freebsd-skq/sys/dev/sfxge/common/efx_mcdi.c
Andrew Rybchenko f0095e1f86 sfxge(4): use transceiver ID when reading info
In efx_mcdi_phy_module_get_info() probe the
transceiver identification byte rather than assume
the module matches the fixed port type.  This
supports scenarios such as a SFP mounted in a QSFP
port via a QSA module.

Submitted by:   Richard Houldsworth <rhouldsworth at solarflare.com>
Sponsored by:   Solarflare Communications, Inc.
Differential Revision:  https://reviews.freebsd.org/D18282
2018-11-30 07:09:58 +00:00

2404 lines
58 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_MCDI
/*
* There are three versions of the MCDI interface:
* - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
* - MCDIv1: Siena firmware and Huntington BootROM.
* - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
* Transport uses MCDIv2 headers.
*
* MCDIv2 Header NOT_EPOCH flag
* ----------------------------
* A new epoch begins at initial startup or after an MC reboot, and defines when
* the MC should reject stale MCDI requests.
*
* The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
* subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
*
* After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
* response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
*/
#if EFSYS_OPT_SIENA
static const efx_mcdi_ops_t __efx_mcdi_siena_ops = {
siena_mcdi_init, /* emco_init */
siena_mcdi_send_request, /* emco_send_request */
siena_mcdi_poll_reboot, /* emco_poll_reboot */
siena_mcdi_poll_response, /* emco_poll_response */
siena_mcdi_read_response, /* emco_read_response */
siena_mcdi_fini, /* emco_fini */
siena_mcdi_feature_supported, /* emco_feature_supported */
siena_mcdi_get_timeout, /* emco_get_timeout */
};
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
static const efx_mcdi_ops_t __efx_mcdi_ef10_ops = {
ef10_mcdi_init, /* emco_init */
ef10_mcdi_send_request, /* emco_send_request */
ef10_mcdi_poll_reboot, /* emco_poll_reboot */
ef10_mcdi_poll_response, /* emco_poll_response */
ef10_mcdi_read_response, /* emco_read_response */
ef10_mcdi_fini, /* emco_fini */
ef10_mcdi_feature_supported, /* emco_feature_supported */
ef10_mcdi_get_timeout, /* emco_get_timeout */
};
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
__checkReturn efx_rc_t
efx_mcdi_init(
__in efx_nic_t *enp,
__in const efx_mcdi_transport_t *emtp)
{
const efx_mcdi_ops_t *emcop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
switch (enp->en_family) {
#if EFSYS_OPT_SIENA
case EFX_FAMILY_SIENA:
emcop = &__efx_mcdi_siena_ops;
break;
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
case EFX_FAMILY_HUNTINGTON:
emcop = &__efx_mcdi_ef10_ops;
break;
#endif /* EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD
case EFX_FAMILY_MEDFORD:
emcop = &__efx_mcdi_ef10_ops;
break;
#endif /* EFSYS_OPT_MEDFORD */
#if EFSYS_OPT_MEDFORD2
case EFX_FAMILY_MEDFORD2:
emcop = &__efx_mcdi_ef10_ops;
break;
#endif /* EFSYS_OPT_MEDFORD2 */
default:
EFSYS_ASSERT(0);
rc = ENOTSUP;
goto fail1;
}
if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
/* MCDI requires a DMA buffer in host memory */
if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
rc = EINVAL;
goto fail2;
}
}
enp->en_mcdi.em_emtp = emtp;
if (emcop != NULL && emcop->emco_init != NULL) {
if ((rc = emcop->emco_init(enp, emtp)) != 0)
goto fail3;
}
enp->en_mcdi.em_emcop = emcop;
enp->en_mod_flags |= EFX_MOD_MCDI;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
enp->en_mcdi.em_emcop = NULL;
enp->en_mcdi.em_emtp = NULL;
enp->en_mod_flags &= ~EFX_MOD_MCDI;
return (rc);
}
void
efx_mcdi_fini(
__in efx_nic_t *enp)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
if (emcop != NULL && emcop->emco_fini != NULL)
emcop->emco_fini(enp);
emip->emi_port = 0;
emip->emi_aborted = 0;
enp->en_mcdi.em_emcop = NULL;
enp->en_mod_flags &= ~EFX_MOD_MCDI;
}
void
efx_mcdi_new_epoch(
__in efx_nic_t *enp)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efsys_lock_state_t state;
/* Start a new epoch (allow fresh MCDI requests to succeed) */
EFSYS_LOCK(enp->en_eslp, state);
emip->emi_new_epoch = B_TRUE;
EFSYS_UNLOCK(enp->en_eslp, state);
}
static void
efx_mcdi_send_request(
__in efx_nic_t *enp,
__in void *hdrp,
__in size_t hdr_len,
__in void *sdup,
__in size_t sdu_len)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
}
static efx_rc_t
efx_mcdi_poll_reboot(
__in efx_nic_t *enp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
efx_rc_t rc;
rc = emcop->emco_poll_reboot(enp);
return (rc);
}
static boolean_t
efx_mcdi_poll_response(
__in efx_nic_t *enp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
boolean_t available;
available = emcop->emco_poll_response(enp);
return (available);
}
static void
efx_mcdi_read_response(
__in efx_nic_t *enp,
__out void *bufferp,
__in size_t offset,
__in size_t length)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
emcop->emco_read_response(enp, bufferp, offset, length);
}
void
efx_mcdi_request_start(
__in efx_nic_t *enp,
__in efx_mcdi_req_t *emrp,
__in boolean_t ev_cpl)
{
#if EFSYS_OPT_MCDI_LOGGING
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
#endif
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_dword_t hdr[2];
size_t hdr_len;
unsigned int max_version;
unsigned int seq;
unsigned int xflags;
boolean_t new_epoch;
efsys_lock_state_t state;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
/*
* efx_mcdi_request_start() is naturally serialised against both
* efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
* by virtue of there only being one outstanding MCDI request.
* Unfortunately, upper layers may also call efx_mcdi_request_abort()
* at any time, to timeout a pending mcdi request, That request may
* then subsequently complete, meaning efx_mcdi_ev_cpl() or
* efx_mcdi_ev_death() may end up running in parallel with
* efx_mcdi_request_start(). This race is handled by ensuring that
* %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
* en_eslp lock.
*/
EFSYS_LOCK(enp->en_eslp, state);
EFSYS_ASSERT(emip->emi_pending_req == NULL);
emip->emi_pending_req = emrp;
emip->emi_ev_cpl = ev_cpl;
emip->emi_poll_cnt = 0;
seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
new_epoch = emip->emi_new_epoch;
max_version = emip->emi_max_version;
EFSYS_UNLOCK(enp->en_eslp, state);
xflags = 0;
if (ev_cpl)
xflags |= MCDI_HEADER_XFLAGS_EVREQ;
/*
* Huntington firmware supports MCDIv2, but the Huntington BootROM only
* supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
* possible to support this.
*/
if ((max_version >= 2) &&
((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
(emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
(emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
/* Construct MCDI v2 header */
hdr_len = sizeof (hdr);
EFX_POPULATE_DWORD_8(hdr[0],
MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
MCDI_HEADER_RESYNC, 1,
MCDI_HEADER_DATALEN, 0,
MCDI_HEADER_SEQ, seq,
MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
MCDI_HEADER_ERROR, 0,
MCDI_HEADER_RESPONSE, 0,
MCDI_HEADER_XFLAGS, xflags);
EFX_POPULATE_DWORD_2(hdr[1],
MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
} else {
/* Construct MCDI v1 header */
hdr_len = sizeof (hdr[0]);
EFX_POPULATE_DWORD_8(hdr[0],
MCDI_HEADER_CODE, emrp->emr_cmd,
MCDI_HEADER_RESYNC, 1,
MCDI_HEADER_DATALEN, emrp->emr_in_length,
MCDI_HEADER_SEQ, seq,
MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
MCDI_HEADER_ERROR, 0,
MCDI_HEADER_RESPONSE, 0,
MCDI_HEADER_XFLAGS, xflags);
}
#if EFSYS_OPT_MCDI_LOGGING
if (emtp->emt_logger != NULL) {
emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
&hdr, hdr_len,
emrp->emr_in_buf, emrp->emr_in_length);
}
#endif /* EFSYS_OPT_MCDI_LOGGING */
efx_mcdi_send_request(enp, &hdr[0], hdr_len,
emrp->emr_in_buf, emrp->emr_in_length);
}
static void
efx_mcdi_read_response_header(
__in efx_nic_t *enp,
__inout efx_mcdi_req_t *emrp)
{
#if EFSYS_OPT_MCDI_LOGGING
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
#endif /* EFSYS_OPT_MCDI_LOGGING */
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_dword_t hdr[2];
unsigned int hdr_len;
unsigned int data_len;
unsigned int seq;
unsigned int cmd;
unsigned int error;
efx_rc_t rc;
EFSYS_ASSERT(emrp != NULL);
efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
hdr_len = sizeof (hdr[0]);
cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
if (cmd != MC_CMD_V2_EXTN) {
data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
} else {
efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
hdr_len += sizeof (hdr[1]);
cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
data_len =
EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
}
if (error && (data_len == 0)) {
/* The MC has rebooted since the request was sent. */
EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
efx_mcdi_poll_reboot(enp);
rc = EIO;
goto fail1;
}
if ((cmd != emrp->emr_cmd) ||
(seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
/* Response is for a different request */
rc = EIO;
goto fail2;
}
if (error) {
efx_dword_t err[2];
unsigned int err_len = MIN(data_len, sizeof (err));
int err_code = MC_CMD_ERR_EPROTO;
int err_arg = 0;
/* Read error code (and arg num for MCDI v2 commands) */
efx_mcdi_read_response(enp, &err, hdr_len, err_len);
if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
#ifdef WITH_MCDI_V2
if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
#endif
emrp->emr_err_code = err_code;
emrp->emr_err_arg = err_arg;
#if EFSYS_OPT_MCDI_PROXY_AUTH
if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
(err_len == sizeof (err))) {
/*
* The MCDI request would normally fail with EPERM, but
* firmware has forwarded it to an authorization agent
* attached to a privileged PF.
*
* Save the authorization request handle. The client
* must wait for a PROXY_RESPONSE event, or timeout.
*/
emrp->emr_proxy_handle = err_arg;
}
#endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
#if EFSYS_OPT_MCDI_LOGGING
if (emtp->emt_logger != NULL) {
emtp->emt_logger(emtp->emt_context,
EFX_LOG_MCDI_RESPONSE,
&hdr, hdr_len,
&err, err_len);
}
#endif /* EFSYS_OPT_MCDI_LOGGING */
if (!emrp->emr_quiet) {
EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
int, err_code, int, err_arg);
}
rc = efx_mcdi_request_errcode(err_code);
goto fail3;
}
emrp->emr_rc = 0;
emrp->emr_out_length_used = data_len;
#if EFSYS_OPT_MCDI_PROXY_AUTH
emrp->emr_proxy_handle = 0;
#endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
return;
fail3:
fail2:
fail1:
emrp->emr_rc = rc;
emrp->emr_out_length_used = 0;
}
static void
efx_mcdi_finish_response(
__in efx_nic_t *enp,
__in efx_mcdi_req_t *emrp)
{
#if EFSYS_OPT_MCDI_LOGGING
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
#endif /* EFSYS_OPT_MCDI_LOGGING */
efx_dword_t hdr[2];
unsigned int hdr_len;
size_t bytes;
if (emrp->emr_out_buf == NULL)
return;
/* Read the command header to detect MCDI response format */
hdr_len = sizeof (hdr[0]);
efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
/*
* Read the actual payload length. The length given in the event
* is only correct for responses with the V1 format.
*/
efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
hdr_len += sizeof (hdr[1]);
emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
}
/* Copy payload out into caller supplied buffer */
bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
efx_mcdi_read_response(enp, emrp->emr_out_buf, hdr_len, bytes);
#if EFSYS_OPT_MCDI_LOGGING
if (emtp->emt_logger != NULL) {
emtp->emt_logger(emtp->emt_context,
EFX_LOG_MCDI_RESPONSE,
&hdr, hdr_len,
emrp->emr_out_buf, bytes);
}
#endif /* EFSYS_OPT_MCDI_LOGGING */
}
__checkReturn boolean_t
efx_mcdi_request_poll(
__in efx_nic_t *enp)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_mcdi_req_t *emrp;
efsys_lock_state_t state;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
/* Serialise against post-watchdog efx_mcdi_ev* */
EFSYS_LOCK(enp->en_eslp, state);
EFSYS_ASSERT(emip->emi_pending_req != NULL);
EFSYS_ASSERT(!emip->emi_ev_cpl);
emrp = emip->emi_pending_req;
/* Check if hardware is unavailable */
if (efx_nic_hw_unavailable(enp)) {
EFSYS_UNLOCK(enp->en_eslp, state);
return (B_FALSE);
}
/* Check for reboot atomically w.r.t efx_mcdi_request_start */
if (emip->emi_poll_cnt++ == 0) {
if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
emip->emi_pending_req = NULL;
EFSYS_UNLOCK(enp->en_eslp, state);
/* Reboot/Assertion */
if (rc == EIO || rc == EINTR)
efx_mcdi_raise_exception(enp, emrp, rc);
goto fail1;
}
}
/* Check if a response is available */
if (efx_mcdi_poll_response(enp) == B_FALSE) {
EFSYS_UNLOCK(enp->en_eslp, state);
return (B_FALSE);
}
/* Read the response header */
efx_mcdi_read_response_header(enp, emrp);
/* Request complete */
emip->emi_pending_req = NULL;
/* Ensure stale MCDI requests fail after an MC reboot. */
emip->emi_new_epoch = B_FALSE;
EFSYS_UNLOCK(enp->en_eslp, state);
if ((rc = emrp->emr_rc) != 0)
goto fail2;
efx_mcdi_finish_response(enp, emrp);
return (B_TRUE);
fail2:
if (!emrp->emr_quiet)
EFSYS_PROBE(fail2);
fail1:
if (!emrp->emr_quiet)
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (B_TRUE);
}
__checkReturn boolean_t
efx_mcdi_request_abort(
__in efx_nic_t *enp)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_mcdi_req_t *emrp;
boolean_t aborted;
efsys_lock_state_t state;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
/*
* efx_mcdi_ev_* may have already completed this event, and be
* spinning/blocked on the upper layer lock. So it *is* legitimate
* to for emi_pending_req to be NULL. If there is a pending event
* completed request, then provide a "credit" to allow
* efx_mcdi_ev_cpl() to accept a single spurious completion.
*/
EFSYS_LOCK(enp->en_eslp, state);
emrp = emip->emi_pending_req;
aborted = (emrp != NULL);
if (aborted) {
emip->emi_pending_req = NULL;
/* Error the request */
emrp->emr_out_length_used = 0;
emrp->emr_rc = ETIMEDOUT;
/* Provide a credit for seqno/emr_pending_req mismatches */
if (emip->emi_ev_cpl)
++emip->emi_aborted;
/*
* The upper layer has called us, so we don't
* need to complete the request.
*/
}
EFSYS_UNLOCK(enp->en_eslp, state);
return (aborted);
}
void
efx_mcdi_get_timeout(
__in efx_nic_t *enp,
__in efx_mcdi_req_t *emrp,
__out uint32_t *timeoutp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
emcop->emco_get_timeout(enp, emrp, timeoutp);
}
__checkReturn efx_rc_t
efx_mcdi_request_errcode(
__in unsigned int err)
{
switch (err) {
/* MCDI v1 */
case MC_CMD_ERR_EPERM:
return (EACCES);
case MC_CMD_ERR_ENOENT:
return (ENOENT);
case MC_CMD_ERR_EINTR:
return (EINTR);
case MC_CMD_ERR_EACCES:
return (EACCES);
case MC_CMD_ERR_EBUSY:
return (EBUSY);
case MC_CMD_ERR_EINVAL:
return (EINVAL);
case MC_CMD_ERR_EDEADLK:
return (EDEADLK);
case MC_CMD_ERR_ENOSYS:
return (ENOTSUP);
case MC_CMD_ERR_ETIME:
return (ETIMEDOUT);
case MC_CMD_ERR_ENOTSUP:
return (ENOTSUP);
case MC_CMD_ERR_EALREADY:
return (EALREADY);
/* MCDI v2 */
case MC_CMD_ERR_EEXIST:
return (EEXIST);
#ifdef MC_CMD_ERR_EAGAIN
case MC_CMD_ERR_EAGAIN:
return (EAGAIN);
#endif
#ifdef MC_CMD_ERR_ENOSPC
case MC_CMD_ERR_ENOSPC:
return (ENOSPC);
#endif
case MC_CMD_ERR_ERANGE:
return (ERANGE);
case MC_CMD_ERR_ALLOC_FAIL:
return (ENOMEM);
case MC_CMD_ERR_NO_VADAPTOR:
return (ENOENT);
case MC_CMD_ERR_NO_EVB_PORT:
return (ENOENT);
case MC_CMD_ERR_NO_VSWITCH:
return (ENODEV);
case MC_CMD_ERR_VLAN_LIMIT:
return (EINVAL);
case MC_CMD_ERR_BAD_PCI_FUNC:
return (ENODEV);
case MC_CMD_ERR_BAD_VLAN_MODE:
return (EINVAL);
case MC_CMD_ERR_BAD_VSWITCH_TYPE:
return (EINVAL);
case MC_CMD_ERR_BAD_VPORT_TYPE:
return (EINVAL);
case MC_CMD_ERR_MAC_EXIST:
return (EEXIST);
case MC_CMD_ERR_PROXY_PENDING:
return (EAGAIN);
default:
EFSYS_PROBE1(mc_pcol_error, int, err);
return (EIO);
}
}
void
efx_mcdi_raise_exception(
__in efx_nic_t *enp,
__in_opt efx_mcdi_req_t *emrp,
__in int rc)
{
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
efx_mcdi_exception_t exception;
/* Reboot or Assertion failure only */
EFSYS_ASSERT(rc == EIO || rc == EINTR);
/*
* If MC_CMD_REBOOT causes a reboot (dependent on parameters),
* then the EIO is not worthy of an exception.
*/
if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
return;
exception = (rc == EIO)
? EFX_MCDI_EXCEPTION_MC_REBOOT
: EFX_MCDI_EXCEPTION_MC_BADASSERT;
emtp->emt_exception(emtp->emt_context, exception);
}
void
efx_mcdi_execute(
__in efx_nic_t *enp,
__inout efx_mcdi_req_t *emrp)
{
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
emrp->emr_quiet = B_FALSE;
emtp->emt_execute(emtp->emt_context, emrp);
}
void
efx_mcdi_execute_quiet(
__in efx_nic_t *enp,
__inout efx_mcdi_req_t *emrp)
{
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
emrp->emr_quiet = B_TRUE;
emtp->emt_execute(emtp->emt_context, emrp);
}
void
efx_mcdi_ev_cpl(
__in efx_nic_t *enp,
__in unsigned int seq,
__in unsigned int outlen,
__in int errcode)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
efx_mcdi_req_t *emrp;
efsys_lock_state_t state;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
/*
* Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
* when we're completing an aborted request.
*/
EFSYS_LOCK(enp->en_eslp, state);
if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
(seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
EFSYS_ASSERT(emip->emi_aborted > 0);
if (emip->emi_aborted > 0)
--emip->emi_aborted;
EFSYS_UNLOCK(enp->en_eslp, state);
return;
}
emrp = emip->emi_pending_req;
emip->emi_pending_req = NULL;
EFSYS_UNLOCK(enp->en_eslp, state);
if (emip->emi_max_version >= 2) {
/* MCDIv2 response details do not fit into an event. */
efx_mcdi_read_response_header(enp, emrp);
} else {
if (errcode != 0) {
if (!emrp->emr_quiet) {
EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
int, errcode);
}
emrp->emr_out_length_used = 0;
emrp->emr_rc = efx_mcdi_request_errcode(errcode);
} else {
emrp->emr_out_length_used = outlen;
emrp->emr_rc = 0;
}
}
if (emrp->emr_rc == 0)
efx_mcdi_finish_response(enp, emrp);
emtp->emt_ev_cpl(emtp->emt_context);
}
#if EFSYS_OPT_MCDI_PROXY_AUTH
__checkReturn efx_rc_t
efx_mcdi_get_proxy_handle(
__in efx_nic_t *enp,
__in efx_mcdi_req_t *emrp,
__out uint32_t *handlep)
{
efx_rc_t rc;
_NOTE(ARGUNUSED(enp))
/*
* Return proxy handle from MCDI request that returned with error
* MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
* PROXY_RESPONSE event.
*/
if ((emrp == NULL) || (handlep == NULL)) {
rc = EINVAL;
goto fail1;
}
if ((emrp->emr_rc != 0) &&
(emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
*handlep = emrp->emr_proxy_handle;
rc = 0;
} else {
*handlep = 0;
rc = ENOENT;
}
return (rc);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
efx_mcdi_ev_proxy_response(
__in efx_nic_t *enp,
__in unsigned int handle,
__in unsigned int status)
{
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
efx_rc_t rc;
/*
* Handle results of an authorization request for a privileged MCDI
* command. If authorization was granted then we must re-issue the
* original MCDI request. If authorization failed or timed out,
* then the original MCDI request should be completed with the
* result code from this event.
*/
rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
}
#endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
void
efx_mcdi_ev_death(
__in efx_nic_t *enp,
__in int rc)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
efx_mcdi_req_t *emrp = NULL;
boolean_t ev_cpl;
efsys_lock_state_t state;
/*
* The MCDI request (if there is one) has been terminated, either
* by a BADASSERT or REBOOT event.
*
* If there is an outstanding event-completed MCDI operation, then we
* will never receive the completion event (because both MCDI
* completions and BADASSERT events are sent to the same evq). So
* complete this MCDI op.
*
* This function might run in parallel with efx_mcdi_request_poll()
* for poll completed mcdi requests, and also with
* efx_mcdi_request_start() for post-watchdog completions.
*/
EFSYS_LOCK(enp->en_eslp, state);
emrp = emip->emi_pending_req;
ev_cpl = emip->emi_ev_cpl;
if (emrp != NULL && emip->emi_ev_cpl) {
emip->emi_pending_req = NULL;
emrp->emr_out_length_used = 0;
emrp->emr_rc = rc;
++emip->emi_aborted;
}
/*
* Since we're running in parallel with a request, consume the
* status word before dropping the lock.
*/
if (rc == EIO || rc == EINTR) {
EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
(void) efx_mcdi_poll_reboot(enp);
emip->emi_new_epoch = B_TRUE;
}
EFSYS_UNLOCK(enp->en_eslp, state);
efx_mcdi_raise_exception(enp, emrp, rc);
if (emrp != NULL && ev_cpl)
emtp->emt_ev_cpl(emtp->emt_context);
}
__checkReturn efx_rc_t
efx_mcdi_version(
__in efx_nic_t *enp,
__out_ecount_opt(4) uint16_t versionp[4],
__out_opt uint32_t *buildp,
__out_opt efx_mcdi_boot_t *statusp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload,
MAX(MC_CMD_GET_VERSION_IN_LEN, MC_CMD_GET_BOOT_STATUS_IN_LEN),
MAX(MC_CMD_GET_VERSION_OUT_LEN,
MC_CMD_GET_BOOT_STATUS_OUT_LEN));
efx_word_t *ver_words;
uint16_t version[4];
uint32_t build;
efx_mcdi_boot_t status;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
req.emr_cmd = MC_CMD_GET_VERSION;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
/* bootrom support */
if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
version[0] = version[1] = version[2] = version[3] = 0;
build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
goto version;
}
if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
version:
/* The bootrom doesn't understand BOOT_STATUS */
if (MC_FW_VERSION_IS_BOOTLOADER(build)) {
status = EFX_MCDI_BOOT_ROM;
goto out;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc == EACCES) {
/* Unprivileged functions cannot access BOOT_STATUS */
status = EFX_MCDI_BOOT_PRIMARY;
version[0] = version[1] = version[2] = version[3] = 0;
build = 0;
goto out;
}
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail3;
}
if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
rc = EMSGSIZE;
goto fail4;
}
if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
status = EFX_MCDI_BOOT_PRIMARY;
else
status = EFX_MCDI_BOOT_SECONDARY;
out:
if (versionp != NULL)
memcpy(versionp, version, sizeof (version));
if (buildp != NULL)
*buildp = build;
if (statusp != NULL)
*statusp = status;
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_capabilities(
__in efx_nic_t *enp,
__out_opt uint32_t *flagsp,
__out_opt uint16_t *rx_dpcpu_fw_idp,
__out_opt uint16_t *tx_dpcpu_fw_idp,
__out_opt uint32_t *flags2p,
__out_opt uint32_t *tso2ncp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
boolean_t v2_capable;
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_CAPABILITIES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (flagsp != NULL)
*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
if (rx_dpcpu_fw_idp != NULL)
*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
if (tx_dpcpu_fw_idp != NULL)
*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
v2_capable = B_FALSE;
else
v2_capable = B_TRUE;
if (flags2p != NULL) {
*flags2p = (v2_capable) ?
MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
0;
}
if (tso2ncp != NULL) {
*tso2ncp = (v2_capable) ?
MCDI_OUT_WORD(req,
GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
0;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_do_reboot(
__in efx_nic_t *enp,
__in boolean_t after_assertion)
{
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
MC_CMD_REBOOT_OUT_LEN);
efx_mcdi_req_t req;
efx_rc_t rc;
/*
* We could require the caller to have caused en_mod_flags=0 to
* call this function. This doesn't help the other port though,
* who's about to get the MC ripped out from underneath them.
* Since they have to cope with the subsequent fallout of MCDI
* failures, we should as well.
*/
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
req.emr_cmd = MC_CMD_REBOOT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
(after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc == EACCES) {
/* Unprivileged functions cannot reboot the MC. */
goto out;
}
/* A successful reboot request returns EIO. */
if (req.emr_rc != 0 && req.emr_rc != EIO) {
rc = req.emr_rc;
goto fail1;
}
out:
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_reboot(
__in efx_nic_t *enp)
{
return (efx_mcdi_do_reboot(enp, B_FALSE));
}
__checkReturn efx_rc_t
efx_mcdi_exit_assertion_handler(
__in efx_nic_t *enp)
{
return (efx_mcdi_do_reboot(enp, B_TRUE));
}
__checkReturn efx_rc_t
efx_mcdi_read_assertion(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
MC_CMD_GET_ASSERTS_OUT_LEN);
const char *reason;
unsigned int flags;
unsigned int index;
unsigned int ofst;
int retry;
efx_rc_t rc;
/*
* Before we attempt to chat to the MC, we should verify that the MC
* isn't in its assertion handler, either due to a previous reboot,
* or because we're reinitializing due to an eec_exception().
*
* Use GET_ASSERTS to read any assertion state that may be present.
* Retry this command twice. Once because a boot-time assertion failure
* might cause the 1st MCDI request to fail. And once again because
* we might race with efx_mcdi_exit_assertion_handler() running on
* partner port(s) on the same NIC.
*/
retry = 2;
do {
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_ASSERTS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
efx_mcdi_execute_quiet(enp, &req);
} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
if (req.emr_rc != 0) {
if (req.emr_rc == EACCES) {
/* Unprivileged functions cannot clear assertions. */
goto out;
}
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
/* Print out any assertion state recorded */
flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
return (0);
reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
? "system-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
? "thread-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
? "watchdog reset"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
? "illegal address trap"
: "unknown assertion";
EFSYS_PROBE3(mcpu_assertion,
const char *, reason, unsigned int,
MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
unsigned int,
MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
/* Print out the registers (r1 ... r31) */
ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
for (index = 1;
index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
index++) {
EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
EFX_DWORD_0));
ofst += sizeof (efx_dword_t);
}
EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
out:
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Internal routines for for specific MCDI requests.
*/
__checkReturn efx_rc_t
efx_mcdi_drv_attach(
__in efx_nic_t *enp,
__in boolean_t attach)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_LEN,
MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_DRV_ATTACH;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
/*
* Typically, client drivers use DONT_CARE for the datapath firmware
* type to ensure that the driver can attach to an unprivileged
* function. The datapath firmware type to use is controlled by the
* 'sfboot' utility.
* If a client driver wishes to attach with a specific datapath firmware
* type, that can be passed in second argument of efx_nic_probe API. One
* such example is the ESXi native driver that attempts attaching with
* FULL_FEATURED datapath firmware type first and fall backs to
* DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
*/
MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_board_cfg(
__in efx_nic_t *enp,
__out_opt uint32_t *board_typep,
__out_opt efx_dword_t *capabilitiesp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_BOARD_CFG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
rc = EMSGSIZE;
goto fail2;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
if (emip->emi_port == 1) {
addrp = MCDI_OUT2(req, uint8_t,
GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
} else if (emip->emi_port == 2) {
addrp = MCDI_OUT2(req, uint8_t,
GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
} else {
rc = EINVAL;
goto fail3;
}
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
if (capabilitiesp != NULL) {
if (emip->emi_port == 1) {
*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
} else if (emip->emi_port == 2) {
*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
} else {
rc = EINVAL;
goto fail4;
}
}
if (board_typep != NULL) {
*board_typep = MCDI_OUT_DWORD(req,
GET_BOARD_CFG_OUT_BOARD_TYPE);
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_resource_limits(
__in efx_nic_t *enp,
__out_opt uint32_t *nevqp,
__out_opt uint32_t *nrxqp,
__out_opt uint32_t *ntxqp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (nevqp != NULL)
*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
if (nrxqp != NULL)
*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
if (ntxqp != NULL)
*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_phy_cfg(
__in efx_nic_t *enp)
{
efx_port_t *epp = &(enp->en_port);
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
MC_CMD_GET_PHY_CFG_OUT_LEN);
#if EFSYS_OPT_NAMES
const char *namep;
size_t namelen;
#endif
uint32_t phy_media_type;
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_PHY_CFG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
#if EFSYS_OPT_NAMES
namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
namelen = MIN(sizeof (encp->enc_phy_name) - 1,
strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
(void) memset(encp->enc_phy_name, 0,
sizeof (encp->enc_phy_name));
memcpy(encp->enc_phy_name, namep, namelen);
#endif /* EFSYS_OPT_NAMES */
(void) memset(encp->enc_phy_revision, 0,
sizeof (encp->enc_phy_revision));
memcpy(encp->enc_phy_revision,
MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
MIN(sizeof (encp->enc_phy_revision) - 1,
MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
#if EFSYS_OPT_PHY_LED_CONTROL
encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
(1 << EFX_PHY_LED_OFF) |
(1 << EFX_PHY_LED_ON));
#endif /* EFSYS_OPT_PHY_LED_CONTROL */
/* Get the media type of the fixed port, if recognised. */
EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
epp->ep_fixed_port_type = (efx_phy_media_type_t) phy_media_type;
if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
epp->ep_phy_cap_mask =
MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
#if EFSYS_OPT_PHY_FLAGS
encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
#endif /* EFSYS_OPT_PHY_FLAGS */
encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
/* Populate internal state */
encp->enc_mcdi_mdio_channel =
(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
#if EFSYS_OPT_PHY_STATS
encp->enc_mcdi_phy_stat_mask =
MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
#endif /* EFSYS_OPT_PHY_STATS */
#if EFSYS_OPT_BIST
encp->enc_bist_mask = 0;
if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
GET_PHY_CFG_OUT_BIST_CABLE_LONG))
encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
GET_PHY_CFG_OUT_BIST))
encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
#endif /* EFSYS_OPT_BIST */
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_firmware_update_supported(
__in efx_nic_t *enp,
__out boolean_t *supportedp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
efx_rc_t rc;
if (emcop != NULL) {
if ((rc = emcop->emco_feature_supported(enp,
EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
goto fail1;
} else {
/* Earlier devices always supported updates */
*supportedp = B_TRUE;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_macaddr_change_supported(
__in efx_nic_t *enp,
__out boolean_t *supportedp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
efx_rc_t rc;
if (emcop != NULL) {
if ((rc = emcop->emco_feature_supported(enp,
EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
goto fail1;
} else {
/* Earlier devices always supported MAC changes */
*supportedp = B_TRUE;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_link_control_supported(
__in efx_nic_t *enp,
__out boolean_t *supportedp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
efx_rc_t rc;
if (emcop != NULL) {
if ((rc = emcop->emco_feature_supported(enp,
EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
goto fail1;
} else {
/* Earlier devices always supported link control */
*supportedp = B_TRUE;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_mac_spoofing_supported(
__in efx_nic_t *enp,
__out boolean_t *supportedp)
{
const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
efx_rc_t rc;
if (emcop != NULL) {
if ((rc = emcop->emco_feature_supported(enp,
EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
goto fail1;
} else {
/* Earlier devices always supported MAC spoofing */
*supportedp = B_TRUE;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#if EFSYS_OPT_BIST
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
/*
* Enter bist offline mode. This is a fw mode which puts the NIC into a state
* where memory BIST tests can be run and not much else can interfere or happen.
* A reboot is required to exit this mode.
*/
__checkReturn efx_rc_t
efx_mcdi_bist_enable_offline(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
efx_rc_t rc;
EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
req.emr_in_buf = NULL;
req.emr_in_length = 0;
req.emr_out_buf = NULL;
req.emr_out_length = 0;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
__checkReturn efx_rc_t
efx_mcdi_bist_start(
__in efx_nic_t *enp,
__in efx_bist_type_t type)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
MC_CMD_START_BIST_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_START_BIST;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
switch (type) {
case EFX_BIST_TYPE_PHY_NORMAL:
MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
break;
case EFX_BIST_TYPE_PHY_CABLE_SHORT:
MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
MC_CMD_PHY_BIST_CABLE_SHORT);
break;
case EFX_BIST_TYPE_PHY_CABLE_LONG:
MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
MC_CMD_PHY_BIST_CABLE_LONG);
break;
case EFX_BIST_TYPE_MC_MEM:
MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
MC_CMD_MC_MEM_BIST);
break;
case EFX_BIST_TYPE_SAT_MEM:
MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
MC_CMD_PORT_MEM_BIST);
break;
case EFX_BIST_TYPE_REG:
MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
MC_CMD_REG_BIST);
break;
default:
EFSYS_ASSERT(0);
}
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_BIST */
/* Enable logging of some events (e.g. link state changes) */
__checkReturn efx_rc_t
efx_mcdi_log_ctrl(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
MC_CMD_LOG_CTRL_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_LOG_CTRL;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#if EFSYS_OPT_MAC_STATS
typedef enum efx_stats_action_e {
EFX_STATS_CLEAR,
EFX_STATS_UPLOAD,
EFX_STATS_ENABLE_NOEVENTS,
EFX_STATS_ENABLE_EVENTS,
EFX_STATS_DISABLE,
} efx_stats_action_t;
static __checkReturn efx_rc_t
efx_mcdi_mac_stats(
__in efx_nic_t *enp,
__in_opt efsys_mem_t *esmp,
__in efx_stats_action_t action,
__in uint16_t period_ms)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
int clear = (action == EFX_STATS_CLEAR);
int upload = (action == EFX_STATS_UPLOAD);
int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
int events = (action == EFX_STATS_ENABLE_EVENTS);
int disable = (action == EFX_STATS_DISABLE);
efx_rc_t rc;
req.emr_cmd = MC_CMD_MAC_STATS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
MAC_STATS_IN_DMA, upload,
MAC_STATS_IN_CLEAR, clear,
MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
MAC_STATS_IN_PERIODIC_NOEVENT, !events,
MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
if (enable || events || upload) {
const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
uint32_t bytes;
/* Periodic stats or stats upload require a DMA buffer */
if (esmp == NULL) {
rc = EINVAL;
goto fail1;
}
if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
/* MAC stats count too small for legacy MAC stats */
rc = ENOSPC;
goto fail2;
}
bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
if (EFSYS_MEM_SIZE(esmp) < bytes) {
/* DMA buffer too small */
rc = ENOSPC;
goto fail3;
}
MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
EFSYS_MEM_ADDR(esmp) & 0xffffffff);
MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
EFSYS_MEM_ADDR(esmp) >> 32);
MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
}
/*
* NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
* as this may fail (and leave periodic DMA enabled) if the
* vadapter has already been deleted.
*/
MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
(disable ? EVB_PORT_ID_NULL : enp->en_vport_id));
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
/* EF10: Expect ENOENT if no DMA queues are initialised */
if ((req.emr_rc != ENOENT) ||
(enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
rc = req.emr_rc;
goto fail4;
}
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_mac_stats_clear(
__in efx_nic_t *enp)
{
efx_rc_t rc;
if ((rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_CLEAR, 0)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_mac_stats_upload(
__in efx_nic_t *enp,
__in efsys_mem_t *esmp)
{
efx_rc_t rc;
/*
* The MC DMAs aggregate statistics for our convenience, so we can
* avoid having to pull the statistics buffer into the cache to
* maintain cumulative statistics.
*/
if ((rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_UPLOAD, 0)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_mac_stats_periodic(
__in efx_nic_t *enp,
__in efsys_mem_t *esmp,
__in uint16_t period_ms,
__in boolean_t events)
{
efx_rc_t rc;
/*
* The MC DMAs aggregate statistics for our convenience, so we can
* avoid having to pull the statistics buffer into the cache to
* maintain cumulative statistics.
* Huntington uses a fixed 1sec period.
* Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
*/
if (period_ms == 0)
rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_DISABLE, 0);
else if (events)
rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_EVENTS,
period_ms);
else
rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_NOEVENTS,
period_ms);
if (rc != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_MAC_STATS */
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
/*
* This function returns the pf and vf number of a function. If it is a pf the
* vf number is 0xffff. The vf number is the index of the vf on that
* function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
* (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
*/
__checkReturn efx_rc_t
efx_mcdi_get_function_info(
__in efx_nic_t *enp,
__out uint32_t *pfp,
__out_opt uint32_t *vfp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
if (vfp != NULL)
*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_privilege_mask(
__in efx_nic_t *enp,
__in uint32_t pf,
__in uint32_t vf,
__out uint32_t *maskp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
MC_CMD_PRIVILEGE_MASK_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
__checkReturn efx_rc_t
efx_mcdi_set_workaround(
__in efx_nic_t *enp,
__in uint32_t type,
__in boolean_t enabled,
__out_opt uint32_t *flagsp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
MC_CMD_WORKAROUND_EXT_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_WORKAROUND;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (flagsp != NULL) {
if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
else
*flagsp = 0;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_workarounds(
__in efx_nic_t *enp,
__out_opt uint32_t *implementedp,
__out_opt uint32_t *enabledp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
req.emr_in_buf = NULL;
req.emr_in_length = 0;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (implementedp != NULL) {
*implementedp =
MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
}
if (enabledp != NULL) {
*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Size of media information page in accordance with SFF-8472 and SFF-8436.
* It is used in MCDI interface as well.
*/
#define EFX_PHY_MEDIA_INFO_PAGE_SIZE 0x80
/*
* Transceiver identifiers from SFF-8024 Table 4-1.
*/
#define EFX_SFF_TRANSCEIVER_ID_SFP 0x03 /* SFP/SFP+/SFP28 */
#define EFX_SFF_TRANSCEIVER_ID_QSFP 0x0c /* QSFP */
#define EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS 0x0d /* QSFP+ or later */
#define EFX_SFF_TRANSCEIVER_ID_QSFP28 0x11 /* QSFP28 or later */
static __checkReturn efx_rc_t
efx_mcdi_get_phy_media_info(
__in efx_nic_t *enp,
__in uint32_t mcdi_page,
__in uint8_t offset,
__in uint8_t len,
__out_bcount(len) uint8_t *data)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
EFX_PHY_MEDIA_INFO_PAGE_SIZE));
efx_rc_t rc;
EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length =
MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used !=
MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
rc = EIO;
goto fail3;
}
memcpy(data,
MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
len);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_phy_module_get_info(
__in efx_nic_t *enp,
__in uint8_t dev_addr,
__in size_t offset,
__in size_t len,
__out_bcount(len) uint8_t *data)
{
efx_port_t *epp = &(enp->en_port);
efx_rc_t rc;
uint32_t mcdi_lower_page;
uint32_t mcdi_upper_page;
uint8_t id;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
/*
* Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
* Offset plus length interface allows to access page 0 only.
* I.e. non-zero upper pages are not accessible.
* See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
* QSFP+ Memory Map for details on how information is structured
* and accessible.
*/
switch (epp->ep_fixed_port_type) {
case EFX_PHY_MEDIA_SFP_PLUS:
case EFX_PHY_MEDIA_QSFP_PLUS:
/* Port type supports modules */
break;
default:
rc = ENOTSUP;
goto fail1;
}
/*
* For all supported port types, MCDI page 0 offset 0 holds the
* transceiver identifier. Probe to determine the data layout.
* Definitions from SFF-8024 Table 4-1.
*/
rc = efx_mcdi_get_phy_media_info(enp, 0, 0, sizeof (id), &id);
if (rc != 0)
goto fail2;
switch (id) {
case EFX_SFF_TRANSCEIVER_ID_SFP:
/*
* In accordance with SFF-8472 Diagnostic Monitoring
* Interface for Optical Transceivers section 4 Memory
* Organization two 2-wire addresses are defined.
*/
switch (dev_addr) {
/* Base information */
case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
/*
* MCDI page 0 should be used to access lower
* page 0 (0x00 - 0x7f) at the device address 0xA0.
*/
mcdi_lower_page = 0;
/*
* MCDI page 1 should be used to access upper
* page 0 (0x80 - 0xff) at the device address 0xA0.
*/
mcdi_upper_page = 1;
break;
/* Diagnostics */
case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
/*
* MCDI page 2 should be used to access lower
* page 0 (0x00 - 0x7f) at the device address 0xA2.
*/
mcdi_lower_page = 2;
/*
* MCDI page 3 should be used to access upper
* page 0 (0x80 - 0xff) at the device address 0xA2.
*/
mcdi_upper_page = 3;
break;
default:
rc = ENOTSUP;
goto fail3;
}
break;
case EFX_SFF_TRANSCEIVER_ID_QSFP:
case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
case EFX_SFF_TRANSCEIVER_ID_QSFP28:
switch (dev_addr) {
case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
/*
* MCDI page -1 should be used to access lower page 0
* (0x00 - 0x7f).
*/
mcdi_lower_page = (uint32_t)-1;
/*
* MCDI page 0 should be used to access upper page 0
* (0x80h - 0xff).
*/
mcdi_upper_page = 0;
break;
default:
rc = ENOTSUP;
goto fail3;
}
break;
default:
rc = ENOTSUP;
goto fail3;
}
EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
size_t read_len =
MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
rc = efx_mcdi_get_phy_media_info(enp,
mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
if (rc != 0)
goto fail4;
data += read_len;
len -= read_len;
offset = 0;
} else {
offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
}
if (len > 0) {
EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
rc = efx_mcdi_get_phy_media_info(enp,
mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
if (rc != 0)
goto fail5;
}
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_MCDI */