ecfdc2e0cd
This relocation creates a function descriptor at the specified address and is commonly used for C++ to create virtual function tables.
503 lines
12 KiB
C
503 lines
12 KiB
C
/*-
|
|
* Copyright 1996, 1997, 1998, 1999 John D. Polstra.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Dynamic linker for ELF.
|
|
*
|
|
* John Polstra <jdp@polstra.com>.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mman.h>
|
|
#include <machine/ia64_cpu.h>
|
|
|
|
#include <dlfcn.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "debug.h"
|
|
#include "rtld.h"
|
|
|
|
extern Elf_Dyn _DYNAMIC;
|
|
|
|
/*
|
|
* Macros for loading/storing unaligned 64-bit values. These are
|
|
* needed because relocations can point to unaligned data. This
|
|
* occurs in the DWARF2 exception frame tables generated by the
|
|
* compiler, for instance.
|
|
*
|
|
* We don't use these when relocating jump slots and GOT entries,
|
|
* since they are guaranteed to be aligned.
|
|
*
|
|
* XXX dfr stub for now.
|
|
*/
|
|
#define load64(p) (*(u_int64_t *) (p))
|
|
#define store64(p, v) (*(u_int64_t *) (p) = (v))
|
|
|
|
/* Allocate an @fptr. */
|
|
|
|
#define FPTR_CHUNK_SIZE 64
|
|
|
|
struct fptr_chunk {
|
|
struct fptr fptrs[FPTR_CHUNK_SIZE];
|
|
};
|
|
|
|
static struct fptr_chunk first_chunk;
|
|
static struct fptr_chunk *current_chunk = &first_chunk;
|
|
static struct fptr *next_fptr = &first_chunk.fptrs[0];
|
|
static struct fptr *last_fptr = &first_chunk.fptrs[FPTR_CHUNK_SIZE];
|
|
|
|
/*
|
|
* We use static storage initially so that we don't have to call
|
|
* malloc during init_rtld().
|
|
*/
|
|
static struct fptr *
|
|
alloc_fptr(Elf_Addr target, Elf_Addr gp)
|
|
{
|
|
struct fptr* fptr;
|
|
|
|
if (next_fptr == last_fptr) {
|
|
current_chunk = malloc(sizeof(struct fptr_chunk));
|
|
next_fptr = ¤t_chunk->fptrs[0];
|
|
last_fptr = ¤t_chunk->fptrs[FPTR_CHUNK_SIZE];
|
|
}
|
|
fptr = next_fptr;
|
|
next_fptr++;
|
|
fptr->target = target;
|
|
fptr->gp = gp;
|
|
return fptr;
|
|
}
|
|
|
|
/* Relocate a non-PLT object with addend. */
|
|
static int
|
|
reloc_non_plt_obj(Obj_Entry *obj_rtld, Obj_Entry *obj, const Elf_Rela *rela,
|
|
SymCache *cache, struct fptr **fptrs)
|
|
{
|
|
Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
case R_IA64_REL64LSB:
|
|
/*
|
|
* We handle rtld's relocations in rtld_start.S
|
|
*/
|
|
if (obj != obj_rtld)
|
|
store64(where,
|
|
load64(where) + (Elf_Addr) obj->relocbase);
|
|
break;
|
|
|
|
case R_IA64_DIR64LSB: {
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr target;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
target = (def->st_shndx != SHN_UNDEF)
|
|
? (Elf_Addr)(defobj->relocbase + def->st_value) : 0;
|
|
store64(where, target + rela->r_addend);
|
|
break;
|
|
}
|
|
|
|
case R_IA64_FPTR64LSB: {
|
|
/*
|
|
* We have to make sure that all @fptr references to
|
|
* the same function are identical so that code can
|
|
* compare function pointers. We actually only bother
|
|
* to ensure this within a single object. If the
|
|
* caller's alloca failed, we don't even ensure that.
|
|
*/
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
struct fptr *fptr = 0;
|
|
Elf_Addr target, gp;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
if (def->st_shndx != SHN_UNDEF) {
|
|
target = (Elf_Addr)(defobj->relocbase + def->st_value);
|
|
gp = (Elf_Addr)defobj->pltgot;
|
|
|
|
/*
|
|
* Find the @fptr, using fptrs as a helper.
|
|
*/
|
|
if (fptrs)
|
|
fptr = fptrs[ELF_R_SYM(rela->r_info)];
|
|
if (!fptr) {
|
|
fptr = alloc_fptr(target, gp);
|
|
if (fptrs)
|
|
fptrs[ELF_R_SYM(rela->r_info)] = fptr;
|
|
}
|
|
} else
|
|
fptr = NULL;
|
|
|
|
store64(where, (Elf_Addr)fptr);
|
|
break;
|
|
}
|
|
|
|
case R_IA64_IPLTLSB: {
|
|
/*
|
|
* Relocation typically used to populate C++ virtual function
|
|
* tables. It creates a 128-bit function descriptor at the
|
|
* specified memory address.
|
|
*/
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
struct fptr *fptr;
|
|
Elf_Addr target, gp;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
if (def->st_shndx != SHN_UNDEF) {
|
|
target = (Elf_Addr)(defobj->relocbase + def->st_value);
|
|
gp = (Elf_Addr)defobj->pltgot;
|
|
} else {
|
|
target = 0;
|
|
gp = 0;
|
|
}
|
|
|
|
fptr = (void*)where;
|
|
store64(&fptr->target, target);
|
|
store64(&fptr->gp, gp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
_rtld_error("%s: Unsupported relocation type %d"
|
|
" in non-PLT relocations\n", obj->path,
|
|
ELF_R_TYPE(rela->r_info));
|
|
return -1;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/* Process the non-PLT relocations. */
|
|
int
|
|
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
|
|
{
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
SymCache *cache;
|
|
struct fptr **fptrs;
|
|
int bytes = obj->nchains * sizeof(SymCache);
|
|
int fbytes = obj->nchains * sizeof(struct fptr *);
|
|
int r = -1;
|
|
|
|
/*
|
|
* The dynamic loader may be called from a thread, we have
|
|
* limited amounts of stack available so we cannot use alloca().
|
|
*/
|
|
cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
|
|
if (cache == MAP_FAILED)
|
|
cache = NULL;
|
|
if (cache != NULL)
|
|
memset(cache, 0, bytes);
|
|
|
|
/*
|
|
* When relocating rtld itself, we need to avoid using malloc.
|
|
*/
|
|
if (obj == obj_rtld) {
|
|
fptrs = mmap(NULL, fbytes, PROT_READ|PROT_WRITE,
|
|
MAP_ANON, -1, 0);
|
|
if (fptrs == MAP_FAILED)
|
|
fptrs = NULL;
|
|
} else {
|
|
fptrs = (struct fptr **)
|
|
malloc(obj->nchains * sizeof(struct fptr *));
|
|
}
|
|
if (fptrs == NULL)
|
|
goto done;
|
|
memset(fptrs, 0, fbytes);
|
|
|
|
/* Perform relocations without addend if there are any: */
|
|
rellim = (const Elf_Rel *) ((caddr_t) obj->rel + obj->relsize);
|
|
for (rel = obj->rel; obj->rel != NULL && rel < rellim; rel++) {
|
|
Elf_Rela locrela;
|
|
|
|
locrela.r_info = rel->r_info;
|
|
locrela.r_offset = rel->r_offset;
|
|
locrela.r_addend = 0;
|
|
if (reloc_non_plt_obj(obj_rtld, obj, &locrela, cache, fptrs))
|
|
goto done;
|
|
}
|
|
|
|
/* Perform relocations with addend if there are any: */
|
|
relalim = (const Elf_Rela *) ((caddr_t) obj->rela + obj->relasize);
|
|
for (rela = obj->rela; obj->rela != NULL && rela < relalim; rela++) {
|
|
if (reloc_non_plt_obj(obj_rtld, obj, rela, cache, fptrs))
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Remember the fptrs in case of later calls to dlsym(). Don't
|
|
* bother for rtld - we will lazily create a table in
|
|
* make_function_pointer(). We still can't risk calling malloc()
|
|
* in the rtld case.
|
|
*
|
|
* When remembering fptrs, NULL out our local fptrs variable so we
|
|
* do not free it.
|
|
*/
|
|
if (obj == obj_rtld) {
|
|
obj->priv = NULL;
|
|
} else {
|
|
obj->priv = fptrs;
|
|
fptrs = NULL;
|
|
}
|
|
|
|
r = 0;
|
|
done:
|
|
if (cache)
|
|
munmap(cache, bytes);
|
|
if (fptrs) {
|
|
if (obj == obj_rtld)
|
|
munmap(fptrs, fbytes);
|
|
else
|
|
free(fptrs);
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
/* Process the PLT relocations. */
|
|
int
|
|
reloc_plt(Obj_Entry *obj)
|
|
{
|
|
/* All PLT relocations are the same kind: Elf_Rel or Elf_Rela. */
|
|
if (obj->pltrelsize != 0) {
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
|
|
rellim = (const Elf_Rel *)
|
|
((char *)obj->pltrel + obj->pltrelsize);
|
|
for (rel = obj->pltrel; rel < rellim; rel++) {
|
|
Elf_Addr *where;
|
|
|
|
assert(ELF_R_TYPE(rel->r_info) == R_IA64_IPLTLSB);
|
|
|
|
/* Relocate the @fptr pointing into the PLT. */
|
|
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
}
|
|
} else {
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
relalim = (const Elf_Rela *)
|
|
((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
Elf_Addr *where;
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_IA64_IPLTLSB);
|
|
|
|
/* Relocate the @fptr pointing into the PLT. */
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Relocate the jump slots in an object. */
|
|
int
|
|
reloc_jmpslots(Obj_Entry *obj)
|
|
{
|
|
if (obj->jmpslots_done)
|
|
return 0;
|
|
/* All PLT relocations are the same kind: Elf_Rel or Elf_Rela. */
|
|
if (obj->pltrelsize != 0) {
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
|
|
rellim = (const Elf_Rel *)
|
|
((char *)obj->pltrel + obj->pltrelsize);
|
|
for (rel = obj->pltrel; rel < rellim; rel++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
assert(ELF_R_TYPE(rel->r_info) == R_IA64_IPLTLSB);
|
|
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rel->r_info), obj,
|
|
&defobj, true, NULL);
|
|
if (def == NULL)
|
|
return -1;
|
|
reloc_jmpslot(where,
|
|
(Elf_Addr)(defobj->relocbase
|
|
+ def->st_value),
|
|
defobj);
|
|
}
|
|
} else {
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
relalim = (const Elf_Rela *)
|
|
((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj,
|
|
&defobj, true, NULL);
|
|
if (def == NULL)
|
|
return -1;
|
|
reloc_jmpslot(where,
|
|
(Elf_Addr)(defobj->relocbase
|
|
+ def->st_value),
|
|
defobj);
|
|
}
|
|
}
|
|
obj->jmpslots_done = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Fixup the jump slot at "where" to transfer control to "target". */
|
|
Elf_Addr
|
|
reloc_jmpslot(Elf_Addr *where, Elf_Addr target, const Obj_Entry *obj)
|
|
{
|
|
Elf_Addr stubaddr;
|
|
|
|
dbg(" reloc_jmpslot: where=%p, target=%p, gp=%p",
|
|
(void *)where, (void *)target, (void *)obj->pltgot);
|
|
stubaddr = *where;
|
|
if (stubaddr != target) {
|
|
|
|
/*
|
|
* Point this @fptr directly at the target. Update the
|
|
* gp value first so that we don't break another cpu
|
|
* which is currently executing the PLT entry.
|
|
*/
|
|
where[1] = (Elf_Addr) obj->pltgot;
|
|
ia64_mf();
|
|
where[0] = target;
|
|
ia64_mf();
|
|
}
|
|
|
|
/*
|
|
* The caller needs an @fptr for the adjusted entry. The PLT
|
|
* entry serves this purpose nicely.
|
|
*/
|
|
return (Elf_Addr) where;
|
|
}
|
|
|
|
/*
|
|
* XXX ia64 doesn't seem to have copy relocations.
|
|
*
|
|
* Returns 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
do_copy_relocations(Obj_Entry *dstobj)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the @fptr representing a given function symbol.
|
|
*/
|
|
void *
|
|
make_function_pointer(const Elf_Sym *sym, const Obj_Entry *obj)
|
|
{
|
|
struct fptr **fptrs = obj->priv;
|
|
int index = sym - obj->symtab;
|
|
|
|
if (!fptrs) {
|
|
/*
|
|
* This should only happen for something like
|
|
* dlsym("dlopen"). Actually, I'm not sure it can ever
|
|
* happen.
|
|
*/
|
|
fptrs = (struct fptr **)
|
|
malloc(obj->nchains * sizeof(struct fptr *));
|
|
memset(fptrs, 0, obj->nchains * sizeof(struct fptr *));
|
|
((Obj_Entry*) obj)->priv = fptrs;
|
|
}
|
|
if (!fptrs[index]) {
|
|
Elf_Addr target, gp;
|
|
target = (Elf_Addr) (obj->relocbase + sym->st_value);
|
|
gp = (Elf_Addr) obj->pltgot;
|
|
fptrs[index] = alloc_fptr(target, gp);
|
|
}
|
|
return fptrs[index];
|
|
}
|
|
|
|
void
|
|
call_initfini_pointer(const Obj_Entry *obj, Elf_Addr target)
|
|
{
|
|
struct fptr fptr;
|
|
|
|
fptr.gp = (Elf_Addr) obj->pltgot;
|
|
fptr.target = target;
|
|
dbg(" initfini: target=%p, gp=%p",
|
|
(void *) fptr.target, (void *) fptr.gp);
|
|
((InitFunc) &fptr)();
|
|
}
|
|
|
|
/* Initialize the special PLT entries. */
|
|
void
|
|
init_pltgot(Obj_Entry *obj)
|
|
{
|
|
const Elf_Dyn *dynp;
|
|
Elf_Addr *pltres = 0;
|
|
|
|
/*
|
|
* Find the PLT RESERVE section.
|
|
*/
|
|
for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
|
|
if (dynp->d_tag == DT_IA64_PLT_RESERVE)
|
|
pltres = (u_int64_t *)
|
|
(obj->relocbase + dynp->d_un.d_ptr);
|
|
}
|
|
if (!pltres)
|
|
errx(1, "Can't find DT_IA64_PLT_RESERVE entry");
|
|
|
|
/*
|
|
* The PLT RESERVE section is used to get values to pass to
|
|
* _rtld_bind when lazy binding.
|
|
*/
|
|
pltres[0] = (Elf_Addr) obj;
|
|
pltres[1] = FPTR_TARGET(_rtld_bind_start);
|
|
pltres[2] = FPTR_GP(_rtld_bind_start);
|
|
}
|