup proc 0's pcb */
|
|
proc0.p_addr->u_pcb.pcb_flags = 0;
|
|
proc0.p_addr->u_pcb.pcb_cr3 = IdlePTD;
|
|
}
|
|
|
|
/*
|
|
* The registers are in the frame; the frame is in the user area of
|
|
* the process in question; when the process is active, the registers
|
|
* are in "the kernel stack"; when it's not, they're still there, but
|
|
* things get flipped around. So, since p->p_md.md_regs is the whole address
|
|
* of the register set, take its offset from the kernel stack, and
|
|
* index into the user block. Don't you just *love* virtual memory?
|
|
* (I'm starting to think seymour is right...)
|
|
*/
|
|
#define TF_REGP(p) ((struct trapframe *) \
|
|
((char *)(p)->p_addr \
|
|
+ ((char *)(p)->p_md.md_regs - kstack)))
|
|
|
|
int
|
|
ptrace_set_pc(p, addr)
|
|
struct proc *p;
|
|
unsigned int addr;
|
|
{
|
|
TF_REGP(p)->tf_eip = addr;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_single_step(p)
|
|
struct proc *p;
|
|
{
|
|
TF_REGP(p)->tf_eflags |= PSL_T;
|
|
return (0);
|
|
}
|
|
|
|
int ptrace_write_u(p, off, data)
|
|
struct proc *p;
|
|
vm_offset_t off;
|
|
int data;
|
|
{
|
|
struct trapframe frame_copy;
|
|
vm_offset_t min;
|
|
struct trapframe *tp;
|
|
|
|
/*
|
|
* Privileged kernel state is scattered all over the user area.
|
|
* Only allow write access to parts of regs and to fpregs.
|
|
*/
|
|
min = (char *)p->p_md.md_regs - kstack;
|
|
if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
|
|
tp = TF_REGP(p);
|
|
frame_copy = *tp;
|
|
*(int *)((char *)&frame_copy + (off - min)) = data;
|
|
if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
|
|
!CS_SECURE(frame_copy.tf_cs))
|
|
return (EINVAL);
|
|
*(int*)((char *)p->p_addr + off) = data;
|
|
return (0);
|
|
}
|
|
min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
|
|
if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
|
|
*(int*)((char *)p->p_addr + off) = data;
|
|
return (0);
|
|
}
|
|
return (EFAULT);
|
|
}
|
|
|
|
int
|
|
fill_regs(p, regs)
|
|
struct proc *p;
|
|
struct reg *regs;
|
|
{
|
|
struct trapframe *tp;
|
|
|
|
tp = TF_REGP(p);
|
|
regs->r_es = tp->tf_es;
|
|
regs->r_ds = tp->tf_ds;
|
|
regs->r_edi = tp->tf_edi;
|
|
regs->r_esi = tp->tf_esi;
|
|
regs->r_ebp = tp->tf_ebp;
|
|
regs->r_ebx = tp->tf_ebx;
|
|
regs->r_edx = tp->tf_edx;
|
|
regs->r_ecx = tp->tf_ecx;
|
|
regs->r_eax = tp->tf_eax;
|
|
regs->r_eip = tp->tf_eip;
|
|
regs->r_cs = tp->tf_cs;
|
|
regs->r_eflags = tp->tf_eflags;
|
|
regs->r_esp = tp->tf_esp;
|
|
regs->r_ss = tp->tf_ss;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_regs(p, regs)
|
|
struct proc *p;
|
|
struct reg *regs;
|
|
{
|
|
struct trapframe *tp;
|
|
|
|
tp = TF_REGP(p);
|
|
if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
|
|
!CS_SECURE(regs->r_cs))
|
|
return (EINVAL);
|
|
tp->tf_es = regs->r_es;
|
|
tp->tf_ds = regs->r_ds;
|
|
tp->tf_edi = regs->r_edi;
|
|
tp->tf_esi = regs->r_esi;
|
|
tp->tf_ebp = regs->r_ebp;
|
|
tp->tf_ebx = regs->r_ebx;
|
|
tp->tf_edx = regs->r_edx;
|
|
tp->tf_ecx = regs->r_ecx;
|
|
tp->tf_eax = regs->r_eax;
|
|
tp->tf_eip = regs->r_eip;
|
|
tp->tf_cs = regs->r_cs;
|
|
tp->tf_eflags = regs->r_eflags;
|
|
tp->tf_esp = regs->r_esp;
|
|
tp->tf_ss = regs->r_ss;
|
|
return (0);
|
|
}
|
|
|
|
#ifndef DDB
|
|
void
|
|
Debugger(const char *msg)
|
|
{
|
|
printf("Debugger(\"%s\") called.\n", msg);
|
|
}
|
|
#endif /* no DDB */
|
|
|
|
#include <sys/disklabel.h>
|
|
|
|
/*
|
|
* Determine the size of the transfer, and make sure it is
|
|
* within the boundaries of the partition. Adjust transfer
|
|
* if needed, and signal errors or early completion.
|
|
*/
|
|
int
|
|
bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
|
|
{
|
|
struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
|
|
int labelsect = lp->d_partitions[0].p_offset;
|
|
int maxsz = p->p_size,
|
|
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
|
|
|
|
/* overwriting disk label ? */
|
|
/* XXX should also protect bootstrap in first 8K */
|
|
if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
|
|
#if LABELSECTOR != 0
|
|
bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
|
|
#endif
|
|
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
|
|
bp->b_error = EROFS;
|
|
goto bad;
|
|
}
|
|
|
|
#if defined(DOSBBSECTOR) && defined(notyet)
|
|
/* overwriting master boot record? */
|
|
if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
|
|
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
|
|
bp->b_error = EROFS;
|
|
goto bad;
|
|
}
|
|
#endif
|
|
|
|
/* beyond partition? */
|
|
if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
|
|
/* if exactly at end of disk, return an EOF */
|
|
if (bp->b_blkno == maxsz) {
|
|
bp->b_resid = bp->b_bcount;
|
|
return(0);
|
|
}
|
|
/* or truncate if part of it fits */
|
|
sz = maxsz - bp->b_blkno;
|
|
if (sz <= 0) {
|
|
bp->b_error = EINVAL;
|
|
goto bad;
|
|
}
|
|
bp->b_bcount = sz << DEV_BSHIFT;
|
|
}
|
|
|
|
bp->b_pblkno = bp->b_blkno + p->p_offset;
|
|
return(1);
|
|
|
|
bad:
|
|
bp->b_flags |= B_ERROR;
|
|
return(-1);
|
|
}
|