freebsd-skq/sys/i386/i386/vm_machdep.c
Peter Wemm 01fb93b213 Zap unneeded #includes
Submitted by:	phk
1999-10-11 14:50:03 +00:00

629 lines
15 KiB
C

/*-
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1989, 1990 William Jolitz
* Copyright (c) 1994 John Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
* $FreeBSD$
*/
#include "npx.h"
#include "opt_user_ldt.h"
#ifdef PC98
#include "opt_pc98.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
#ifdef PC98
#include <pc98/pc98/pc98.h>
#else
#include <i386/isa/isa.h>
#endif
static void cpu_reset_real __P((void));
#ifdef SMP
static void cpu_reset_proxy __P((void));
static u_int cpu_reset_proxyid;
static volatile u_int cpu_reset_proxy_active;
#endif
/*
* quick version of vm_fault
*/
int
vm_fault_quick(v, prot)
caddr_t v;
int prot;
{
int r;
if (prot & VM_PROT_WRITE)
r = subyte(v, fubyte(v));
else
r = fubyte(v);
return(r);
}
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb, set up the stack so that the child
* ready to run and return to user mode.
*/
void
cpu_fork(p1, p2)
register struct proc *p1, *p2;
{
struct pcb *pcb2 = &p2->p_addr->u_pcb;
#if NNPX > 0
/* Ensure that p1's pcb is up to date. */
if (npxproc == p1)
npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
#endif
/* Copy p1's pcb. */
p2->p_addr->u_pcb = p1->p_addr->u_pcb;
/*
* Create a new fresh stack for the new process.
* Copy the trap frame for the return to user mode as if from a
* syscall. This copies the user mode register values.
*/
p2->p_md.md_regs = (struct trapframe *)
((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
*p2->p_md.md_regs = *p1->p_md.md_regs;
/*
* Set registers for trampoline to user mode. Leave space for the
* return address on stack. These are the kernel mode register values.
*/
pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
pcb2->pcb_edi = p2->p_md.md_regs->tf_edi;
pcb2->pcb_esi = (int)fork_return;
pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp;
pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
pcb2->pcb_ebx = (int)p2;
pcb2->pcb_eip = (int)fork_trampoline;
/*
* pcb2->pcb_ldt: duplicated below, if necessary.
* pcb2->pcb_ldt_len: cloned above.
* pcb2->pcb_savefpu: cloned above.
* pcb2->pcb_flags: cloned above (always 0 here?).
* pcb2->pcb_onfault: cloned above (always NULL here?).
*/
#ifdef SMP
pcb2->pcb_mpnest = 1;
#endif
/*
* XXX don't copy the i/o pages. this should probably be fixed.
*/
pcb2->pcb_ext = 0;
#ifdef USER_LDT
/* Copy the LDT, if necessary. */
if (pcb2->pcb_ldt != 0) {
union descriptor *new_ldt;
size_t len = pcb2->pcb_ldt_len * sizeof(union descriptor);
new_ldt = (union descriptor *)kmem_alloc(kernel_map, len);
bcopy(pcb2->pcb_ldt, new_ldt, len);
pcb2->pcb_ldt = (caddr_t)new_ldt;
}
#endif
/*
* Now, cpu_switch() can schedule the new process.
* pcb_esp is loaded pointing to the cpu_switch() stack frame
* containing the return address when exiting cpu_switch.
* This will normally be to proc_trampoline(), which will have
* %ebx loaded with the new proc's pointer. proc_trampoline()
* will set up a stack to call fork_return(p, frame); to complete
* the return to user-mode.
*/
}
/*
* Intercept the return address from a freshly forked process that has NOT
* been scheduled yet.
*
* This is needed to make kernel threads stay in kernel mode.
*/
void
cpu_set_fork_handler(p, func, arg)
struct proc *p;
void (*func) __P((void *));
void *arg;
{
/*
* Note that the trap frame follows the args, so the function
* is really called like this: func(arg, frame);
*/
p->p_addr->u_pcb.pcb_esi = (int) func; /* function */
p->p_addr->u_pcb.pcb_ebx = (int) arg; /* first arg */
}
void
cpu_exit(p)
register struct proc *p;
{
struct pcb *pcb = &p->p_addr->u_pcb;
#if NNPX > 0
npxexit(p);
#endif /* NNPX */
if (pcb->pcb_ext != 0) {
/*
* XXX do we need to move the TSS off the allocated pages
* before freeing them? (not done here)
*/
kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
ctob(IOPAGES + 1));
pcb->pcb_ext = 0;
}
#ifdef USER_LDT
if (pcb->pcb_ldt != 0) {
if (pcb == curpcb) {
lldt(_default_ldt);
currentldt = _default_ldt;
}
kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
pcb->pcb_ldt_len * sizeof(union descriptor));
pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
}
#endif
cnt.v_swtch++;
cpu_switch(p);
panic("cpu_exit");
}
void
cpu_wait(p)
struct proc *p;
{
/* drop per-process resources */
pmap_dispose_proc(p);
/* and clean-out the vmspace */
vmspace_free(p->p_vmspace);
}
/*
* Dump the machine specific header information at the start of a core dump.
*/
int
cpu_coredump(p, vp, cred)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
{
int error;
caddr_t tempuser;
tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
if (!tempuser)
return EINVAL;
bzero(tempuser, ctob(UPAGES));
bcopy(p->p_addr, tempuser, sizeof(struct user));
bcopy(p->p_md.md_regs,
tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
sizeof(struct trapframe));
error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
ctob(UPAGES),
(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
cred, (int *)NULL, p);
free(tempuser, M_TEMP);
return error;
}
#ifdef notyet
static void
setredzone(pte, vaddr)
u_short *pte;
caddr_t vaddr;
{
/* eventually do this by setting up an expand-down stack segment
for ss0: selector, allowing stack access down to top of u.
this means though that protection violations need to be handled
thru a double fault exception that must do an integral task
switch to a known good context, within which a dump can be
taken. a sensible scheme might be to save the initial context
used by sched (that has physical memory mapped 1:1 at bottom)
and take the dump while still in mapped mode */
}
#endif
/*
* Convert kernel VA to physical address
*/
u_long
kvtop(void *addr)
{
vm_offset_t va;
va = pmap_kextract((vm_offset_t)addr);
if (va == 0)
panic("kvtop: zero page frame");
return((int)va);
}
/*
* Map an IO request into kernel virtual address space.
*
* All requests are (re)mapped into kernel VA space.
* Notice that we use b_bufsize for the size of the buffer
* to be mapped. b_bcount might be modified by the driver.
*/
void
vmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr, v, kva;
vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
addr < bp->b_data + bp->b_bufsize;
addr += PAGE_SIZE, v += PAGE_SIZE) {
/*
* Do the vm_fault if needed; do the copy-on-write thing
* when reading stuff off device into memory.
*/
vm_fault_quick(addr,
(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
pa = trunc_page(pmap_kextract((vm_offset_t) addr));
if (pa == 0)
panic("vmapbuf: page not present");
vm_page_hold(PHYS_TO_VM_PAGE(pa));
pmap_kenter((vm_offset_t) v, pa);
}
kva = bp->b_saveaddr;
bp->b_saveaddr = bp->b_data;
bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
}
/*
* Free the io map PTEs associated with this IO operation.
* We also invalidate the TLB entries and restore the original b_addr.
*/
void
vunmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr;
vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
addr < bp->b_data + bp->b_bufsize;
addr += PAGE_SIZE) {
pa = trunc_page(pmap_kextract((vm_offset_t) addr));
pmap_kremove((vm_offset_t) addr);
vm_page_unhold(PHYS_TO_VM_PAGE(pa));
}
bp->b_data = bp->b_saveaddr;
}
/*
* Force reset the processor by invalidating the entire address space!
*/
#ifdef SMP
static void
cpu_reset_proxy()
{
u_int saved_mp_lock;
cpu_reset_proxy_active = 1;
while (cpu_reset_proxy_active == 1)
; /* Wait for other cpu to disable interupts */
saved_mp_lock = mp_lock;
mp_lock = 1;
printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
cpu_reset_proxy_active = 3;
while (cpu_reset_proxy_active == 3)
; /* Wait for other cpu to enable interrupts */
stop_cpus((1<<cpu_reset_proxyid));
printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
DELAY(1000000);
cpu_reset_real();
}
#endif
void
cpu_reset()
{
#ifdef SMP
if (smp_active == 0) {
cpu_reset_real();
/* NOTREACHED */
} else {
u_int map;
int cnt;
printf("cpu_reset called on cpu#%d\n",cpuid);
map = other_cpus & ~ stopped_cpus;
if (map != 0) {
printf("cpu_reset: Stopping other CPUs\n");
stop_cpus(map); /* Stop all other CPUs */
}
if (cpuid == 0) {
DELAY(1000000);
cpu_reset_real();
/* NOTREACHED */
} else {
/* We are not BSP (CPU #0) */
cpu_reset_proxyid = cpuid;
cpustop_restartfunc = cpu_reset_proxy;
printf("cpu_reset: Restarting BSP\n");
started_cpus = (1<<0); /* Restart CPU #0 */
cnt = 0;
while (cpu_reset_proxy_active == 0 && cnt < 10000000)
cnt++; /* Wait for BSP to announce restart */
if (cpu_reset_proxy_active == 0)
printf("cpu_reset: Failed to restart BSP\n");
__asm __volatile("cli" : : : "memory");
cpu_reset_proxy_active = 2;
cnt = 0;
while (cpu_reset_proxy_active == 2 && cnt < 10000000)
cnt++; /* Do nothing */
if (cpu_reset_proxy_active == 2) {
printf("cpu_reset: BSP did not grab mp lock\n");
cpu_reset_real(); /* XXX: Bogus ? */
}
cpu_reset_proxy_active = 4;
__asm __volatile("sti" : : : "memory");
while (1);
/* NOTREACHED */
}
}
#else
cpu_reset_real();
#endif
}
static void
cpu_reset_real()
{
#ifdef PC98
/*
* Attempt to do a CPU reset via CPU reset port.
*/
disable_intr();
if ((inb(0x35) & 0xa0) != 0xa0) {
outb(0x37, 0x0f); /* SHUT0 = 0. */
outb(0x37, 0x0b); /* SHUT1 = 0. */
}
outb(0xf0, 0x00); /* Reset. */
#else
/*
* Attempt to do a CPU reset via the keyboard controller,
* do not turn of the GateA20, as any machine that fails
* to do the reset here would then end up in no man's land.
*/
#if !defined(BROKEN_KEYBOARD_RESET)
outb(IO_KBD + 4, 0xFE);
DELAY(500000); /* wait 0.5 sec to see if that did it */
printf("Keyboard reset did not work, attempting CPU shutdown\n");
DELAY(1000000); /* wait 1 sec for printf to complete */
#endif
#endif /* PC98 */
/* force a shutdown by unmapping entire address space ! */
bzero((caddr_t) PTD, PAGE_SIZE);
/* "good night, sweet prince .... <THUNK!>" */
invltlb();
/* NOTREACHED */
while(1);
}
int
grow_stack(p, sp)
struct proc *p;
u_int sp;
{
int rv;
rv = vm_map_growstack (p, sp);
if (rv != KERN_SUCCESS)
return (0);
return (1);
}
SYSCTL_DECL(_vm_stats_misc);
static int cnt_prezero;
SYSCTL_INT(_vm_stats_misc, OID_AUTO,
cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
/*
* Implement the pre-zeroed page mechanism.
* This routine is called from the idle loop.
*/
#define ZIDLE_LO(v) ((v) * 2 / 3)
#define ZIDLE_HI(v) ((v) * 4 / 5)
int
vm_page_zero_idle()
{
static int free_rover;
static int zero_state;
vm_page_t m;
int s;
/*
* Attempt to maintain approximately 1/2 of our free pages in a
* PG_ZERO'd state. Add some hysteresis to (attempt to) avoid
* generally zeroing a page when the system is near steady-state.
* Otherwise we might get 'flutter' during disk I/O / IPC or
* fast sleeps. We also do not want to be continuously zeroing
* pages because doing so may flush our L1 and L2 caches too much.
*/
if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
return(0);
if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
return(0);
#ifdef SMP
if (try_mplock()) {
#endif
s = splvm();
__asm __volatile("sti" : : : "memory");
zero_state = 0;
m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
if (m != NULL && (m->flags & PG_ZERO) == 0) {
vm_page_queues[m->queue].lcnt--;
TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
m->queue = PQ_NONE;
splx(s);
#if 0
rel_mplock();
#endif
pmap_zero_page(VM_PAGE_TO_PHYS(m));
#if 0
get_mplock();
#endif
(void)splvm();
vm_page_flag_set(m, PG_ZERO);
m->queue = PQ_FREE + m->pc;
vm_page_queues[m->queue].lcnt++;
TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m,
pageq);
++vm_page_zero_count;
++cnt_prezero;
if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
zero_state = 1;
}
free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
splx(s);
__asm __volatile("cli" : : : "memory");
#ifdef SMP
rel_mplock();
#endif
return (1);
#ifdef SMP
}
#endif
return (0);
}
/*
* Software interrupt handler for queued VM system processing.
*/
void
swi_vm()
{
if (busdma_swi_pending != 0)
busdma_swi();
}
/*
* Tell whether this address is in some physical memory region.
* Currently used by the kernel coredump code in order to avoid
* dumping the ``ISA memory hole'' which could cause indefinite hangs,
* or other unpredictable behaviour.
*/
#include "isa.h"
int
is_physical_memory(addr)
vm_offset_t addr;
{
#if NISA > 0
/* The ISA ``memory hole''. */
if (addr >= 0xa0000 && addr < 0x100000)
return 0;
#endif
/*
* stuff other tests for known memory-mapped devices (PCI?)
* here
*/
return 1;
}