a925f8a783
problem affects revision 1xx hardware as well as later versions. Also, the recommended workaround is to set the PDC count register for a 12-byte transfer when the actual size is less than that, but there is no need to extend or zero-out the data buffer, because the blklen register contains the real transfer size and only that many bytes will be transferred. Also add a sysctl to turn debugging printfs on or off on the fly.
1415 lines
41 KiB
C
1415 lines
41 KiB
C
/*-
|
|
* Copyright (c) 2006 Bernd Walter. All rights reserved.
|
|
* Copyright (c) 2006 M. Warner Losh. All rights reserved.
|
|
* Copyright (c) 2010 Greg Ansley. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "opt_platform.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/watchdog.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <arm/at91/at91var.h>
|
|
#include <arm/at91/at91_mcireg.h>
|
|
#include <arm/at91/at91_pdcreg.h>
|
|
|
|
#include <dev/mmc/bridge.h>
|
|
#include <dev/mmc/mmcreg.h>
|
|
#include <dev/mmc/mmcbrvar.h>
|
|
|
|
#ifdef FDT
|
|
#include <dev/fdt/fdt_common.h>
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
#endif
|
|
|
|
#include "mmcbr_if.h"
|
|
|
|
#include "opt_at91.h"
|
|
|
|
/*
|
|
* About running the MCI bus above 25MHz
|
|
*
|
|
* Historically, the MCI bus has been run at 30MHz on systems with a 60MHz
|
|
* master clock, in part due to a bug in dev/mmc.c making always request
|
|
* 30MHz, and in part over clocking the bus because 15MHz was too slow.
|
|
* Fixing that bug causes the mmc driver to request a 25MHz clock (as it
|
|
* should) and the logic in at91_mci_update_ios() picks the highest speed that
|
|
* doesn't exceed that limit. With a 60MHz MCK that would be 15MHz, and
|
|
* that's a real performance buzzkill when you've been getting away with 30MHz
|
|
* all along.
|
|
*
|
|
* By defining AT91_MCI_ALLOW_OVERCLOCK (or setting the allow_overclock=1
|
|
* device hint or sysctl) you can enable logic in at91_mci_update_ios() to
|
|
* overlcock the SD bus a little by running it at MCK / 2 when the requested
|
|
* speed is 25MHz and the next highest speed is 15MHz or less. This appears
|
|
* to work on virtually all SD cards, since it is what this driver has been
|
|
* doing prior to the introduction of this option, where the overclocking vs
|
|
* underclocking decision was automaticly "overclock". Modern SD cards can
|
|
* run at 45mhz/1-bit in standard mode (high speed mode enable commands not
|
|
* sent) without problems.
|
|
*
|
|
* Speaking of high-speed mode, the rm9200 manual says the MCI device supports
|
|
* the SD v1.0 specification and can run up to 50MHz. This is interesting in
|
|
* that the SD v1.0 spec caps the speed at 25MHz; high speed mode was added in
|
|
* the v1.10 spec. Furthermore, high speed mode doesn't just crank up the
|
|
* clock, it alters the signal timing. The rm9200 MCI device doesn't support
|
|
* these altered timings. So while speeds over 25MHz may work, they only work
|
|
* in what the SD spec calls "default" speed mode, and it amounts to violating
|
|
* the spec by overclocking the bus.
|
|
*
|
|
* If you also enable 4-wire mode it's possible transfers faster than 25MHz
|
|
* will fail. On the AT91RM9200, due to bugs in the bus contention logic, if
|
|
* you have the USB host device and OHCI driver enabled will fail. Even
|
|
* underclocking to 15MHz, intermittant overrun and underrun errors occur.
|
|
* Note that you don't even need to have usb devices attached to the system,
|
|
* the errors begin to occur as soon as the OHCI driver sets the register bit
|
|
* to enable periodic transfers. It appears (based on brief investigation)
|
|
* that the usb host controller uses so much ASB bandwidth that sometimes the
|
|
* DMA for MCI transfers doesn't get a bus grant in time and data gets
|
|
* dropped. Adding even a modicum of network activity changes the symptom
|
|
* from intermittant to very frequent. Members of the AT91SAM9 family have
|
|
* corrected this problem, or are at least better about their use of the bus.
|
|
*/
|
|
#ifndef AT91_MCI_ALLOW_OVERCLOCK
|
|
#define AT91_MCI_ALLOW_OVERCLOCK 1
|
|
#endif
|
|
|
|
/*
|
|
* Allocate 2 bounce buffers we'll use to endian-swap the data due to the rm9200
|
|
* erratum. We use a pair of buffers because when reading that lets us begin
|
|
* endian-swapping the data in the first buffer while the DMA is reading into
|
|
* the second buffer. (We can't use the same trick for writing because we might
|
|
* not get all the data in the 2nd buffer swapped before the hardware needs it;
|
|
* dealing with that would add complexity to the driver.)
|
|
*
|
|
* The buffers are sized at 16K each due to the way the busdma cache sync
|
|
* operations work on arm. A dcache_inv_range() operation on a range larger
|
|
* than 16K gets turned into a dcache_wbinv_all(). That needlessly flushes the
|
|
* entire data cache, impacting overall system performance.
|
|
*/
|
|
#define BBCOUNT 2
|
|
#define BBSIZE (16*1024)
|
|
#define MAX_BLOCKS ((BBSIZE*BBCOUNT)/512)
|
|
|
|
static int mci_debug;
|
|
|
|
struct at91_mci_softc {
|
|
void *intrhand; /* Interrupt handle */
|
|
device_t dev;
|
|
int sc_cap;
|
|
#define CAP_HAS_4WIRE 1 /* Has 4 wire bus */
|
|
#define CAP_NEEDS_BYTESWAP 2 /* broken hardware needing bounce */
|
|
#define CAP_MCI1_REV2XX 4 /* MCI 1 rev 2.x */
|
|
int flags;
|
|
#define PENDING_CMD 0x01
|
|
#define PENDING_STOP 0x02
|
|
#define CMD_MULTIREAD 0x10
|
|
#define CMD_MULTIWRITE 0x20
|
|
int has_4wire;
|
|
int allow_overclock;
|
|
struct resource *irq_res; /* IRQ resource */
|
|
struct resource *mem_res; /* Memory resource */
|
|
struct mtx sc_mtx;
|
|
bus_dma_tag_t dmatag;
|
|
struct mmc_host host;
|
|
int bus_busy;
|
|
struct mmc_request *req;
|
|
struct mmc_command *curcmd;
|
|
bus_dmamap_t bbuf_map[BBCOUNT];
|
|
char * bbuf_vaddr[BBCOUNT]; /* bounce bufs in KVA space */
|
|
uint32_t bbuf_len[BBCOUNT]; /* len currently queued for bounce buf */
|
|
uint32_t bbuf_curidx; /* which bbuf is the active DMA buffer */
|
|
uint32_t xfer_offset; /* offset so far into caller's buf */
|
|
};
|
|
|
|
/* bus entry points */
|
|
static int at91_mci_probe(device_t dev);
|
|
static int at91_mci_attach(device_t dev);
|
|
static int at91_mci_detach(device_t dev);
|
|
static void at91_mci_intr(void *);
|
|
|
|
/* helper routines */
|
|
static int at91_mci_activate(device_t dev);
|
|
static void at91_mci_deactivate(device_t dev);
|
|
static int at91_mci_is_mci1rev2xx(void);
|
|
|
|
#define AT91_MCI_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
|
|
#define AT91_MCI_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
|
|
#define AT91_MCI_LOCK_INIT(_sc) \
|
|
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
|
|
"mci", MTX_DEF)
|
|
#define AT91_MCI_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
|
|
#define AT91_MCI_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
|
|
#define AT91_MCI_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
|
|
|
|
static inline uint32_t
|
|
RD4(struct at91_mci_softc *sc, bus_size_t off)
|
|
{
|
|
return (bus_read_4(sc->mem_res, off));
|
|
}
|
|
|
|
static inline void
|
|
WR4(struct at91_mci_softc *sc, bus_size_t off, uint32_t val)
|
|
{
|
|
bus_write_4(sc->mem_res, off, val);
|
|
}
|
|
|
|
static void
|
|
at91_bswap_buf(struct at91_mci_softc *sc, void * dptr, void * sptr, uint32_t memsize)
|
|
{
|
|
uint32_t * dst = (uint32_t *)dptr;
|
|
uint32_t * src = (uint32_t *)sptr;
|
|
uint32_t i;
|
|
|
|
/*
|
|
* If the hardware doesn't need byte-swapping, let bcopy() do the
|
|
* work. Use bounce buffer even if we don't need byteswap, since
|
|
* buffer may straddle a page boundry, and we don't handle
|
|
* multi-segment transfers in hardware. Seen from 'bsdlabel -w' which
|
|
* uses raw geom access to the volume. Greg Ansley (gja (at)
|
|
* ansley.com)
|
|
*/
|
|
if (!(sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
|
|
memcpy(dptr, sptr, memsize);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Nice performance boost for slightly unrolling this loop.
|
|
* (But very little extra boost for further unrolling it.)
|
|
*/
|
|
for (i = 0; i < memsize; i += 16) {
|
|
*dst++ = bswap32(*src++);
|
|
*dst++ = bswap32(*src++);
|
|
*dst++ = bswap32(*src++);
|
|
*dst++ = bswap32(*src++);
|
|
}
|
|
|
|
/* Mop up the last 1-3 words, if any. */
|
|
for (i = 0; i < (memsize & 0x0F); i += 4) {
|
|
*dst++ = bswap32(*src++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
at91_mci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
if (error != 0)
|
|
return;
|
|
*(bus_addr_t *)arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static void
|
|
at91_mci_pdc_disable(struct at91_mci_softc *sc)
|
|
{
|
|
WR4(sc, PDC_PTCR, PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS);
|
|
WR4(sc, PDC_RPR, 0);
|
|
WR4(sc, PDC_RCR, 0);
|
|
WR4(sc, PDC_RNPR, 0);
|
|
WR4(sc, PDC_RNCR, 0);
|
|
WR4(sc, PDC_TPR, 0);
|
|
WR4(sc, PDC_TCR, 0);
|
|
WR4(sc, PDC_TNPR, 0);
|
|
WR4(sc, PDC_TNCR, 0);
|
|
}
|
|
|
|
/*
|
|
* Reset the controller, then restore most of the current state.
|
|
*
|
|
* This is called after detecting an error. It's also called after stopping a
|
|
* multi-block write, to un-wedge the device so that it will handle the NOTBUSY
|
|
* signal correctly. See comments in at91_mci_stop_done() for more details.
|
|
*/
|
|
static void at91_mci_reset(struct at91_mci_softc *sc)
|
|
{
|
|
uint32_t mr;
|
|
uint32_t sdcr;
|
|
uint32_t dtor;
|
|
uint32_t imr;
|
|
|
|
at91_mci_pdc_disable(sc);
|
|
|
|
/* save current state */
|
|
|
|
imr = RD4(sc, MCI_IMR);
|
|
mr = RD4(sc, MCI_MR) & 0x7fff;
|
|
sdcr = RD4(sc, MCI_SDCR);
|
|
dtor = RD4(sc, MCI_DTOR);
|
|
|
|
/* reset the controller */
|
|
|
|
WR4(sc, MCI_IDR, 0xffffffff);
|
|
WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST);
|
|
|
|
/* restore state */
|
|
|
|
WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
|
|
WR4(sc, MCI_MR, mr);
|
|
WR4(sc, MCI_SDCR, sdcr);
|
|
WR4(sc, MCI_DTOR, dtor);
|
|
WR4(sc, MCI_IER, imr);
|
|
|
|
/*
|
|
* Make sure sdio interrupts will fire. Not sure why reading
|
|
* SR ensures that, but this is in the linux driver.
|
|
*/
|
|
|
|
RD4(sc, MCI_SR);
|
|
}
|
|
|
|
static void
|
|
at91_mci_init(device_t dev)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(dev);
|
|
uint32_t val;
|
|
|
|
WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */
|
|
WR4(sc, MCI_IDR, 0xffffffff); /* Turn off interrupts */
|
|
WR4(sc, MCI_DTOR, MCI_DTOR_DTOMUL_1M | 1);
|
|
val = MCI_MR_PDCMODE;
|
|
val |= 0x34a; /* PWSDIV = 3; CLKDIV = 74 */
|
|
// if (sc->sc_cap & CAP_MCI1_REV2XX)
|
|
// val |= MCI_MR_RDPROOF | MCI_MR_WRPROOF;
|
|
WR4(sc, MCI_MR, val);
|
|
#ifndef AT91_MCI_SLOT_B
|
|
WR4(sc, MCI_SDCR, 0); /* SLOT A, 1 bit bus */
|
|
#else
|
|
/*
|
|
* XXX Really should add second "unit" but nobody using using
|
|
* a two slot card that we know of. XXX
|
|
*/
|
|
WR4(sc, MCI_SDCR, 1); /* SLOT B, 1 bit bus */
|
|
#endif
|
|
/*
|
|
* Enable controller, including power-save. The slower clock
|
|
* of the power-save mode is only in effect when there is no
|
|
* transfer in progress, so it can be left in this mode all
|
|
* the time.
|
|
*/
|
|
WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
|
|
}
|
|
|
|
static void
|
|
at91_mci_fini(device_t dev)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(dev);
|
|
|
|
WR4(sc, MCI_IDR, 0xffffffff); /* Turn off interrupts */
|
|
at91_mci_pdc_disable(sc);
|
|
WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */
|
|
}
|
|
|
|
static int
|
|
at91_mci_probe(device_t dev)
|
|
{
|
|
#ifdef FDT
|
|
if (!ofw_bus_is_compatible(dev, "atmel,hsmci"))
|
|
return (ENXIO);
|
|
#endif
|
|
device_set_desc(dev, "MCI mmc/sd host bridge");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
at91_mci_attach(device_t dev)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(dev);
|
|
struct sysctl_ctx_list *sctx;
|
|
struct sysctl_oid *soid;
|
|
device_t child;
|
|
int err, i;
|
|
|
|
sctx = device_get_sysctl_ctx(dev);
|
|
soid = device_get_sysctl_tree(dev);
|
|
|
|
sc->dev = dev;
|
|
sc->sc_cap = 0;
|
|
if (at91_is_rm92())
|
|
sc->sc_cap |= CAP_NEEDS_BYTESWAP;
|
|
/*
|
|
* MCI1 Rev 2 controllers need some workarounds, flag if so.
|
|
*/
|
|
if (at91_mci_is_mci1rev2xx())
|
|
sc->sc_cap |= CAP_MCI1_REV2XX;
|
|
|
|
err = at91_mci_activate(dev);
|
|
if (err)
|
|
goto out;
|
|
|
|
AT91_MCI_LOCK_INIT(sc);
|
|
|
|
at91_mci_fini(dev);
|
|
at91_mci_init(dev);
|
|
|
|
/*
|
|
* Allocate DMA tags and maps and bounce buffers.
|
|
*
|
|
* The parms in the tag_create call cause the dmamem_alloc call to
|
|
* create each bounce buffer as a single contiguous buffer of BBSIZE
|
|
* bytes aligned to a 4096 byte boundary.
|
|
*
|
|
* Do not use DMA_COHERENT for these buffers because that maps the
|
|
* memory as non-cachable, which prevents cache line burst fills/writes,
|
|
* which is something we need since we're trying to overlap the
|
|
* byte-swapping with the DMA operations.
|
|
*/
|
|
err = bus_dma_tag_create(bus_get_dma_tag(dev), 4096, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BBSIZE, 1, BBSIZE, 0, NULL, NULL, &sc->dmatag);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < BBCOUNT; ++i) {
|
|
err = bus_dmamem_alloc(sc->dmatag, (void **)&sc->bbuf_vaddr[i],
|
|
BUS_DMA_NOWAIT, &sc->bbuf_map[i]);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Activate the interrupt
|
|
*/
|
|
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
|
|
NULL, at91_mci_intr, sc, &sc->intrhand);
|
|
if (err) {
|
|
AT91_MCI_LOCK_DESTROY(sc);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Allow 4-wire to be initially set via #define.
|
|
* Allow a device hint to override that.
|
|
* Allow a sysctl to override that.
|
|
*/
|
|
#if defined(AT91_MCI_HAS_4WIRE) && AT91_MCI_HAS_4WIRE != 0
|
|
sc->has_4wire = 1;
|
|
#endif
|
|
resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"4wire", &sc->has_4wire);
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "4wire",
|
|
CTLFLAG_RW, &sc->has_4wire, 0, "has 4 wire SD Card bus");
|
|
if (sc->has_4wire)
|
|
sc->sc_cap |= CAP_HAS_4WIRE;
|
|
|
|
sc->allow_overclock = AT91_MCI_ALLOW_OVERCLOCK;
|
|
resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"allow_overclock", &sc->allow_overclock);
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "allow_overclock",
|
|
CTLFLAG_RW, &sc->allow_overclock, 0,
|
|
"Allow up to 30MHz clock for 25MHz request when next highest speed 15MHz or less.");
|
|
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "debug",
|
|
CTLFLAG_RWTUN, &mci_debug, 0, "enable debug output");
|
|
|
|
/*
|
|
* Our real min freq is master_clock/512, but upper driver layers are
|
|
* going to set the min speed during card discovery, and the right speed
|
|
* for that is 400kHz, so advertise a safe value just under that.
|
|
*
|
|
* For max speed, while the rm9200 manual says the max is 50mhz, it also
|
|
* says it supports only the SD v1.0 spec, which means the real limit is
|
|
* 25mhz. On the other hand, historical use has been to slightly violate
|
|
* the standard by running the bus at 30MHz. For more information on
|
|
* that, see the comments at the top of this file.
|
|
*/
|
|
sc->host.f_min = 375000;
|
|
sc->host.f_max = at91_master_clock / 2;
|
|
if (sc->host.f_max > 25000000)
|
|
sc->host.f_max = 25000000;
|
|
sc->host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
|
|
sc->host.caps = 0;
|
|
if (sc->sc_cap & CAP_HAS_4WIRE)
|
|
sc->host.caps |= MMC_CAP_4_BIT_DATA;
|
|
|
|
child = device_add_child(dev, "mmc", 0);
|
|
device_set_ivars(dev, &sc->host);
|
|
err = bus_generic_attach(dev);
|
|
out:
|
|
if (err)
|
|
at91_mci_deactivate(dev);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
at91_mci_detach(device_t dev)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(dev);
|
|
|
|
at91_mci_fini(dev);
|
|
at91_mci_deactivate(dev);
|
|
|
|
bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[0], sc->bbuf_map[0]);
|
|
bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[1], sc->bbuf_map[1]);
|
|
bus_dma_tag_destroy(sc->dmatag);
|
|
|
|
return (EBUSY); /* XXX */
|
|
}
|
|
|
|
static int
|
|
at91_mci_activate(device_t dev)
|
|
{
|
|
struct at91_mci_softc *sc;
|
|
int rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
rid = 0;
|
|
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
|
|
RF_ACTIVE);
|
|
if (sc->mem_res == NULL)
|
|
goto errout;
|
|
|
|
rid = 0;
|
|
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_ACTIVE);
|
|
if (sc->irq_res == NULL)
|
|
goto errout;
|
|
|
|
return (0);
|
|
errout:
|
|
at91_mci_deactivate(dev);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static void
|
|
at91_mci_deactivate(device_t dev)
|
|
{
|
|
struct at91_mci_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->intrhand)
|
|
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
|
|
sc->intrhand = 0;
|
|
bus_generic_detach(sc->dev);
|
|
if (sc->mem_res)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
rman_get_rid(sc->mem_res), sc->mem_res);
|
|
sc->mem_res = 0;
|
|
if (sc->irq_res)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
rman_get_rid(sc->irq_res), sc->irq_res);
|
|
sc->irq_res = 0;
|
|
return;
|
|
}
|
|
|
|
static int
|
|
at91_mci_is_mci1rev2xx(void)
|
|
{
|
|
|
|
switch (soc_info.type) {
|
|
case AT91_T_SAM9260:
|
|
case AT91_T_SAM9263:
|
|
case AT91_T_CAP9:
|
|
case AT91_T_SAM9G10:
|
|
case AT91_T_SAM9G20:
|
|
case AT91_T_SAM9RL:
|
|
return(1);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static int
|
|
at91_mci_update_ios(device_t brdev, device_t reqdev)
|
|
{
|
|
struct at91_mci_softc *sc;
|
|
struct mmc_ios *ios;
|
|
uint32_t clkdiv;
|
|
uint32_t freq;
|
|
|
|
sc = device_get_softc(brdev);
|
|
ios = &sc->host.ios;
|
|
|
|
/*
|
|
* Calculate our closest available clock speed that doesn't exceed the
|
|
* requested speed.
|
|
*
|
|
* When overclocking is allowed, the requested clock is 25MHz, the
|
|
* computed frequency is 15MHz or smaller and clockdiv is 1, use
|
|
* clockdiv of 0 to double that. If less than 12.5MHz, double
|
|
* regardless of the overclocking setting.
|
|
*
|
|
* Whatever we come up with, store it back into ios->clock so that the
|
|
* upper layer drivers can report the actual speed of the bus.
|
|
*/
|
|
if (ios->clock == 0) {
|
|
WR4(sc, MCI_CR, MCI_CR_MCIDIS);
|
|
clkdiv = 0;
|
|
} else {
|
|
WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
|
|
if ((at91_master_clock % (ios->clock * 2)) == 0)
|
|
clkdiv = ((at91_master_clock / ios->clock) / 2) - 1;
|
|
else
|
|
clkdiv = (at91_master_clock / ios->clock) / 2;
|
|
freq = at91_master_clock / ((clkdiv+1) * 2);
|
|
if (clkdiv == 1 && ios->clock == 25000000 && freq <= 15000000) {
|
|
if (sc->allow_overclock || freq <= 12500000) {
|
|
clkdiv = 0;
|
|
freq = at91_master_clock / ((clkdiv+1) * 2);
|
|
}
|
|
}
|
|
ios->clock = freq;
|
|
}
|
|
if (ios->bus_width == bus_width_4)
|
|
WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) | MCI_SDCR_SDCBUS);
|
|
else
|
|
WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) & ~MCI_SDCR_SDCBUS);
|
|
WR4(sc, MCI_MR, (RD4(sc, MCI_MR) & ~MCI_MR_CLKDIV) | clkdiv);
|
|
/* Do we need a settle time here? */
|
|
/* XXX We need to turn the device on/off here with a GPIO pin */
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
at91_mci_start_cmd(struct at91_mci_softc *sc, struct mmc_command *cmd)
|
|
{
|
|
uint32_t cmdr, mr;
|
|
struct mmc_data *data;
|
|
|
|
sc->curcmd = cmd;
|
|
data = cmd->data;
|
|
|
|
/* XXX Upper layers don't always set this */
|
|
cmd->mrq = sc->req;
|
|
|
|
/* Begin setting up command register. */
|
|
|
|
cmdr = cmd->opcode;
|
|
|
|
if (sc->host.ios.bus_mode == opendrain)
|
|
cmdr |= MCI_CMDR_OPDCMD;
|
|
|
|
/* Set up response handling. Allow max timeout for responses. */
|
|
|
|
if (MMC_RSP(cmd->flags) == MMC_RSP_NONE)
|
|
cmdr |= MCI_CMDR_RSPTYP_NO;
|
|
else {
|
|
cmdr |= MCI_CMDR_MAXLAT;
|
|
if (cmd->flags & MMC_RSP_136)
|
|
cmdr |= MCI_CMDR_RSPTYP_136;
|
|
else
|
|
cmdr |= MCI_CMDR_RSPTYP_48;
|
|
}
|
|
|
|
/*
|
|
* If there is no data transfer, just set up the right interrupt mask
|
|
* and start the command.
|
|
*
|
|
* The interrupt mask needs to be CMDRDY plus all non-data-transfer
|
|
* errors. It's important to leave the transfer-related errors out, to
|
|
* avoid spurious timeout or crc errors on a STOP command following a
|
|
* multiblock read. When a multiblock read is in progress, sending a
|
|
* STOP in the middle of a block occasionally triggers such errors, but
|
|
* we're totally disinterested in them because we've already gotten all
|
|
* the data we wanted without error before sending the STOP command.
|
|
*/
|
|
|
|
if (data == NULL) {
|
|
uint32_t ier = MCI_SR_CMDRDY |
|
|
MCI_SR_RTOE | MCI_SR_RENDE |
|
|
MCI_SR_RCRCE | MCI_SR_RDIRE | MCI_SR_RINDE;
|
|
|
|
at91_mci_pdc_disable(sc);
|
|
|
|
if (cmd->opcode == MMC_STOP_TRANSMISSION)
|
|
cmdr |= MCI_CMDR_TRCMD_STOP;
|
|
|
|
/* Ignore response CRC on CMD2 and ACMD41, per standard. */
|
|
|
|
if (cmd->opcode == MMC_SEND_OP_COND ||
|
|
cmd->opcode == ACMD_SD_SEND_OP_COND)
|
|
ier &= ~MCI_SR_RCRCE;
|
|
|
|
if (mci_debug)
|
|
printf("CMDR %x (opcode %d) ARGR %x no data\n",
|
|
cmdr, cmd->opcode, cmd->arg);
|
|
|
|
WR4(sc, MCI_ARGR, cmd->arg);
|
|
WR4(sc, MCI_CMDR, cmdr);
|
|
WR4(sc, MCI_IDR, 0xffffffff);
|
|
WR4(sc, MCI_IER, ier);
|
|
return;
|
|
}
|
|
|
|
/* There is data, set up the transfer-related parts of the command. */
|
|
|
|
if (data->flags & MMC_DATA_READ)
|
|
cmdr |= MCI_CMDR_TRDIR;
|
|
|
|
if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE))
|
|
cmdr |= MCI_CMDR_TRCMD_START;
|
|
|
|
if (data->flags & MMC_DATA_STREAM)
|
|
cmdr |= MCI_CMDR_TRTYP_STREAM;
|
|
else if (data->flags & MMC_DATA_MULTI) {
|
|
cmdr |= MCI_CMDR_TRTYP_MULTIPLE;
|
|
sc->flags |= (data->flags & MMC_DATA_READ) ?
|
|
CMD_MULTIREAD : CMD_MULTIWRITE;
|
|
}
|
|
|
|
/*
|
|
* Disable PDC until we're ready.
|
|
*
|
|
* Set block size and turn on PDC mode for dma xfer.
|
|
* Note that the block size is the smaller of the amount of data to be
|
|
* transferred, or 512 bytes. The 512 size is fixed by the standard;
|
|
* smaller blocks are possible, but never larger.
|
|
*/
|
|
|
|
WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
|
|
|
|
mr = RD4(sc,MCI_MR) & ~MCI_MR_BLKLEN;
|
|
mr |= min(data->len, 512) << 16;
|
|
WR4(sc, MCI_MR, mr | MCI_MR_PDCMODE|MCI_MR_PDCPADV);
|
|
|
|
/*
|
|
* Set up DMA.
|
|
*
|
|
* Use bounce buffers even if we don't need to byteswap, because doing
|
|
* multi-block IO with large DMA buffers is way fast (compared to
|
|
* single-block IO), even after incurring the overhead of also copying
|
|
* from/to the caller's buffers (which may be in non-contiguous physical
|
|
* pages).
|
|
*
|
|
* In an ideal non-byteswap world we could create a dma tag that allows
|
|
* for discontiguous segments and do the IO directly from/to the
|
|
* caller's buffer(s), using ENDRX/ENDTX interrupts to chain the
|
|
* discontiguous buffers through the PDC. Someday.
|
|
*
|
|
* If a read is bigger than 2k, split it in half so that we can start
|
|
* byte-swapping the first half while the second half is on the wire.
|
|
* It would be best if we could split it into 8k chunks, but we can't
|
|
* always keep up with the byte-swapping due to other system activity,
|
|
* and if an RXBUFF interrupt happens while we're still handling the
|
|
* byte-swap from the prior buffer (IE, we haven't returned from
|
|
* handling the prior interrupt yet), then data will get dropped on the
|
|
* floor and we can't easily recover from that. The right fix for that
|
|
* would be to have the interrupt handling only keep the DMA flowing and
|
|
* enqueue filled buffers to be byte-swapped in a non-interrupt context.
|
|
* Even that won't work on the write side of things though; in that
|
|
* context we have to have all the data ready to go before starting the
|
|
* dma.
|
|
*
|
|
* XXX what about stream transfers?
|
|
*/
|
|
sc->xfer_offset = 0;
|
|
sc->bbuf_curidx = 0;
|
|
|
|
if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) {
|
|
uint32_t len;
|
|
uint32_t remaining = data->len;
|
|
bus_addr_t paddr;
|
|
int err;
|
|
|
|
if (remaining > (BBCOUNT*BBSIZE))
|
|
panic("IO read size exceeds MAXDATA\n");
|
|
|
|
if (data->flags & MMC_DATA_READ) {
|
|
if (remaining > 2048) // XXX
|
|
len = remaining / 2;
|
|
else
|
|
len = remaining;
|
|
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0],
|
|
sc->bbuf_vaddr[0], len, at91_mci_getaddr,
|
|
&paddr, BUS_DMA_NOWAIT);
|
|
if (err != 0)
|
|
panic("IO read dmamap_load failed\n");
|
|
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0],
|
|
BUS_DMASYNC_PREREAD);
|
|
WR4(sc, PDC_RPR, paddr);
|
|
WR4(sc, PDC_RCR, len / 4);
|
|
sc->bbuf_len[0] = len;
|
|
remaining -= len;
|
|
if (remaining == 0) {
|
|
sc->bbuf_len[1] = 0;
|
|
} else {
|
|
len = remaining;
|
|
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1],
|
|
sc->bbuf_vaddr[1], len, at91_mci_getaddr,
|
|
&paddr, BUS_DMA_NOWAIT);
|
|
if (err != 0)
|
|
panic("IO read dmamap_load failed\n");
|
|
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1],
|
|
BUS_DMASYNC_PREREAD);
|
|
WR4(sc, PDC_RNPR, paddr);
|
|
WR4(sc, PDC_RNCR, len / 4);
|
|
sc->bbuf_len[1] = len;
|
|
remaining -= len;
|
|
}
|
|
WR4(sc, PDC_PTCR, PDC_PTCR_RXTEN);
|
|
} else {
|
|
len = min(BBSIZE, remaining);
|
|
at91_bswap_buf(sc, sc->bbuf_vaddr[0], data->data, len);
|
|
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0],
|
|
sc->bbuf_vaddr[0], len, at91_mci_getaddr,
|
|
&paddr, BUS_DMA_NOWAIT);
|
|
if (err != 0)
|
|
panic("IO write dmamap_load failed\n");
|
|
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0],
|
|
BUS_DMASYNC_PREWRITE);
|
|
/*
|
|
* Erratum workaround: PDC transfer length on a write
|
|
* must not be smaller than 12 bytes (3 words); only
|
|
* blklen bytes (set above) are actually transferred.
|
|
*/
|
|
WR4(sc, PDC_TPR,paddr);
|
|
WR4(sc, PDC_TCR, (len < 12) ? 3 : len / 4);
|
|
sc->bbuf_len[0] = len;
|
|
remaining -= len;
|
|
if (remaining == 0) {
|
|
sc->bbuf_len[1] = 0;
|
|
} else {
|
|
len = remaining;
|
|
at91_bswap_buf(sc, sc->bbuf_vaddr[1],
|
|
((char *)data->data)+BBSIZE, len);
|
|
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1],
|
|
sc->bbuf_vaddr[1], len, at91_mci_getaddr,
|
|
&paddr, BUS_DMA_NOWAIT);
|
|
if (err != 0)
|
|
panic("IO write dmamap_load failed\n");
|
|
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1],
|
|
BUS_DMASYNC_PREWRITE);
|
|
WR4(sc, PDC_TNPR, paddr);
|
|
WR4(sc, PDC_TNCR, (len < 12) ? 3 : len / 4);
|
|
sc->bbuf_len[1] = len;
|
|
remaining -= len;
|
|
}
|
|
/* do not enable PDC xfer until CMDRDY asserted */
|
|
}
|
|
data->xfer_len = 0; /* XXX what's this? appears to be unused. */
|
|
}
|
|
|
|
if (mci_debug)
|
|
printf("CMDR %x (opcode %d) ARGR %x with data len %d\n",
|
|
cmdr, cmd->opcode, cmd->arg, cmd->data->len);
|
|
|
|
WR4(sc, MCI_ARGR, cmd->arg);
|
|
WR4(sc, MCI_CMDR, cmdr);
|
|
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_CMDRDY);
|
|
}
|
|
|
|
static void
|
|
at91_mci_next_operation(struct at91_mci_softc *sc)
|
|
{
|
|
struct mmc_request *req;
|
|
|
|
req = sc->req;
|
|
if (req == NULL)
|
|
return;
|
|
|
|
if (sc->flags & PENDING_CMD) {
|
|
sc->flags &= ~PENDING_CMD;
|
|
at91_mci_start_cmd(sc, req->cmd);
|
|
return;
|
|
} else if (sc->flags & PENDING_STOP) {
|
|
sc->flags &= ~PENDING_STOP;
|
|
at91_mci_start_cmd(sc, req->stop);
|
|
return;
|
|
}
|
|
|
|
WR4(sc, MCI_IDR, 0xffffffff);
|
|
sc->req = NULL;
|
|
sc->curcmd = NULL;
|
|
//printf("req done\n");
|
|
req->done(req);
|
|
}
|
|
|
|
static int
|
|
at91_mci_request(device_t brdev, device_t reqdev, struct mmc_request *req)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(brdev);
|
|
|
|
AT91_MCI_LOCK(sc);
|
|
if (sc->req != NULL) {
|
|
AT91_MCI_UNLOCK(sc);
|
|
return (EBUSY);
|
|
}
|
|
//printf("new req\n");
|
|
sc->req = req;
|
|
sc->flags = PENDING_CMD;
|
|
if (sc->req->stop)
|
|
sc->flags |= PENDING_STOP;
|
|
at91_mci_next_operation(sc);
|
|
AT91_MCI_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
at91_mci_get_ro(device_t brdev, device_t reqdev)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
at91_mci_acquire_host(device_t brdev, device_t reqdev)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(brdev);
|
|
int err = 0;
|
|
|
|
AT91_MCI_LOCK(sc);
|
|
while (sc->bus_busy)
|
|
msleep(sc, &sc->sc_mtx, PZERO, "mciah", hz / 5);
|
|
sc->bus_busy++;
|
|
AT91_MCI_UNLOCK(sc);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
at91_mci_release_host(device_t brdev, device_t reqdev)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(brdev);
|
|
|
|
AT91_MCI_LOCK(sc);
|
|
sc->bus_busy--;
|
|
wakeup(sc);
|
|
AT91_MCI_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
at91_mci_read_done(struct at91_mci_softc *sc, uint32_t sr)
|
|
{
|
|
struct mmc_command *cmd = sc->curcmd;
|
|
char * dataptr = (char *)cmd->data->data;
|
|
uint32_t curidx = sc->bbuf_curidx;
|
|
uint32_t len = sc->bbuf_len[curidx];
|
|
|
|
/*
|
|
* We arrive here when a DMA transfer for a read is done, whether it's
|
|
* a single or multi-block read.
|
|
*
|
|
* We byte-swap the buffer that just completed, and if that is the
|
|
* last buffer that's part of this read then we move on to the next
|
|
* operation, otherwise we wait for another ENDRX for the next bufer.
|
|
*/
|
|
|
|
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[curidx], BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->dmatag, sc->bbuf_map[curidx]);
|
|
|
|
at91_bswap_buf(sc, dataptr + sc->xfer_offset, sc->bbuf_vaddr[curidx], len);
|
|
|
|
if (mci_debug) {
|
|
printf("read done sr %x curidx %d len %d xfer_offset %d\n",
|
|
sr, curidx, len, sc->xfer_offset);
|
|
}
|
|
|
|
sc->xfer_offset += len;
|
|
sc->bbuf_curidx = !curidx; /* swap buffers */
|
|
|
|
/*
|
|
* If we've transferred all the data, move on to the next operation.
|
|
*
|
|
* If we're still transferring the last buffer, RNCR is already zero but
|
|
* we have to write a zero anyway to clear the ENDRX status so we don't
|
|
* re-interrupt until the last buffer is done.
|
|
*/
|
|
if (sc->xfer_offset == cmd->data->len) {
|
|
WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
|
|
cmd->error = MMC_ERR_NONE;
|
|
at91_mci_next_operation(sc);
|
|
} else {
|
|
WR4(sc, PDC_RNCR, 0);
|
|
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_ENDRX);
|
|
}
|
|
}
|
|
|
|
static void
|
|
at91_mci_write_done(struct at91_mci_softc *sc, uint32_t sr)
|
|
{
|
|
struct mmc_command *cmd = sc->curcmd;
|
|
|
|
/*
|
|
* We arrive here when the entire DMA transfer for a write is done,
|
|
* whether it's a single or multi-block write. If it's multi-block we
|
|
* have to immediately move on to the next operation which is to send
|
|
* the stop command. If it's a single-block transfer we need to wait
|
|
* for NOTBUSY, but if that's already asserted we can avoid another
|
|
* interrupt and just move on to completing the request right away.
|
|
*/
|
|
|
|
WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
|
|
|
|
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx],
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx]);
|
|
|
|
if ((cmd->data->flags & MMC_DATA_MULTI) || (sr & MCI_SR_NOTBUSY)) {
|
|
cmd->error = MMC_ERR_NONE;
|
|
at91_mci_next_operation(sc);
|
|
} else {
|
|
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
|
|
}
|
|
}
|
|
|
|
static void
|
|
at91_mci_notbusy(struct at91_mci_softc *sc)
|
|
{
|
|
struct mmc_command *cmd = sc->curcmd;
|
|
|
|
/*
|
|
* We arrive here by either completion of a single-block write, or
|
|
* completion of the stop command that ended a multi-block write (and,
|
|
* I suppose, after a card-select or erase, but I haven't tested
|
|
* those). Anyway, we're done and it's time to move on to the next
|
|
* command.
|
|
*/
|
|
|
|
cmd->error = MMC_ERR_NONE;
|
|
at91_mci_next_operation(sc);
|
|
}
|
|
|
|
static void
|
|
at91_mci_stop_done(struct at91_mci_softc *sc, uint32_t sr)
|
|
{
|
|
struct mmc_command *cmd = sc->curcmd;
|
|
|
|
/*
|
|
* We arrive here after receiving CMDRDY for a MMC_STOP_TRANSMISSION
|
|
* command. Depending on the operation being stopped, we may have to
|
|
* do some unusual things to work around hardware bugs.
|
|
*/
|
|
|
|
/*
|
|
* This is known to be true of at91rm9200 hardware; it may or may not
|
|
* apply to more recent chips:
|
|
*
|
|
* After stopping a multi-block write, the NOTBUSY bit in MCI_SR does
|
|
* not properly reflect the actual busy state of the card as signaled
|
|
* on the DAT0 line; it always claims the card is not-busy. If we
|
|
* believe that and let operations continue, following commands will
|
|
* fail with response timeouts (except of course MMC_SEND_STATUS -- it
|
|
* indicates the card is busy in the PRG state, which was the smoking
|
|
* gun that showed MCI_SR NOTBUSY was not tracking DAT0 correctly).
|
|
*
|
|
* The atmel docs are emphatic: "This flag [NOTBUSY] must be used only
|
|
* for Write Operations." I guess technically since we sent a stop
|
|
* it's not a write operation anymore. But then just what did they
|
|
* think it meant for the stop command to have "...an optional busy
|
|
* signal transmitted on the data line" according to the SD spec?
|
|
*
|
|
* I tried a variety of things to un-wedge the MCI and get the status
|
|
* register to reflect NOTBUSY correctly again, but the only thing
|
|
* that worked was a full device reset. It feels like an awfully big
|
|
* hammer, but doing a full reset after every multiblock write is
|
|
* still faster than doing single-block IO (by almost two orders of
|
|
* magnitude: 20KB/sec improves to about 1.8MB/sec best case).
|
|
*
|
|
* After doing the reset, wait for a NOTBUSY interrupt before
|
|
* continuing with the next operation.
|
|
*
|
|
* This workaround breaks multiwrite on the rev2xx parts, but some other
|
|
* workaround is needed.
|
|
*/
|
|
if ((sc->flags & CMD_MULTIWRITE) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
|
|
at91_mci_reset(sc);
|
|
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is known to be true of at91rm9200 hardware; it may or may not
|
|
* apply to more recent chips:
|
|
*
|
|
* After stopping a multi-block read, loop to read and discard any
|
|
* data that coasts in after we sent the stop command. The docs don't
|
|
* say anything about it, but empirical testing shows that 1-3
|
|
* additional words of data get buffered up in some unmentioned
|
|
* internal fifo and if we don't read and discard them here they end
|
|
* up on the front of the next read DMA transfer we do.
|
|
*
|
|
* This appears to be unnecessary for rev2xx parts.
|
|
*/
|
|
if ((sc->flags & CMD_MULTIREAD) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
|
|
uint32_t sr;
|
|
int count = 0;
|
|
|
|
do {
|
|
sr = RD4(sc, MCI_SR);
|
|
if (sr & MCI_SR_RXRDY) {
|
|
RD4(sc, MCI_RDR);
|
|
++count;
|
|
}
|
|
} while (sr & MCI_SR_RXRDY);
|
|
at91_mci_reset(sc);
|
|
}
|
|
|
|
cmd->error = MMC_ERR_NONE;
|
|
at91_mci_next_operation(sc);
|
|
|
|
}
|
|
|
|
static void
|
|
at91_mci_cmdrdy(struct at91_mci_softc *sc, uint32_t sr)
|
|
{
|
|
struct mmc_command *cmd = sc->curcmd;
|
|
int i;
|
|
|
|
if (cmd == NULL)
|
|
return;
|
|
|
|
/*
|
|
* We get here at the end of EVERY command. We retrieve the command
|
|
* response (if any) then decide what to do next based on the command.
|
|
*/
|
|
|
|
if (cmd->flags & MMC_RSP_PRESENT) {
|
|
for (i = 0; i < ((cmd->flags & MMC_RSP_136) ? 4 : 1); i++) {
|
|
cmd->resp[i] = RD4(sc, MCI_RSPR + i * 4);
|
|
if (mci_debug)
|
|
printf("RSPR[%d] = %x sr=%x\n", i, cmd->resp[i], sr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this was a stop command, go handle the various special
|
|
* conditions (read: bugs) that have to be dealt with following a stop.
|
|
*/
|
|
if (cmd->opcode == MMC_STOP_TRANSMISSION) {
|
|
at91_mci_stop_done(sc, sr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this command can continue to assert BUSY beyond the response then
|
|
* we need to wait for NOTBUSY before the command is really done.
|
|
*
|
|
* Note that this may not work properly on the at91rm9200. It certainly
|
|
* doesn't work for the STOP command that follows a multi-block write,
|
|
* so post-stop CMDRDY is handled separately; see the special handling
|
|
* in at91_mci_stop_done().
|
|
*
|
|
* Beside STOP, there are other R1B-type commands that use the busy
|
|
* signal after CMDRDY: CMD7 (card select), CMD28-29 (write protect),
|
|
* CMD38 (erase). I haven't tested any of them, but I rather expect
|
|
* them all to have the same sort of problem with MCI_SR not actually
|
|
* reflecting the state of the DAT0-line busy indicator. So this code
|
|
* may need to grow some sort of special handling for them too. (This
|
|
* just in: CMD7 isn't a problem right now because dev/mmc.c incorrectly
|
|
* sets the response flags to R1 rather than R1B.) XXX
|
|
*/
|
|
if ((cmd->flags & MMC_RSP_BUSY)) {
|
|
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If there is a data transfer with this command, then...
|
|
* - If it's a read, we need to wait for ENDRX.
|
|
* - If it's a write, now is the time to enable the PDC, and we need
|
|
* to wait for a BLKE that follows a TXBUFE, because if we're doing
|
|
* a split transfer we get a BLKE after the first half (when TPR/TCR
|
|
* get loaded from TNPR/TNCR). So first we wait for the TXBUFE, and
|
|
* the handling for that interrupt will then invoke the wait for the
|
|
* subsequent BLKE which indicates actual completion.
|
|
*/
|
|
if (cmd->data) {
|
|
uint32_t ier;
|
|
if (cmd->data->flags & MMC_DATA_READ) {
|
|
ier = MCI_SR_ENDRX;
|
|
} else {
|
|
ier = MCI_SR_TXBUFE;
|
|
WR4(sc, PDC_PTCR, PDC_PTCR_TXTEN);
|
|
}
|
|
WR4(sc, MCI_IER, MCI_SR_ERROR | ier);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we made it to here, we don't need to wait for anything more for
|
|
* the current command, move on to the next command (will complete the
|
|
* request if there is no next command).
|
|
*/
|
|
cmd->error = MMC_ERR_NONE;
|
|
at91_mci_next_operation(sc);
|
|
}
|
|
|
|
static void
|
|
at91_mci_intr(void *arg)
|
|
{
|
|
struct at91_mci_softc *sc = (struct at91_mci_softc*)arg;
|
|
struct mmc_command *cmd = sc->curcmd;
|
|
uint32_t sr, isr;
|
|
|
|
AT91_MCI_LOCK(sc);
|
|
|
|
sr = RD4(sc, MCI_SR);
|
|
isr = sr & RD4(sc, MCI_IMR);
|
|
|
|
if (mci_debug)
|
|
printf("i 0x%x sr 0x%x\n", isr, sr);
|
|
|
|
/*
|
|
* All interrupts are one-shot; disable it now.
|
|
* The next operation will re-enable whatever interrupts it wants.
|
|
*/
|
|
WR4(sc, MCI_IDR, isr);
|
|
if (isr & MCI_SR_ERROR) {
|
|
if (isr & (MCI_SR_RTOE | MCI_SR_DTOE))
|
|
cmd->error = MMC_ERR_TIMEOUT;
|
|
else if (isr & (MCI_SR_RCRCE | MCI_SR_DCRCE))
|
|
cmd->error = MMC_ERR_BADCRC;
|
|
else if (isr & (MCI_SR_OVRE | MCI_SR_UNRE))
|
|
cmd->error = MMC_ERR_FIFO;
|
|
else
|
|
cmd->error = MMC_ERR_FAILED;
|
|
/*
|
|
* CMD8 is used to probe for SDHC cards, a standard SD card
|
|
* will get a response timeout; don't report it because it's a
|
|
* normal and expected condition. One might argue that all
|
|
* error reporting should be left to higher levels, but when
|
|
* they report at all it's always EIO, which isn't very
|
|
* helpful. XXX bootverbose?
|
|
*/
|
|
if (cmd->opcode != 8) {
|
|
device_printf(sc->dev,
|
|
"IO error; status MCI_SR = 0x%b cmd opcode = %d%s\n",
|
|
sr, MCI_SR_BITSTRING, cmd->opcode,
|
|
(cmd->opcode != 12) ? "" :
|
|
(sc->flags & CMD_MULTIREAD) ? " after read" : " after write");
|
|
/* XXX not sure RTOE needs a full reset, just a retry */
|
|
at91_mci_reset(sc);
|
|
}
|
|
at91_mci_next_operation(sc);
|
|
} else {
|
|
if (isr & MCI_SR_TXBUFE) {
|
|
// printf("TXBUFE\n");
|
|
/*
|
|
* We need to wait for a BLKE that follows TXBUFE
|
|
* (intermediate BLKEs might happen after ENDTXes if
|
|
* we're chaining multiple buffers). If BLKE is also
|
|
* asserted at the time we get TXBUFE, we can avoid
|
|
* another interrupt and process it right away, below.
|
|
*/
|
|
if (sr & MCI_SR_BLKE)
|
|
isr |= MCI_SR_BLKE;
|
|
else
|
|
WR4(sc, MCI_IER, MCI_SR_BLKE);
|
|
}
|
|
if (isr & MCI_SR_RXBUFF) {
|
|
// printf("RXBUFF\n");
|
|
}
|
|
if (isr & MCI_SR_ENDTX) {
|
|
// printf("ENDTX\n");
|
|
}
|
|
if (isr & MCI_SR_ENDRX) {
|
|
// printf("ENDRX\n");
|
|
at91_mci_read_done(sc, sr);
|
|
}
|
|
if (isr & MCI_SR_NOTBUSY) {
|
|
// printf("NOTBUSY\n");
|
|
at91_mci_notbusy(sc);
|
|
}
|
|
if (isr & MCI_SR_DTIP) {
|
|
// printf("Data transfer in progress\n");
|
|
}
|
|
if (isr & MCI_SR_BLKE) {
|
|
// printf("Block transfer end\n");
|
|
at91_mci_write_done(sc, sr);
|
|
}
|
|
if (isr & MCI_SR_TXRDY) {
|
|
// printf("Ready to transmit\n");
|
|
}
|
|
if (isr & MCI_SR_RXRDY) {
|
|
// printf("Ready to receive\n");
|
|
}
|
|
if (isr & MCI_SR_CMDRDY) {
|
|
// printf("Command ready\n");
|
|
at91_mci_cmdrdy(sc, sr);
|
|
}
|
|
}
|
|
AT91_MCI_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
at91_mci_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(bus);
|
|
|
|
switch (which) {
|
|
default:
|
|
return (EINVAL);
|
|
case MMCBR_IVAR_BUS_MODE:
|
|
*(int *)result = sc->host.ios.bus_mode;
|
|
break;
|
|
case MMCBR_IVAR_BUS_WIDTH:
|
|
*(int *)result = sc->host.ios.bus_width;
|
|
break;
|
|
case MMCBR_IVAR_CHIP_SELECT:
|
|
*(int *)result = sc->host.ios.chip_select;
|
|
break;
|
|
case MMCBR_IVAR_CLOCK:
|
|
*(int *)result = sc->host.ios.clock;
|
|
break;
|
|
case MMCBR_IVAR_F_MIN:
|
|
*(int *)result = sc->host.f_min;
|
|
break;
|
|
case MMCBR_IVAR_F_MAX:
|
|
*(int *)result = sc->host.f_max;
|
|
break;
|
|
case MMCBR_IVAR_HOST_OCR:
|
|
*(int *)result = sc->host.host_ocr;
|
|
break;
|
|
case MMCBR_IVAR_MODE:
|
|
*(int *)result = sc->host.mode;
|
|
break;
|
|
case MMCBR_IVAR_OCR:
|
|
*(int *)result = sc->host.ocr;
|
|
break;
|
|
case MMCBR_IVAR_POWER_MODE:
|
|
*(int *)result = sc->host.ios.power_mode;
|
|
break;
|
|
case MMCBR_IVAR_VDD:
|
|
*(int *)result = sc->host.ios.vdd;
|
|
break;
|
|
case MMCBR_IVAR_CAPS:
|
|
if (sc->has_4wire) {
|
|
sc->sc_cap |= CAP_HAS_4WIRE;
|
|
sc->host.caps |= MMC_CAP_4_BIT_DATA;
|
|
} else {
|
|
sc->sc_cap &= ~CAP_HAS_4WIRE;
|
|
sc->host.caps &= ~MMC_CAP_4_BIT_DATA;
|
|
}
|
|
*(int *)result = sc->host.caps;
|
|
break;
|
|
case MMCBR_IVAR_MAX_DATA:
|
|
/*
|
|
* Something is wrong with the 2x parts and multiblock, so
|
|
* just do 1 block at a time for now, which really kills
|
|
* performance.
|
|
*/
|
|
if (sc->sc_cap & CAP_MCI1_REV2XX)
|
|
*(int *)result = 1;
|
|
else
|
|
*(int *)result = MAX_BLOCKS;
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
at91_mci_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
|
|
{
|
|
struct at91_mci_softc *sc = device_get_softc(bus);
|
|
|
|
switch (which) {
|
|
default:
|
|
return (EINVAL);
|
|
case MMCBR_IVAR_BUS_MODE:
|
|
sc->host.ios.bus_mode = value;
|
|
break;
|
|
case MMCBR_IVAR_BUS_WIDTH:
|
|
sc->host.ios.bus_width = value;
|
|
break;
|
|
case MMCBR_IVAR_CHIP_SELECT:
|
|
sc->host.ios.chip_select = value;
|
|
break;
|
|
case MMCBR_IVAR_CLOCK:
|
|
sc->host.ios.clock = value;
|
|
break;
|
|
case MMCBR_IVAR_MODE:
|
|
sc->host.mode = value;
|
|
break;
|
|
case MMCBR_IVAR_OCR:
|
|
sc->host.ocr = value;
|
|
break;
|
|
case MMCBR_IVAR_POWER_MODE:
|
|
sc->host.ios.power_mode = value;
|
|
break;
|
|
case MMCBR_IVAR_VDD:
|
|
sc->host.ios.vdd = value;
|
|
break;
|
|
/* These are read-only */
|
|
case MMCBR_IVAR_CAPS:
|
|
case MMCBR_IVAR_HOST_OCR:
|
|
case MMCBR_IVAR_F_MIN:
|
|
case MMCBR_IVAR_F_MAX:
|
|
case MMCBR_IVAR_MAX_DATA:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static device_method_t at91_mci_methods[] = {
|
|
/* device_if */
|
|
DEVMETHOD(device_probe, at91_mci_probe),
|
|
DEVMETHOD(device_attach, at91_mci_attach),
|
|
DEVMETHOD(device_detach, at91_mci_detach),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_read_ivar, at91_mci_read_ivar),
|
|
DEVMETHOD(bus_write_ivar, at91_mci_write_ivar),
|
|
|
|
/* mmcbr_if */
|
|
DEVMETHOD(mmcbr_update_ios, at91_mci_update_ios),
|
|
DEVMETHOD(mmcbr_request, at91_mci_request),
|
|
DEVMETHOD(mmcbr_get_ro, at91_mci_get_ro),
|
|
DEVMETHOD(mmcbr_acquire_host, at91_mci_acquire_host),
|
|
DEVMETHOD(mmcbr_release_host, at91_mci_release_host),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t at91_mci_driver = {
|
|
"at91_mci",
|
|
at91_mci_methods,
|
|
sizeof(struct at91_mci_softc),
|
|
};
|
|
|
|
static devclass_t at91_mci_devclass;
|
|
|
|
#ifdef FDT
|
|
DRIVER_MODULE(at91_mci, simplebus, at91_mci_driver, at91_mci_devclass, NULL,
|
|
NULL);
|
|
#else
|
|
DRIVER_MODULE(at91_mci, atmelarm, at91_mci_driver, at91_mci_devclass, NULL,
|
|
NULL);
|
|
#endif
|
|
DRIVER_MODULE(mmc, at91_mci, mmc_driver, mmc_devclass, NULL, NULL);
|