freebsd-skq/contrib/ntp/libntp/ntp_calgps.c
Cy Schubert 2d4e511ca2 MFV r358616:
Update ntp-4.2.8p13 --> 4.2.8p14.

The advisory can be found at:
http://support.ntp.org/bin/view/Main/SecurityNotice#\
March_2020_ntp_4_2_8p14_NTP_Rele

No CVEs have been documented yet.

MFC after:	now
Security:	http://support.ntp.org/bin/view/Main/NtpBug3610
		http://support.ntp.org/bin/view/Main/NtpBug3596
		http://support.ntp.org/bin/view/Main/NtpBug3592
2020-03-04 21:45:12 +00:00

635 lines
16 KiB
C

/*
* ntp_calgps.c - calendar for GPS/GNSS based clocks
*
* Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
* The contents of 'html/copyright.html' apply.
*
* --------------------------------------------------------------------
*
* This module implements stuff often used with GPS/GNSS receivers
*/
#include <config.h>
#include <sys/types.h>
#include "ntp_types.h"
#include "ntp_calendar.h"
#include "ntp_calgps.h"
#include "ntp_stdlib.h"
#include "ntp_unixtime.h"
#include "ntp_fp.h"
#include "ntpd.h"
#include "vint64ops.h"
/* ====================================================================
* misc. helpers -- might go elsewhere sometime?
* ====================================================================
*/
l_fp
ntpfp_with_fudge(
l_fp lfp,
double ofs
)
{
l_fp fpo;
/* calculate 'lfp - ofs' as '(l_fp)(-ofs) + lfp': negating a
* double is cheap, as it only flips one bit...
*/
ofs = -ofs;
DTOLFP(ofs, &fpo);
L_ADD(&fpo, &lfp);
return fpo;
}
/* ====================================================================
* GPS calendar functions
* ====================================================================
*/
/* --------------------------------------------------------------------
* normalization functions for day/time and week/time representations.
* Since we only use moderate offsets (leap second corrections and
* alike) it does not really pay off to do a floor-corrected division
* here. We use compare/decrement/increment loops instead.
* --------------------------------------------------------------------
*/
static void
_norm_ntp_datum(
TNtpDatum * datum
)
{
static const int32_t limit = SECSPERDAY;
if (datum->secs >= limit) {
do
++datum->days;
while ((datum->secs -= limit) >= limit);
} else if (datum->secs < 0) {
do
--datum->days;
while ((datum->secs += limit) < 0);
}
}
static void
_norm_gps_datum(
TGpsDatum * datum
)
{
static const int32_t limit = 7 * SECSPERDAY;
if (datum->wsecs >= limit) {
do
++datum->weeks;
while ((datum->wsecs -= limit) >= limit);
} else if (datum->wsecs < 0) {
do
--datum->weeks;
while ((datum->wsecs += limit) < 0);
}
}
/* --------------------------------------------------------------------
* Add an offset to a day/time and week/time representation.
*
* !!Attention!! the offset should be small, compared to the time period
* (either a day or a week).
* --------------------------------------------------------------------
*/
void
gpsntp_add_offset(
TNtpDatum * datum,
l_fp offset
)
{
/* fraction can be added easily */
datum->frac += offset.l_uf;
datum->secs += (datum->frac < offset.l_uf);
/* avoid integer overflow on the seconds */
if (offset.l_ui >= INT32_MAX)
datum->secs -= (int32_t)~offset.l_ui + 1;
else
datum->secs += (int32_t)offset.l_ui;
_norm_ntp_datum(datum);
}
void
gpscal_add_offset(
TGpsDatum * datum,
l_fp offset
)
{
/* fraction can be added easily */
datum->frac += offset.l_uf;
datum->wsecs += (datum->frac < offset.l_uf);
/* avoid integer overflow on the seconds */
if (offset.l_ui >= INT32_MAX)
datum->wsecs -= (int32_t)~offset.l_ui + 1;
else
datum->wsecs += (int32_t)offset.l_ui;
_norm_gps_datum(datum);
}
/* -------------------------------------------------------------------
* API functions civil calendar and NTP datum
* -------------------------------------------------------------------
*/
static TNtpDatum
_gpsntp_fix_gps_era(
TcNtpDatum * in
)
{
/* force result in basedate era
*
* When calculating this directly in days, we have to execute a
* real modulus calculation, since we're obviously not doing a
* modulus by a power of 2. Executing this as true floor mod
* needs some care and is done under explicit usage of one's
* complement and masking to get mostly branchless code.
*/
static uint32_t const clen = 7*1024;
uint32_t base, days, sign;
TNtpDatum out = *in;
/* Get base in NTP day scale. No overflows here. */
base = (basedate_get_gpsweek() + GPSNTP_WSHIFT) * 7
- GPSNTP_DSHIFT;
days = out.days;
sign = (uint32_t)-(days < base);
days = sign ^ (days - base);
days %= clen;
days = base + (sign & clen) + (sign ^ days);
out.days = days;
return out;
}
TNtpDatum
gpsntp_fix_gps_era(
TcNtpDatum * in
)
{
TNtpDatum out = *in;
_norm_ntp_datum(&out);
return _gpsntp_fix_gps_era(&out);
}
/* ----------------------------------------------------------------- */
static TNtpDatum
_gpsntp_from_daytime(
TcCivilDate * jd,
l_fp fofs,
TcNtpDatum * pivot,
int warp
)
{
static const int32_t shift = SECSPERDAY / 2;
TNtpDatum retv;
/* set result based on pivot -- ops order is important here */
ZERO(retv);
retv.secs = ntpcal_date_to_daysec(jd);
gpsntp_add_offset(&retv, fofs); /* result is normalized */
retv.days = pivot->days;
/* Manual periodic extension without division: */
if (pivot->secs < shift) {
int32_t lim = pivot->secs + shift;
retv.days -= (retv.secs > lim ||
(retv.secs == lim && retv.frac >= pivot->frac));
} else {
int32_t lim = pivot->secs - shift;
retv.days += (retv.secs < lim ||
(retv.secs == lim && retv.frac < pivot->frac));
}
return warp ? _gpsntp_fix_gps_era(&retv) : retv;
}
/* -----------------------------------------------------------------
* Given the time-of-day part of a civil datum and an additional
* (fractional) offset, calculate a full time stamp around a given pivot
* time so that the difference between the pivot and the resulting time
* stamp is less or equal to 12 hours absolute.
*/
TNtpDatum
gpsntp_from_daytime2_ex(
TcCivilDate * jd,
l_fp fofs,
TcNtpDatum * pivot,
int/*BOOL*/ warp
)
{
TNtpDatum dpiv = *pivot;
_norm_ntp_datum(&dpiv);
return _gpsntp_from_daytime(jd, fofs, &dpiv, warp);
}
/* -----------------------------------------------------------------
* This works similar to 'gpsntp_from_daytime1()' and actually even uses
* it, but the pivot is calculated from the pivot given as 'l_fp' in NTP
* time scale. This is in turn expanded around the current system time,
* and the resulting absolute pivot is then used to calculate the full
* NTP time stamp.
*/
TNtpDatum
gpsntp_from_daytime1_ex(
TcCivilDate * jd,
l_fp fofs,
l_fp pivot,
int/*BOOL*/ warp
)
{
vint64 pvi64;
TNtpDatum dpiv;
ntpcal_split split;
pvi64 = ntpcal_ntp_to_ntp(pivot.l_ui, NULL);
split = ntpcal_daysplit(&pvi64);
dpiv.days = split.hi;
dpiv.secs = split.lo;
dpiv.frac = pivot.l_uf;
return _gpsntp_from_daytime(jd, fofs, &dpiv, warp);
}
/* -----------------------------------------------------------------
* Given a calendar date, zap it into a GPS time format and then convert
* that one into the NTP time scale.
*/
TNtpDatum
gpsntp_from_calendar_ex(
TcCivilDate * jd,
l_fp fofs,
int/*BOOL*/ warp
)
{
TGpsDatum gps;
gps = gpscal_from_calendar_ex(jd, fofs, warp);
return gpsntp_from_gpscal_ex(&gps, FALSE);
}
/* -----------------------------------------------------------------
* create a civil calendar datum from a NTP date representation
*/
void
gpsntp_to_calendar(
TCivilDate * cd,
TcNtpDatum * nd
)
{
memset(cd, 0, sizeof(*cd));
ntpcal_rd_to_date(
cd,
nd->days + DAY_NTP_STARTS + ntpcal_daysec_to_date(
cd, nd->secs));
}
/* -----------------------------------------------------------------
* get day/tod representation from week/tow datum
*/
TNtpDatum
gpsntp_from_gpscal_ex(
TcGpsDatum * gd,
int/*BOOL*/ warp
)
{
TNtpDatum retv;
vint64 ts64;
ntpcal_split split;
TGpsDatum date = *gd;
if (warp) {
uint32_t base = basedate_get_gpsweek() + GPSNTP_WSHIFT;
_norm_gps_datum(&date);
date.weeks = ((date.weeks - base) & 1023u) + base;
}
ts64 = ntpcal_weekjoin(date.weeks, date.wsecs);
ts64 = subv64u32(&ts64, (GPSNTP_DSHIFT * SECSPERDAY));
split = ntpcal_daysplit(&ts64);
retv.frac = gd->frac;
retv.secs = split.lo;
retv.days = split.hi;
return retv;
}
/* -----------------------------------------------------------------
* get LFP from ntp datum
*/
l_fp
ntpfp_from_ntpdatum(
TcNtpDatum * nd
)
{
l_fp retv;
retv.l_uf = nd->frac;
retv.l_ui = nd->days * (uint32_t)SECSPERDAY
+ nd->secs;
return retv;
}
/* -------------------------------------------------------------------
* API functions GPS week calendar
*
* Here we use a calendar base of 1899-12-31, so the NTP epoch has
* { 0, 86400.0 } in this representation.
* -------------------------------------------------------------------
*/
static TGpsDatum
_gpscal_fix_gps_era(
TcGpsDatum * in
)
{
/* force result in basedate era
*
* This is based on calculating the modulus to a power of two,
* so signed integer overflow does not affect the result. Which
* in turn makes for a very compact calculation...
*/
uint32_t base, week;
TGpsDatum out = *in;
week = out.weeks;
base = basedate_get_gpsweek() + GPSNTP_WSHIFT;
week = base + ((week - base) & (GPSWEEKS - 1));
out.weeks = week;
return out;
}
TGpsDatum
gpscal_fix_gps_era(
TcGpsDatum * in
)
{
TGpsDatum out = *in;
_norm_gps_datum(&out);
return _gpscal_fix_gps_era(&out);
}
/* -----------------------------------------------------------------
* Given a calendar date, zap it into a GPS time format and the do a
* proper era mapping in the GPS time scale, based on the GPS base date,
* if so requested.
*
* This function also augments the century if just a 2-digit year
* (0..99) is provided on input.
*
* This is a fail-safe against GPS receivers with an unknown starting
* point for their internal calendar calculation and therefore
* unpredictable (but reproducible!) rollover behavior. While there
* *are* receivers that create a full date in the proper way, many
* others just don't. The overall damage is minimized by simply not
* trusting the era mapping of the receiver and doing the era assignment
* with a configurable base date *inside* ntpd.
*/
TGpsDatum
gpscal_from_calendar_ex(
TcCivilDate * jd,
l_fp fofs,
int/*BOOL*/ warp
)
{
/* (-DAY_GPS_STARTS) (mod 7*1024) -- complement of cycle shift */
static const uint32_t s_compl_shift =
(7 * 1024) - DAY_GPS_STARTS % (7 * 1024);
TGpsDatum gps;
TCivilDate cal;
int32_t days, week;
/* if needed, convert from 2-digit year to full year
* !!NOTE!! works only between 1980 and 2079!
*/
cal = *jd;
if (cal.year < 80)
cal.year += 2000;
else if (cal.year < 100)
cal.year += 1900;
/* get RDN from date, possibly adjusting the century */
again: if (cal.month && cal.monthday) { /* use Y/M/D civil date */
days = ntpcal_date_to_rd(&cal);
} else { /* using Y/DoY date */
days = ntpcal_year_to_ystart(cal.year)
+ (int32_t)cal.yearday
- 1; /* both RDN and yearday start with '1'. */
}
/* Rebase to days after the GPS epoch. 'days' is positive here,
* but it might be less than the GPS epoch start. Depending on
* the input, we have to do different things to get the desired
* result. (Since we want to remap the era anyway, we only have
* to retain congruential identities....)
*/
if (days >= DAY_GPS_STARTS) {
/* simply shift to days since GPS epoch */
days -= DAY_GPS_STARTS;
} else if (jd->year < 100) {
/* Two-digit year on input: add another century and
* retry. This can happen only if the century expansion
* yielded a date between 1980-01-01 and 1980-01-05,
* both inclusive. We have at most one retry here.
*/
cal.year += 100;
goto again;
} else {
/* A very bad date before the GPS epoch. There's not
* much we can do, except to add the complement of
* DAY_GPS_STARTS % (7 * 1024) here, that is, use a
* congruential identity: Add the complement instead of
* subtracting the value gives a value with the same
* modulus. But of course, now we MUST to go through a
* cycle fix... because the date was obviously wrong!
*/
warp = TRUE;
days += s_compl_shift;
}
/* Splitting to weeks is simple now: */
week = days / 7;
days -= week * 7;
/* re-base on start of NTP with weeks mapped to 1024 weeks
* starting with the GPS base day set in the calendar.
*/
gps.weeks = week + GPSNTP_WSHIFT;
gps.wsecs = days * SECSPERDAY + ntpcal_date_to_daysec(&cal);
gps.frac = 0;
gpscal_add_offset(&gps, fofs);
return warp ? _gpscal_fix_gps_era(&gps) : gps;
}
/* -----------------------------------------------------------------
* get civil date from week/tow representation
*/
void
gpscal_to_calendar(
TCivilDate * cd,
TcGpsDatum * wd
)
{
TNtpDatum nd;
memset(cd, 0, sizeof(*cd));
nd = gpsntp_from_gpscal_ex(wd, FALSE);
gpsntp_to_calendar(cd, &nd);
}
/* -----------------------------------------------------------------
* Given the week and seconds in week, as well as the fraction/offset
* (which should/could include the leap seconds offset), unfold the
* weeks (which are assumed to have just 10 bits) into expanded weeks
* based on the GPS base date derived from the build date (default) or
* set by the configuration.
*
* !NOTE! This function takes RAW GPS weeks, aligned to the GPS start
* (1980-01-06) on input. The output weeks will be aligned to NTPD's
* week calendar start (1899-12-31)!
*/
TGpsDatum
gpscal_from_gpsweek(
uint16_t week,
int32_t secs,
l_fp fofs
)
{
TGpsDatum retv;
retv.frac = 0;
retv.wsecs = secs;
retv.weeks = week + GPSNTP_WSHIFT;
gpscal_add_offset(&retv, fofs);
return _gpscal_fix_gps_era(&retv);
}
/* -----------------------------------------------------------------
* internal work horse for time-of-week expansion
*/
static TGpsDatum
_gpscal_from_weektime(
int32_t wsecs,
l_fp fofs,
TcGpsDatum * pivot
)
{
static const int32_t shift = SECSPERWEEK / 2;
TGpsDatum retv;
/* set result based on pivot -- ops order is important here */
ZERO(retv);
retv.wsecs = wsecs;
gpscal_add_offset(&retv, fofs); /* result is normalized */
retv.weeks = pivot->weeks;
/* Manual periodic extension without division: */
if (pivot->wsecs < shift) {
int32_t lim = pivot->wsecs + shift;
retv.weeks -= (retv.wsecs > lim ||
(retv.wsecs == lim && retv.frac >= pivot->frac));
} else {
int32_t lim = pivot->wsecs - shift;
retv.weeks += (retv.wsecs < lim ||
(retv.wsecs == lim && retv.frac < pivot->frac));
}
return _gpscal_fix_gps_era(&retv);
}
/* -----------------------------------------------------------------
* expand a time-of-week around a pivot given as week datum
*/
TGpsDatum
gpscal_from_weektime2(
int32_t wsecs,
l_fp fofs,
TcGpsDatum * pivot
)
{
TGpsDatum wpiv = * pivot;
_norm_gps_datum(&wpiv);
return _gpscal_from_weektime(wsecs, fofs, &wpiv);
}
/* -----------------------------------------------------------------
* epand a time-of-week around an pivot given as LFP, which in turn
* is expanded around the current system time and then converted
* into a week datum.
*/
TGpsDatum
gpscal_from_weektime1(
int32_t wsecs,
l_fp fofs,
l_fp pivot
)
{
vint64 pvi64;
TGpsDatum wpiv;
ntpcal_split split;
/* get 64-bit pivot in NTP epoch */
pvi64 = ntpcal_ntp_to_ntp(pivot.l_ui, NULL);
/* convert to weeks since 1899-12-31 and seconds in week */
pvi64 = addv64u32(&pvi64, (GPSNTP_DSHIFT * SECSPERDAY));
split = ntpcal_weeksplit(&pvi64);
wpiv.weeks = split.hi;
wpiv.wsecs = split.lo;
wpiv.frac = pivot.l_uf;
return _gpscal_from_weektime(wsecs, fofs, &wpiv);
}
/* -----------------------------------------------------------------
* get week/tow representation from day/tod datum
*/
TGpsDatum
gpscal_from_gpsntp(
TcNtpDatum * gd
)
{
TGpsDatum retv;
vint64 ts64;
ntpcal_split split;
ts64 = ntpcal_dayjoin(gd->days, gd->secs);
ts64 = addv64u32(&ts64, (GPSNTP_DSHIFT * SECSPERDAY));
split = ntpcal_weeksplit(&ts64);
retv.frac = gd->frac;
retv.wsecs = split.lo;
retv.weeks = split.hi;
return retv;
}
/* -----------------------------------------------------------------
* convert week/tow to LFP stamp
*/
l_fp
ntpfp_from_gpsdatum(
TcGpsDatum * gd
)
{
l_fp retv;
retv.l_uf = gd->frac;
retv.l_ui = gd->weeks * (uint32_t)SECSPERWEEK
+ (uint32_t)gd->wsecs
- (uint32_t)SECSPERDAY * GPSNTP_DSHIFT;
return retv;
}
/* -*-EOF-*- */