ed2ef52176
http://info.iet.unipi.it/~luigi/vale/ VALE lets you dynamically instantiate multiple software bridges that talk the netmap API (and are *extremely* fast), so you can test netmap applications without the need for high end hardware. This is particularly useful as I am completing a netmap-aware version of ipfw, and VALE provides an excellent testing platform. Also, I also have netmap backends for qemu mostly ready for commit to the port, and this too will let you interconnect virtual machines at high speed without fiddling with bridges, tap or other slow solutions. The API for applications is unchanged, so you can use the code in tools/tools/netmap (which i will update soon) on the VALE ports. This commit also syncs the code with the one in my internal repository, so you will see some conditional code for other platforms. The code should run mostly unmodified on stable/9 so people interested in trying it can just copy sys/dev/netmap/ and sys/net/netmap*.h from HEAD VALE is joint work with my colleague Giuseppe Lettieri, and is partly supported by the EU Projects CHANGE and OPENLAB
1964 lines
54 KiB
C
1964 lines
54 KiB
C
/*
|
|
* Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#define NM_BRIDGE
|
|
|
|
/*
|
|
* This module supports memory mapped access to network devices,
|
|
* see netmap(4).
|
|
*
|
|
* The module uses a large, memory pool allocated by the kernel
|
|
* and accessible as mmapped memory by multiple userspace threads/processes.
|
|
* The memory pool contains packet buffers and "netmap rings",
|
|
* i.e. user-accessible copies of the interface's queues.
|
|
*
|
|
* Access to the network card works like this:
|
|
* 1. a process/thread issues one or more open() on /dev/netmap, to create
|
|
* select()able file descriptor on which events are reported.
|
|
* 2. on each descriptor, the process issues an ioctl() to identify
|
|
* the interface that should report events to the file descriptor.
|
|
* 3. on each descriptor, the process issues an mmap() request to
|
|
* map the shared memory region within the process' address space.
|
|
* The list of interesting queues is indicated by a location in
|
|
* the shared memory region.
|
|
* 4. using the functions in the netmap(4) userspace API, a process
|
|
* can look up the occupation state of a queue, access memory buffers,
|
|
* and retrieve received packets or enqueue packets to transmit.
|
|
* 5. using some ioctl()s the process can synchronize the userspace view
|
|
* of the queue with the actual status in the kernel. This includes both
|
|
* receiving the notification of new packets, and transmitting new
|
|
* packets on the output interface.
|
|
* 6. select() or poll() can be used to wait for events on individual
|
|
* transmit or receive queues (or all queues for a given interface).
|
|
*/
|
|
|
|
#ifdef linux
|
|
#include "bsd_glue.h"
|
|
static netdev_tx_t netmap_start_linux(struct sk_buff *skb, struct net_device *dev);
|
|
#endif /* linux */
|
|
#ifdef __APPLE__
|
|
#include "osx_glue.h"
|
|
#endif
|
|
#ifdef __FreeBSD__
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/module.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h> /* defines used in kernel.h */
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h> /* types used in module initialization */
|
|
#include <sys/conf.h> /* cdevsw struct */
|
|
#include <sys/uio.h> /* uio struct */
|
|
#include <sys/sockio.h>
|
|
#include <sys/socketvar.h> /* struct socket */
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h> /* PROT_EXEC */
|
|
#include <sys/poll.h>
|
|
#include <sys/proc.h>
|
|
#include <vm/vm.h> /* vtophys */
|
|
#include <vm/pmap.h> /* vtophys */
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <machine/bus.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sysctl.h>
|
|
#include <net/if.h>
|
|
#include <net/bpf.h> /* BIOCIMMEDIATE */
|
|
#include <net/vnet.h>
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
#include <machine/bus.h> /* bus_dmamap_* */
|
|
|
|
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
|
|
#endif /* __FreeBSD__ */
|
|
|
|
/*
|
|
* lock and unlock for the netmap memory allocator
|
|
*/
|
|
#define NMA_LOCK() mtx_lock(&nm_mem->nm_mtx);
|
|
#define NMA_UNLOCK() mtx_unlock(&nm_mem->nm_mtx);
|
|
struct netmap_mem_d;
|
|
static struct netmap_mem_d *nm_mem; /* Our memory allocator. */
|
|
|
|
u_int netmap_total_buffers;
|
|
char *netmap_buffer_base; /* address of an invalid buffer */
|
|
|
|
/* user-controlled variables */
|
|
int netmap_verbose;
|
|
|
|
static int netmap_no_timestamp; /* don't timestamp on rxsync */
|
|
|
|
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
|
|
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
|
|
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
|
|
int netmap_buf_size = 2048;
|
|
TUNABLE_INT("hw.netmap.buf_size", &netmap_buf_size);
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size,
|
|
CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers");
|
|
int netmap_mitigate = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
|
|
int netmap_no_pendintr = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
|
|
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
|
|
|
|
int netmap_drop = 0; /* debugging */
|
|
int netmap_flags = 0; /* debug flags */
|
|
int netmap_copy = 0; /* debugging, copy content */
|
|
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , "");
|
|
|
|
#ifdef NM_BRIDGE /* support for netmap bridge */
|
|
|
|
/*
|
|
* system parameters.
|
|
*
|
|
* All switched ports have prefix NM_NAME.
|
|
* The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap,
|
|
* so a practical upper bound is 64).
|
|
* Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet).
|
|
* The virtual interfaces use per-queue lock instead of core lock.
|
|
* In the tx loop, we aggregate traffic in batches to make all operations
|
|
* faster. The batch size is NM_BDG_BATCH
|
|
*/
|
|
#define NM_NAME "vale" /* prefix for the interface */
|
|
#define NM_BDG_MAXPORTS 16 /* up to 64 ? */
|
|
#define NM_BRIDGE_RINGSIZE 1024 /* in the device */
|
|
#define NM_BDG_HASH 1024 /* forwarding table entries */
|
|
#define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */
|
|
#define NM_BRIDGES 4 /* number of bridges */
|
|
int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , "");
|
|
#ifdef linux
|
|
#define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++)
|
|
#define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1)
|
|
#else /* !linux */
|
|
#define ADD_BDG_REF(ifp) (ifp)->if_refcount++
|
|
#define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount)
|
|
#ifdef __FreeBSD__
|
|
#include <sys/endian.h>
|
|
#include <sys/refcount.h>
|
|
#endif /* __FreeBSD__ */
|
|
#endif /* !linux */
|
|
|
|
static void bdg_netmap_attach(struct ifnet *ifp);
|
|
static int bdg_netmap_reg(struct ifnet *ifp, int onoff);
|
|
/* per-tx-queue entry */
|
|
struct nm_bdg_fwd { /* forwarding entry for a bridge */
|
|
void *buf;
|
|
uint64_t dst; /* dst mask */
|
|
uint32_t src; /* src index ? */
|
|
uint16_t len; /* src len */
|
|
#if 0
|
|
uint64_t src_mac; /* ignore 2 MSBytes */
|
|
uint64_t dst_mac; /* ignore 2 MSBytes */
|
|
uint32_t dst_idx; /* dst index in fwd table */
|
|
uint32_t dst_buf; /* where we copy to */
|
|
#endif
|
|
};
|
|
|
|
struct nm_hash_ent {
|
|
uint64_t mac; /* the top 2 bytes are the epoch */
|
|
uint64_t ports;
|
|
};
|
|
|
|
/*
|
|
* Interfaces for a bridge are all in ports[].
|
|
* The array has fixed size, an empty entry does not terminate
|
|
* the search.
|
|
*/
|
|
struct nm_bridge {
|
|
struct ifnet *bdg_ports[NM_BDG_MAXPORTS];
|
|
int n_ports;
|
|
uint64_t act_ports;
|
|
int freelist; /* first buffer index */
|
|
NM_SELINFO_T si; /* poll/select wait queue */
|
|
NM_LOCK_T bdg_lock; /* protect the selinfo ? */
|
|
|
|
/* the forwarding table, MAC+ports */
|
|
struct nm_hash_ent ht[NM_BDG_HASH];
|
|
|
|
int namelen; /* 0 means free */
|
|
char basename[IFNAMSIZ];
|
|
};
|
|
|
|
struct nm_bridge nm_bridges[NM_BRIDGES];
|
|
|
|
#define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock)
|
|
#define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock)
|
|
|
|
/*
|
|
* NA(ifp)->bdg_port port index
|
|
*/
|
|
|
|
#ifndef linux
|
|
static inline void prefetch (const void *x)
|
|
{
|
|
__asm volatile("prefetcht0 %0" :: "m" (*(const unsigned long *)x));
|
|
}
|
|
#endif /* !linux */
|
|
|
|
// XXX only for multiples of 64 bytes, non overlapped.
|
|
static inline void
|
|
pkt_copy(void *_src, void *_dst, int l)
|
|
{
|
|
uint64_t *src = _src;
|
|
uint64_t *dst = _dst;
|
|
if (unlikely(l >= 1024)) {
|
|
bcopy(src, dst, l);
|
|
return;
|
|
}
|
|
for (; likely(l > 0); l-=64) {
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* locate a bridge among the existing ones.
|
|
* a ':' in the name terminates the bridge name. Otherwise, just NM_NAME.
|
|
* We assume that this is called with a name of at least NM_NAME chars.
|
|
*/
|
|
static struct nm_bridge *
|
|
nm_find_bridge(const char *name)
|
|
{
|
|
int i, l, namelen, e;
|
|
struct nm_bridge *b = NULL;
|
|
|
|
namelen = strlen(NM_NAME); /* base length */
|
|
l = strlen(name); /* actual length */
|
|
for (i = namelen + 1; i < l; i++) {
|
|
if (name[i] == ':') {
|
|
namelen = i;
|
|
break;
|
|
}
|
|
}
|
|
if (namelen >= IFNAMSIZ)
|
|
namelen = IFNAMSIZ;
|
|
ND("--- prefix is '%.*s' ---", namelen, name);
|
|
|
|
/* use the first entry for locking */
|
|
BDG_LOCK(nm_bridges); // XXX do better
|
|
for (e = -1, i = 1; i < NM_BRIDGES; i++) {
|
|
b = nm_bridges + i;
|
|
if (b->namelen == 0)
|
|
e = i; /* record empty slot */
|
|
else if (strncmp(name, b->basename, namelen) == 0) {
|
|
ND("found '%.*s' at %d", namelen, name, i);
|
|
break;
|
|
}
|
|
}
|
|
if (i == NM_BRIDGES) { /* all full */
|
|
if (e == -1) { /* no empty slot */
|
|
b = NULL;
|
|
} else {
|
|
b = nm_bridges + e;
|
|
strncpy(b->basename, name, namelen);
|
|
b->namelen = namelen;
|
|
}
|
|
}
|
|
BDG_UNLOCK(nm_bridges);
|
|
return b;
|
|
}
|
|
#endif /* NM_BRIDGE */
|
|
|
|
/*------------- memory allocator -----------------*/
|
|
#ifdef NETMAP_MEM2
|
|
#include "netmap_mem2.c"
|
|
#else /* !NETMAP_MEM2 */
|
|
#include "netmap_mem1.c"
|
|
#endif /* !NETMAP_MEM2 */
|
|
/*------------ end of memory allocator ----------*/
|
|
|
|
/* Structure associated to each thread which registered an interface. */
|
|
struct netmap_priv_d {
|
|
struct netmap_if *np_nifp; /* netmap interface descriptor. */
|
|
|
|
struct ifnet *np_ifp; /* device for which we hold a reference */
|
|
int np_ringid; /* from the ioctl */
|
|
u_int np_qfirst, np_qlast; /* range of rings to scan */
|
|
uint16_t np_txpoll;
|
|
};
|
|
|
|
|
|
/*
|
|
* File descriptor's private data destructor.
|
|
*
|
|
* Call nm_register(ifp,0) to stop netmap mode on the interface and
|
|
* revert to normal operation. We expect that np_ifp has not gone.
|
|
*/
|
|
static void
|
|
netmap_dtor_locked(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_if *nifp = priv->np_nifp;
|
|
|
|
na->refcount--;
|
|
if (na->refcount <= 0) { /* last instance */
|
|
u_int i, j, lim;
|
|
|
|
D("deleting last netmap instance for %s", ifp->if_xname);
|
|
/*
|
|
* there is a race here with *_netmap_task() and
|
|
* netmap_poll(), which don't run under NETMAP_REG_LOCK.
|
|
* na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP
|
|
* (aka NETMAP_DELETING(na)) are a unique marker that the
|
|
* device is dying.
|
|
* Before destroying stuff we sleep a bit, and then complete
|
|
* the job. NIOCREG should realize the condition and
|
|
* loop until they can continue; the other routines
|
|
* should check the condition at entry and quit if
|
|
* they cannot run.
|
|
*/
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
tsleep(na, 0, "NIOCUNREG", 4);
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
|
|
/* Wake up any sleeping threads. netmap_poll will
|
|
* then return POLLERR
|
|
*/
|
|
for (i = 0; i < na->num_tx_rings + 1; i++)
|
|
selwakeuppri(&na->tx_rings[i].si, PI_NET);
|
|
for (i = 0; i < na->num_rx_rings + 1; i++)
|
|
selwakeuppri(&na->rx_rings[i].si, PI_NET);
|
|
selwakeuppri(&na->tx_si, PI_NET);
|
|
selwakeuppri(&na->rx_si, PI_NET);
|
|
/* release all buffers */
|
|
NMA_LOCK();
|
|
for (i = 0; i < na->num_tx_rings + 1; i++) {
|
|
struct netmap_ring *ring = na->tx_rings[i].ring;
|
|
lim = na->tx_rings[i].nkr_num_slots;
|
|
for (j = 0; j < lim; j++)
|
|
netmap_free_buf(nifp, ring->slot[j].buf_idx);
|
|
}
|
|
for (i = 0; i < na->num_rx_rings + 1; i++) {
|
|
struct netmap_ring *ring = na->rx_rings[i].ring;
|
|
lim = na->rx_rings[i].nkr_num_slots;
|
|
for (j = 0; j < lim; j++)
|
|
netmap_free_buf(nifp, ring->slot[j].buf_idx);
|
|
}
|
|
NMA_UNLOCK();
|
|
netmap_free_rings(na);
|
|
wakeup(na);
|
|
}
|
|
netmap_if_free(nifp);
|
|
}
|
|
|
|
static void
|
|
nm_if_rele(struct ifnet *ifp)
|
|
{
|
|
#ifndef NM_BRIDGE
|
|
if_rele(ifp);
|
|
#else /* NM_BRIDGE */
|
|
int i, full;
|
|
struct nm_bridge *b;
|
|
|
|
if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) {
|
|
if_rele(ifp);
|
|
return;
|
|
}
|
|
if (!DROP_BDG_REF(ifp))
|
|
return;
|
|
b = ifp->if_bridge;
|
|
BDG_LOCK(nm_bridges);
|
|
BDG_LOCK(b);
|
|
ND("want to disconnect %s from the bridge", ifp->if_xname);
|
|
full = 0;
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
if (b->bdg_ports[i] == ifp) {
|
|
b->bdg_ports[i] = NULL;
|
|
bzero(ifp, sizeof(*ifp));
|
|
free(ifp, M_DEVBUF);
|
|
break;
|
|
}
|
|
else if (b->bdg_ports[i] != NULL)
|
|
full = 1;
|
|
}
|
|
BDG_UNLOCK(b);
|
|
if (full == 0) {
|
|
ND("freeing bridge %d", b - nm_bridges);
|
|
b->namelen = 0;
|
|
}
|
|
BDG_UNLOCK(nm_bridges);
|
|
if (i == NM_BDG_MAXPORTS)
|
|
D("ouch, cannot find ifp to remove");
|
|
#endif /* NM_BRIDGE */
|
|
}
|
|
|
|
static void
|
|
netmap_dtor(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
netmap_dtor_locked(data);
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
|
|
nm_if_rele(ifp);
|
|
bzero(priv, sizeof(*priv)); /* XXX for safety */
|
|
free(priv, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*
|
|
* mmap(2) support for the "netmap" device.
|
|
*
|
|
* Expose all the memory previously allocated by our custom memory
|
|
* allocator: this way the user has only to issue a single mmap(2), and
|
|
* can work on all the data structures flawlessly.
|
|
*
|
|
* Return 0 on success, -1 otherwise.
|
|
*/
|
|
|
|
#ifdef __FreeBSD__
|
|
static int
|
|
netmap_mmap(__unused struct cdev *dev,
|
|
#if __FreeBSD_version < 900000
|
|
vm_offset_t offset, vm_paddr_t *paddr, int nprot
|
|
#else
|
|
vm_ooffset_t offset, vm_paddr_t *paddr, int nprot,
|
|
__unused vm_memattr_t *memattr
|
|
#endif
|
|
)
|
|
{
|
|
if (nprot & PROT_EXEC)
|
|
return (-1); // XXX -1 or EINVAL ?
|
|
|
|
ND("request for offset 0x%x", (uint32_t)offset);
|
|
*paddr = netmap_ofstophys(offset);
|
|
|
|
return (0);
|
|
}
|
|
#endif /* __FreeBSD__ */
|
|
|
|
|
|
/*
|
|
* Handlers for synchronization of the queues from/to the host.
|
|
*
|
|
* netmap_sync_to_host() passes packets up. We are called from a
|
|
* system call in user process context, and the only contention
|
|
* can be among multiple user threads erroneously calling
|
|
* this routine concurrently. In principle we should not even
|
|
* need to lock.
|
|
*/
|
|
static void
|
|
netmap_sync_to_host(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
struct mbuf *head = NULL, *tail = NULL, *m;
|
|
u_int k, n, lim = kring->nkr_num_slots - 1;
|
|
|
|
k = ring->cur;
|
|
if (k > lim) {
|
|
netmap_ring_reinit(kring);
|
|
return;
|
|
}
|
|
// na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
|
|
|
|
/* Take packets from hwcur to cur and pass them up.
|
|
* In case of no buffers we give up. At the end of the loop,
|
|
* the queue is drained in all cases.
|
|
*/
|
|
for (n = kring->nr_hwcur; n != k;) {
|
|
struct netmap_slot *slot = &ring->slot[n];
|
|
|
|
n = (n == lim) ? 0 : n + 1;
|
|
if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
|
|
D("bad pkt at %d len %d", n, slot->len);
|
|
continue;
|
|
}
|
|
m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL);
|
|
|
|
if (m == NULL)
|
|
break;
|
|
if (tail)
|
|
tail->m_nextpkt = m;
|
|
else
|
|
head = m;
|
|
tail = m;
|
|
m->m_nextpkt = NULL;
|
|
}
|
|
kring->nr_hwcur = k;
|
|
kring->nr_hwavail = ring->avail = lim;
|
|
// na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
/* send packets up, outside the lock */
|
|
while ((m = head) != NULL) {
|
|
head = head->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("sending up pkt %p size %d", m, MBUF_LEN(m));
|
|
NM_SEND_UP(na->ifp, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rxsync backend for packets coming from the host stack.
|
|
* They have been put in the queue by netmap_start() so we
|
|
* need to protect access to the kring using a lock.
|
|
*
|
|
* This routine also does the selrecord if called from the poll handler
|
|
* (we know because td != NULL).
|
|
*/
|
|
static void
|
|
netmap_sync_from_host(struct netmap_adapter *na, struct thread *td)
|
|
{
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int j, n, lim = kring->nkr_num_slots;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
|
|
na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
|
|
if (k >= lim) {
|
|
netmap_ring_reinit(kring);
|
|
return;
|
|
}
|
|
/* new packets are already set in nr_hwavail */
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur;
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim - resvd;
|
|
}
|
|
if (j != k) {
|
|
n = k >= j ? k - j : k + lim - j;
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
k = ring->avail = kring->nr_hwavail - resvd;
|
|
if (k == 0 && td)
|
|
selrecord(td, &kring->si);
|
|
if (k && (netmap_verbose & NM_VERB_HOST))
|
|
D("%d pkts from stack", k);
|
|
na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* get a refcounted reference to an interface.
|
|
* Return ENXIO if the interface does not exist, EINVAL if netmap
|
|
* is not supported by the interface.
|
|
* If successful, hold a reference.
|
|
*/
|
|
static int
|
|
get_ifp(const char *name, struct ifnet **ifp)
|
|
{
|
|
#ifdef NM_BRIDGE
|
|
struct ifnet *iter = NULL;
|
|
|
|
do {
|
|
struct nm_bridge *b;
|
|
int i, l, cand = -1;
|
|
|
|
if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1))
|
|
break;
|
|
b = nm_find_bridge(name);
|
|
if (b == NULL) {
|
|
D("no bridges available for '%s'", name);
|
|
return (ENXIO);
|
|
}
|
|
/* XXX locking */
|
|
BDG_LOCK(b);
|
|
/* lookup in the local list of ports */
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
iter = b->bdg_ports[i];
|
|
if (iter == NULL) {
|
|
if (cand == -1)
|
|
cand = i; /* potential insert point */
|
|
continue;
|
|
}
|
|
if (!strcmp(iter->if_xname, name)) {
|
|
ADD_BDG_REF(iter);
|
|
ND("found existing interface");
|
|
BDG_UNLOCK(b);
|
|
break;
|
|
}
|
|
}
|
|
if (i < NM_BDG_MAXPORTS) /* already unlocked */
|
|
break;
|
|
if (cand == -1) {
|
|
D("bridge full, cannot create new port");
|
|
no_port:
|
|
BDG_UNLOCK(b);
|
|
*ifp = NULL;
|
|
return EINVAL;
|
|
}
|
|
ND("create new bridge port %s", name);
|
|
/* space for forwarding list after the ifnet */
|
|
l = sizeof(*iter) +
|
|
sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ;
|
|
iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!iter)
|
|
goto no_port;
|
|
strcpy(iter->if_xname, name);
|
|
bdg_netmap_attach(iter);
|
|
b->bdg_ports[cand] = iter;
|
|
iter->if_bridge = b;
|
|
ADD_BDG_REF(iter);
|
|
BDG_UNLOCK(b);
|
|
ND("attaching virtual bridge %p", b);
|
|
} while (0);
|
|
*ifp = iter;
|
|
if (! *ifp)
|
|
#endif /* NM_BRIDGE */
|
|
*ifp = ifunit_ref(name);
|
|
if (*ifp == NULL)
|
|
return (ENXIO);
|
|
/* can do this if the capability exists and if_pspare[0]
|
|
* points to the netmap descriptor.
|
|
*/
|
|
if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp))
|
|
return 0; /* valid pointer, we hold the refcount */
|
|
nm_if_rele(*ifp);
|
|
return EINVAL; // not NETMAP capable
|
|
}
|
|
|
|
|
|
/*
|
|
* Error routine called when txsync/rxsync detects an error.
|
|
* Can't do much more than resetting cur = hwcur, avail = hwavail.
|
|
* Return 1 on reinit.
|
|
*
|
|
* This routine is only called by the upper half of the kernel.
|
|
* It only reads hwcur (which is changed only by the upper half, too)
|
|
* and hwavail (which may be changed by the lower half, but only on
|
|
* a tx ring and only to increase it, so any error will be recovered
|
|
* on the next call). For the above, we don't strictly need to call
|
|
* it under lock.
|
|
*/
|
|
int
|
|
netmap_ring_reinit(struct netmap_kring *kring)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int i, lim = kring->nkr_num_slots - 1;
|
|
int errors = 0;
|
|
|
|
D("called for %s", kring->na->ifp->if_xname);
|
|
if (ring->cur > lim)
|
|
errors++;
|
|
for (i = 0; i <= lim; i++) {
|
|
u_int idx = ring->slot[i].buf_idx;
|
|
u_int len = ring->slot[i].len;
|
|
if (idx < 2 || idx >= netmap_total_buffers) {
|
|
if (!errors++)
|
|
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
|
|
ring->slot[i].buf_idx = 0;
|
|
ring->slot[i].len = 0;
|
|
} else if (len > NETMAP_BUF_SIZE) {
|
|
ring->slot[i].len = 0;
|
|
if (!errors++)
|
|
D("bad len %d at slot %d idx %d",
|
|
len, i, idx);
|
|
}
|
|
}
|
|
if (errors) {
|
|
int pos = kring - kring->na->tx_rings;
|
|
int n = kring->na->num_tx_rings + 1;
|
|
|
|
D("total %d errors", errors);
|
|
errors++;
|
|
D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
|
|
kring->na->ifp->if_xname,
|
|
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
|
|
ring->cur, kring->nr_hwcur,
|
|
ring->avail, kring->nr_hwavail);
|
|
ring->cur = kring->nr_hwcur;
|
|
ring->avail = kring->nr_hwavail;
|
|
}
|
|
return (errors ? 1 : 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the ring ID. For devices with a single queue, a request
|
|
* for all rings is the same as a single ring.
|
|
*/
|
|
static int
|
|
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
|
|
{
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
u_int i = ringid & NETMAP_RING_MASK;
|
|
/* initially (np_qfirst == np_qlast) we don't want to lock */
|
|
int need_lock = (priv->np_qfirst != priv->np_qlast);
|
|
int lim = na->num_rx_rings;
|
|
|
|
if (na->num_tx_rings > lim)
|
|
lim = na->num_tx_rings;
|
|
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
|
|
D("invalid ring id %d", i);
|
|
return (EINVAL);
|
|
}
|
|
if (need_lock)
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
priv->np_ringid = ringid;
|
|
if (ringid & NETMAP_SW_RING) {
|
|
priv->np_qfirst = NETMAP_SW_RING;
|
|
priv->np_qlast = 0;
|
|
} else if (ringid & NETMAP_HW_RING) {
|
|
priv->np_qfirst = i;
|
|
priv->np_qlast = i + 1;
|
|
} else {
|
|
priv->np_qfirst = 0;
|
|
priv->np_qlast = NETMAP_HW_RING ;
|
|
}
|
|
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
|
|
if (need_lock)
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
if (ringid & NETMAP_SW_RING)
|
|
D("ringid %s set to SW RING", ifp->if_xname);
|
|
else if (ringid & NETMAP_HW_RING)
|
|
D("ringid %s set to HW RING %d", ifp->if_xname,
|
|
priv->np_qfirst);
|
|
else
|
|
D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ioctl(2) support for the "netmap" device.
|
|
*
|
|
* Following a list of accepted commands:
|
|
* - NIOCGINFO
|
|
* - SIOCGIFADDR just for convenience
|
|
* - NIOCREGIF
|
|
* - NIOCUNREGIF
|
|
* - NIOCTXSYNC
|
|
* - NIOCRXSYNC
|
|
*
|
|
* Return 0 on success, errno otherwise.
|
|
*/
|
|
static int
|
|
netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data,
|
|
__unused int fflag, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct ifnet *ifp;
|
|
struct nmreq *nmr = (struct nmreq *) data;
|
|
struct netmap_adapter *na;
|
|
int error;
|
|
u_int i, lim;
|
|
struct netmap_if *nifp;
|
|
|
|
#ifdef linux
|
|
#define devfs_get_cdevpriv(pp) \
|
|
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
|
|
(*pp ? 0 : ENOENT); })
|
|
|
|
/* devfs_set_cdevpriv cannot fail on linux */
|
|
#define devfs_set_cdevpriv(p, fn) \
|
|
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
|
|
|
|
|
|
#define devfs_clear_cdevpriv() do { \
|
|
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
|
|
} while (0)
|
|
#endif /* linux */
|
|
|
|
CURVNET_SET(TD_TO_VNET(td));
|
|
|
|
error = devfs_get_cdevpriv((void **)&priv);
|
|
if (error != ENOENT && error != 0) {
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
error = 0; /* Could be ENOENT */
|
|
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
|
|
switch (cmd) {
|
|
case NIOCGINFO: /* return capabilities etc */
|
|
/* memsize is always valid */
|
|
nmr->nr_memsize = nm_mem->nm_totalsize;
|
|
nmr->nr_offset = 0;
|
|
nmr->nr_rx_rings = nmr->nr_tx_rings = 0;
|
|
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
D("API mismatch got %d have %d",
|
|
nmr->nr_version, NETMAP_API);
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (nmr->nr_name[0] == '\0') /* just get memory info */
|
|
break;
|
|
error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */
|
|
if (error)
|
|
break;
|
|
na = NA(ifp); /* retrieve netmap_adapter */
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
|
|
case NIOCREGIF:
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (priv != NULL) { /* thread already registered */
|
|
error = netmap_set_ringid(priv, nmr->nr_ringid);
|
|
break;
|
|
}
|
|
/* find the interface and a reference */
|
|
error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
|
|
if (error)
|
|
break;
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
/*
|
|
* Allocate the private per-thread structure.
|
|
* XXX perhaps we can use a blocking malloc ?
|
|
*/
|
|
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
|
|
M_NOWAIT | M_ZERO);
|
|
if (priv == NULL) {
|
|
error = ENOMEM;
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
}
|
|
|
|
for (i = 10; i > 0; i--) {
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
if (!NETMAP_DELETING(na))
|
|
break;
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
tsleep(na, 0, "NIOCREGIF", hz/10);
|
|
}
|
|
if (i == 0) {
|
|
D("too many NIOCREGIF attempts, give up");
|
|
error = EINVAL;
|
|
free(priv, M_DEVBUF);
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
}
|
|
|
|
priv->np_ifp = ifp; /* store the reference */
|
|
error = netmap_set_ringid(priv, nmr->nr_ringid);
|
|
if (error)
|
|
goto error;
|
|
priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na);
|
|
if (nifp == NULL) { /* allocation failed */
|
|
error = ENOMEM;
|
|
} else if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
/* was already set */
|
|
} else {
|
|
/* Otherwise set the card in netmap mode
|
|
* and make it use the shared buffers.
|
|
*/
|
|
for (i = 0 ; i < na->num_tx_rings + 1; i++)
|
|
mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF);
|
|
for (i = 0 ; i < na->num_rx_rings + 1; i++) {
|
|
mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF);
|
|
}
|
|
error = na->nm_register(ifp, 1); /* mode on */
|
|
if (error)
|
|
netmap_dtor_locked(priv);
|
|
}
|
|
|
|
if (error) { /* reg. failed, release priv and ref */
|
|
error:
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
bzero(priv, sizeof(*priv));
|
|
free(priv, M_DEVBUF);
|
|
break;
|
|
}
|
|
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
error = devfs_set_cdevpriv(priv, netmap_dtor);
|
|
|
|
if (error != 0) {
|
|
/* could not assign the private storage for the
|
|
* thread, call the destructor explicitly.
|
|
*/
|
|
netmap_dtor(priv);
|
|
break;
|
|
}
|
|
|
|
/* return the offset of the netmap_if object */
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
nmr->nr_memsize = nm_mem->nm_totalsize;
|
|
nmr->nr_offset = netmap_if_offset(nifp);
|
|
break;
|
|
|
|
case NIOCUNREGIF:
|
|
if (priv == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
/* the interface is unregistered inside the
|
|
destructor of the private data. */
|
|
devfs_clear_cdevpriv();
|
|
break;
|
|
|
|
case NIOCTXSYNC:
|
|
case NIOCRXSYNC:
|
|
if (priv == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
ifp = priv->np_ifp; /* we have a reference */
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
|
|
if (cmd == NIOCTXSYNC)
|
|
netmap_sync_to_host(na);
|
|
else
|
|
netmap_sync_from_host(na, NULL);
|
|
break;
|
|
}
|
|
/* find the last ring to scan */
|
|
lim = priv->np_qlast;
|
|
if (lim == NETMAP_HW_RING)
|
|
lim = (cmd == NIOCTXSYNC) ?
|
|
na->num_tx_rings : na->num_rx_rings;
|
|
|
|
for (i = priv->np_qfirst; i < lim; i++) {
|
|
if (cmd == NIOCTXSYNC) {
|
|
struct netmap_kring *kring = &na->tx_rings[i];
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("pre txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
na->nm_txsync(ifp, i, 1 /* do lock */);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("post txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
} else {
|
|
na->nm_rxsync(ifp, i, 1 /* do lock */);
|
|
microtime(&na->rx_rings[i].ring->ts);
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
#ifdef __FreeBSD__
|
|
case BIOCIMMEDIATE:
|
|
case BIOCGHDRCMPLT:
|
|
case BIOCSHDRCMPLT:
|
|
case BIOCSSEESENT:
|
|
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
|
|
break;
|
|
|
|
default: /* allow device-specific ioctls */
|
|
{
|
|
struct socket so;
|
|
bzero(&so, sizeof(so));
|
|
error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
|
|
if (error)
|
|
break;
|
|
so.so_vnet = ifp->if_vnet;
|
|
// so->so_proto not null.
|
|
error = ifioctl(&so, cmd, data, td);
|
|
nm_if_rele(ifp);
|
|
break;
|
|
}
|
|
|
|
#else /* linux */
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
#endif /* linux */
|
|
}
|
|
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* select(2) and poll(2) handlers for the "netmap" device.
|
|
*
|
|
* Can be called for one or more queues.
|
|
* Return true the event mask corresponding to ready events.
|
|
* If there are no ready events, do a selrecord on either individual
|
|
* selfd or on the global one.
|
|
* Device-dependent parts (locking and sync of tx/rx rings)
|
|
* are done through callbacks.
|
|
*
|
|
* On linux, pwait is the poll table.
|
|
* If pwait == NULL someone else already woke up before. We can report
|
|
* events but they are filtered upstream.
|
|
* If pwait != NULL, then pwait->key contains the list of events.
|
|
*/
|
|
static int
|
|
netmap_poll(__unused struct cdev *dev, int events, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct netmap_adapter *na;
|
|
struct ifnet *ifp;
|
|
struct netmap_kring *kring;
|
|
u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
|
|
u_int lim_tx, lim_rx;
|
|
enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
|
|
|
|
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
|
|
return POLLERR;
|
|
|
|
ifp = priv->np_ifp;
|
|
// XXX check for deleting() ?
|
|
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
|
|
return POLLERR;
|
|
|
|
if (netmap_verbose & 0x8000)
|
|
D("device %s events 0x%x", ifp->if_xname, events);
|
|
want_tx = events & (POLLOUT | POLLWRNORM);
|
|
want_rx = events & (POLLIN | POLLRDNORM);
|
|
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
|
|
lim_tx = na->num_tx_rings;
|
|
lim_rx = na->num_rx_rings;
|
|
/* how many queues we are scanning */
|
|
if (priv->np_qfirst == NETMAP_SW_RING) {
|
|
if (priv->np_txpoll || want_tx) {
|
|
/* push any packets up, then we are always ready */
|
|
kring = &na->tx_rings[lim_tx];
|
|
netmap_sync_to_host(na);
|
|
revents |= want_tx;
|
|
}
|
|
if (want_rx) {
|
|
kring = &na->rx_rings[lim_rx];
|
|
if (kring->ring->avail == 0)
|
|
netmap_sync_from_host(na, td);
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
}
|
|
}
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* check_all is set if the card has more than one queue and
|
|
* the client is polling all of them. If true, we sleep on
|
|
* the "global" selfd, otherwise we sleep on individual selfd
|
|
* (we can only sleep on one of them per direction).
|
|
* The interrupt routine in the driver should always wake on
|
|
* the individual selfd, and also on the global one if the card
|
|
* has more than one ring.
|
|
*
|
|
* If the card has only one lock, we just use that.
|
|
* If the card has separate ring locks, we just use those
|
|
* unless we are doing check_all, in which case the whole
|
|
* loop is wrapped by the global lock.
|
|
* We acquire locks only when necessary: if poll is called
|
|
* when buffers are available, we can just return without locks.
|
|
*
|
|
* rxsync() is only called if we run out of buffers on a POLLIN.
|
|
* txsync() is called if we run out of buffers on POLLOUT, or
|
|
* there are pending packets to send. The latter can be disabled
|
|
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
|
|
*/
|
|
check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1);
|
|
|
|
/*
|
|
* core_lock indicates what to do with the core lock.
|
|
* The core lock is used when either the card has no individual
|
|
* locks, or it has individual locks but we are cheking all
|
|
* rings so we need the core lock to avoid missing wakeup events.
|
|
*
|
|
* It has three possible states:
|
|
* NO_CL we don't need to use the core lock, e.g.
|
|
* because we are protected by individual locks.
|
|
* NEED_CL we need the core lock. In this case, when we
|
|
* call the lock routine, move to LOCKED_CL
|
|
* to remember to release the lock once done.
|
|
* LOCKED_CL core lock is set, so we need to release it.
|
|
*/
|
|
core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
|
|
#ifdef NM_BRIDGE
|
|
/* the bridge uses separate locks */
|
|
if (na->nm_register == bdg_netmap_reg) {
|
|
ND("not using core lock for %s", ifp->if_xname);
|
|
core_lock = NO_CL;
|
|
}
|
|
#endif /* NM_BRIDGE */
|
|
if (priv->np_qlast != NETMAP_HW_RING) {
|
|
lim_tx = lim_rx = priv->np_qlast;
|
|
}
|
|
|
|
/*
|
|
* We start with a lock free round which is good if we have
|
|
* data available. If this fails, then lock and call the sync
|
|
* routines.
|
|
*/
|
|
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
want_rx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_tx;
|
|
want_tx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we to push packets out (priv->np_txpoll) or want_tx is
|
|
* still set, we do need to run the txsync calls (on all rings,
|
|
* to avoid that the tx rings stall).
|
|
*/
|
|
if (priv->np_txpoll || want_tx) {
|
|
for (i = priv->np_qfirst; i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
/*
|
|
* Skip the current ring if want_tx == 0
|
|
* (we have already done a successful sync on
|
|
* a previous ring) AND kring->cur == kring->hwcur
|
|
* (there are no pending transmissions for this ring).
|
|
*/
|
|
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
|
|
continue;
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_TX_LOCK, i);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("send %d on %s %d",
|
|
kring->ring->cur,
|
|
ifp->if_xname, i);
|
|
if (na->nm_txsync(ifp, i, 0 /* no lock */))
|
|
revents |= POLLERR;
|
|
|
|
/* Check avail/call selrecord only if called with POLLOUT */
|
|
if (want_tx) {
|
|
if (kring->ring->avail > 0) {
|
|
/* stop at the first ring. We don't risk
|
|
* starvation.
|
|
*/
|
|
revents |= want_tx;
|
|
want_tx = 0;
|
|
} else if (!check_all)
|
|
selrecord(td, &kring->si);
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now if want_rx is still set we need to lock and rxsync.
|
|
* Do it on all rings because otherwise we starve.
|
|
*/
|
|
if (want_rx) {
|
|
for (i = priv->np_qfirst; i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_RX_LOCK, i);
|
|
|
|
if (na->nm_rxsync(ifp, i, 0 /* no lock */))
|
|
revents |= POLLERR;
|
|
if (netmap_no_timestamp == 0 ||
|
|
kring->ring->flags & NR_TIMESTAMP) {
|
|
microtime(&kring->ring->ts);
|
|
}
|
|
|
|
if (kring->ring->avail > 0)
|
|
revents |= want_rx;
|
|
else if (!check_all)
|
|
selrecord(td, &kring->si);
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
|
|
}
|
|
}
|
|
if (check_all && revents == 0) { /* signal on the global queue */
|
|
if (want_tx)
|
|
selrecord(td, &na->tx_si);
|
|
if (want_rx)
|
|
selrecord(td, &na->rx_si);
|
|
}
|
|
if (core_lock == LOCKED_CL)
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
/*------- driver support routines ------*/
|
|
|
|
/*
|
|
* default lock wrapper.
|
|
*/
|
|
static void
|
|
netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid)
|
|
{
|
|
struct netmap_adapter *na = NA(dev);
|
|
|
|
switch (what) {
|
|
#ifdef linux /* some system do not need lock on register */
|
|
case NETMAP_REG_LOCK:
|
|
case NETMAP_REG_UNLOCK:
|
|
break;
|
|
#endif /* linux */
|
|
|
|
case NETMAP_CORE_LOCK:
|
|
mtx_lock(&na->core_lock);
|
|
break;
|
|
|
|
case NETMAP_CORE_UNLOCK:
|
|
mtx_unlock(&na->core_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_LOCK:
|
|
mtx_lock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_UNLOCK:
|
|
mtx_unlock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_LOCK:
|
|
mtx_lock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_UNLOCK:
|
|
mtx_unlock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize a ``netmap_adapter`` object created by driver on attach.
|
|
* We allocate a block of memory with room for a struct netmap_adapter
|
|
* plus two sets of N+2 struct netmap_kring (where N is the number
|
|
* of hardware rings):
|
|
* krings 0..N-1 are for the hardware queues.
|
|
* kring N is for the host stack queue
|
|
* kring N+1 is only used for the selinfo for all queues.
|
|
* Return 0 on success, ENOMEM otherwise.
|
|
*
|
|
* na->num_tx_rings can be set for cards with different tx/rx setups
|
|
*/
|
|
int
|
|
netmap_attach(struct netmap_adapter *na, int num_queues)
|
|
{
|
|
int n, size;
|
|
void *buf;
|
|
struct ifnet *ifp = na->ifp;
|
|
|
|
if (ifp == NULL) {
|
|
D("ifp not set, giving up");
|
|
return EINVAL;
|
|
}
|
|
/* clear other fields ? */
|
|
na->refcount = 0;
|
|
if (na->num_tx_rings == 0)
|
|
na->num_tx_rings = num_queues;
|
|
na->num_rx_rings = num_queues;
|
|
/* on each direction we have N+1 resources
|
|
* 0..n-1 are the hardware rings
|
|
* n is the ring attached to the stack.
|
|
*/
|
|
n = na->num_rx_rings + na->num_tx_rings + 2;
|
|
size = sizeof(*na) + n * sizeof(struct netmap_kring);
|
|
|
|
buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (buf) {
|
|
WNA(ifp) = buf;
|
|
na->tx_rings = (void *)((char *)buf + sizeof(*na));
|
|
na->rx_rings = na->tx_rings + na->num_tx_rings + 1;
|
|
bcopy(na, buf, sizeof(*na));
|
|
ifp->if_capabilities |= IFCAP_NETMAP;
|
|
|
|
na = buf;
|
|
if (na->nm_lock == NULL) {
|
|
ND("using default locks for %s", ifp->if_xname);
|
|
na->nm_lock = netmap_lock_wrapper;
|
|
/* core lock initialized here.
|
|
* others initialized after netmap_if_new
|
|
*/
|
|
mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF);
|
|
}
|
|
}
|
|
#ifdef linux
|
|
if (ifp->netdev_ops) {
|
|
D("netdev_ops %p", ifp->netdev_ops);
|
|
/* prepare a clone of the netdev ops */
|
|
na->nm_ndo = *ifp->netdev_ops;
|
|
}
|
|
na->nm_ndo.ndo_start_xmit = netmap_start_linux;
|
|
#endif
|
|
D("%s for %s", buf ? "ok" : "failed", ifp->if_xname);
|
|
|
|
return (buf ? 0 : ENOMEM);
|
|
}
|
|
|
|
|
|
/*
|
|
* Free the allocated memory linked to the given ``netmap_adapter``
|
|
* object.
|
|
*/
|
|
void
|
|
netmap_detach(struct ifnet *ifp)
|
|
{
|
|
u_int i;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
if (!na)
|
|
return;
|
|
|
|
for (i = 0; i < na->num_tx_rings + 1; i++) {
|
|
knlist_destroy(&na->tx_rings[i].si.si_note);
|
|
mtx_destroy(&na->tx_rings[i].q_lock);
|
|
}
|
|
for (i = 0; i < na->num_rx_rings + 1; i++) {
|
|
knlist_destroy(&na->rx_rings[i].si.si_note);
|
|
mtx_destroy(&na->rx_rings[i].q_lock);
|
|
}
|
|
knlist_destroy(&na->tx_si.si_note);
|
|
knlist_destroy(&na->rx_si.si_note);
|
|
bzero(na, sizeof(*na));
|
|
WNA(ifp) = NULL;
|
|
free(na, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*
|
|
* Intercept packets from the network stack and pass them
|
|
* to netmap as incoming packets on the 'software' ring.
|
|
* We are not locked when called.
|
|
*/
|
|
int
|
|
netmap_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
u_int i, len = MBUF_LEN(m);
|
|
int error = EBUSY, lim = kring->nkr_num_slots - 1;
|
|
struct netmap_slot *slot;
|
|
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("%s packet %d len %d from the stack", ifp->if_xname,
|
|
kring->nr_hwcur + kring->nr_hwavail, len);
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
if (kring->nr_hwavail >= lim) {
|
|
if (netmap_verbose)
|
|
D("stack ring %s full\n", ifp->if_xname);
|
|
goto done; /* no space */
|
|
}
|
|
if (len > NETMAP_BUF_SIZE) {
|
|
D("drop packet size %d > %d", len, NETMAP_BUF_SIZE);
|
|
goto done; /* too long for us */
|
|
}
|
|
|
|
/* compute the insert position */
|
|
i = kring->nr_hwcur + kring->nr_hwavail;
|
|
if (i > lim)
|
|
i -= lim + 1;
|
|
slot = &kring->ring->slot[i];
|
|
m_copydata(m, 0, len, NMB(slot));
|
|
slot->len = len;
|
|
kring->nr_hwavail++;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings);
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
error = 0;
|
|
done:
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
/* release the mbuf in either cases of success or failure. As an
|
|
* alternative, put the mbuf in a free list and free the list
|
|
* only when really necessary.
|
|
*/
|
|
m_freem(m);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* netmap_reset() is called by the driver routines when reinitializing
|
|
* a ring. The driver is in charge of locking to protect the kring.
|
|
* If netmap mode is not set just return NULL.
|
|
*/
|
|
struct netmap_slot *
|
|
netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
|
|
u_int new_cur)
|
|
{
|
|
struct netmap_kring *kring;
|
|
int new_hwofs, lim;
|
|
|
|
if (na == NULL)
|
|
return NULL; /* no netmap support here */
|
|
if (!(na->ifp->if_capenable & IFCAP_NETMAP))
|
|
return NULL; /* nothing to reinitialize */
|
|
|
|
if (tx == NR_TX) {
|
|
kring = na->tx_rings + n;
|
|
new_hwofs = kring->nr_hwcur - new_cur;
|
|
} else {
|
|
kring = na->rx_rings + n;
|
|
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
|
|
}
|
|
lim = kring->nkr_num_slots - 1;
|
|
if (new_hwofs > lim)
|
|
new_hwofs -= lim + 1;
|
|
|
|
/* Alwayws set the new offset value and realign the ring. */
|
|
kring->nkr_hwofs = new_hwofs;
|
|
if (tx == NR_TX)
|
|
kring->nr_hwavail = kring->nkr_num_slots - 1;
|
|
D("new hwofs %d on %s %s[%d]",
|
|
kring->nkr_hwofs, na->ifp->if_xname,
|
|
tx == NR_TX ? "TX" : "RX", n);
|
|
|
|
#if 0 // def linux
|
|
/* XXX check that the mappings are correct */
|
|
/* need ring_nr, adapter->pdev, direction */
|
|
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
|
|
D("error mapping rx netmap buffer %d", i);
|
|
// XXX fix error handling
|
|
}
|
|
|
|
#endif /* linux */
|
|
/*
|
|
* Wakeup on the individual and global lock
|
|
* We do the wakeup here, but the ring is not yet reconfigured.
|
|
* However, we are under lock so there are no races.
|
|
*/
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET);
|
|
return kring->ring->slot;
|
|
}
|
|
|
|
|
|
/*
|
|
* Default functions to handle rx/tx interrupts
|
|
* we have 4 cases:
|
|
* 1 ring, single lock:
|
|
* lock(core); wake(i=0); unlock(core)
|
|
* N rings, single lock:
|
|
* lock(core); wake(i); wake(N+1) unlock(core)
|
|
* 1 ring, separate locks: (i=0)
|
|
* lock(i); wake(i); unlock(i)
|
|
* N rings, separate locks:
|
|
* lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
|
|
* work_done is non-null on the RX path.
|
|
*/
|
|
int
|
|
netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
|
|
{
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *r;
|
|
NM_SELINFO_T *main_wq;
|
|
|
|
if (!(ifp->if_capenable & IFCAP_NETMAP))
|
|
return 0;
|
|
na = NA(ifp);
|
|
if (work_done) { /* RX path */
|
|
r = na->rx_rings + q;
|
|
r->nr_kflags |= NKR_PENDINTR;
|
|
main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
|
|
} else { /* tx path */
|
|
r = na->tx_rings + q;
|
|
main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
|
|
work_done = &q; /* dummy */
|
|
}
|
|
if (na->separate_locks) {
|
|
mtx_lock(&r->q_lock);
|
|
selwakeuppri(&r->si, PI_NET);
|
|
mtx_unlock(&r->q_lock);
|
|
if (main_wq) {
|
|
mtx_lock(&na->core_lock);
|
|
selwakeuppri(main_wq, PI_NET);
|
|
mtx_unlock(&na->core_lock);
|
|
}
|
|
} else {
|
|
mtx_lock(&na->core_lock);
|
|
selwakeuppri(&r->si, PI_NET);
|
|
if (main_wq)
|
|
selwakeuppri(main_wq, PI_NET);
|
|
mtx_unlock(&na->core_lock);
|
|
}
|
|
*work_done = 1; /* do not fire napi again */
|
|
return 1;
|
|
}
|
|
|
|
|
|
static struct cdevsw netmap_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "netmap",
|
|
.d_mmap = netmap_mmap,
|
|
.d_ioctl = netmap_ioctl,
|
|
.d_poll = netmap_poll,
|
|
};
|
|
|
|
#ifdef NM_BRIDGE
|
|
/*
|
|
*---- support for virtual bridge -----
|
|
*/
|
|
|
|
/* ----- FreeBSD if_bridge hash function ------- */
|
|
|
|
/*
|
|
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
|
|
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
|
|
*
|
|
* http://www.burtleburtle.net/bob/hash/spooky.html
|
|
*/
|
|
#define mix(a, b, c) \
|
|
do { \
|
|
a -= b; a -= c; a ^= (c >> 13); \
|
|
b -= c; b -= a; b ^= (a << 8); \
|
|
c -= a; c -= b; c ^= (b >> 13); \
|
|
a -= b; a -= c; a ^= (c >> 12); \
|
|
b -= c; b -= a; b ^= (a << 16); \
|
|
c -= a; c -= b; c ^= (b >> 5); \
|
|
a -= b; a -= c; a ^= (c >> 3); \
|
|
b -= c; b -= a; b ^= (a << 10); \
|
|
c -= a; c -= b; c ^= (b >> 15); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
static __inline uint32_t
|
|
nm_bridge_rthash(const uint8_t *addr)
|
|
{
|
|
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key
|
|
|
|
b += addr[5] << 8;
|
|
b += addr[4];
|
|
a += addr[3] << 24;
|
|
a += addr[2] << 16;
|
|
a += addr[1] << 8;
|
|
a += addr[0];
|
|
|
|
mix(a, b, c);
|
|
#define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1)
|
|
return (c & BRIDGE_RTHASH_MASK);
|
|
}
|
|
|
|
#undef mix
|
|
|
|
|
|
static int
|
|
bdg_netmap_reg(struct ifnet *ifp, int onoff)
|
|
{
|
|
int i, err = 0;
|
|
struct nm_bridge *b = ifp->if_bridge;
|
|
|
|
BDG_LOCK(b);
|
|
if (onoff) {
|
|
/* the interface must be already in the list.
|
|
* only need to mark the port as active
|
|
*/
|
|
ND("should attach %s to the bridge", ifp->if_xname);
|
|
for (i=0; i < NM_BDG_MAXPORTS; i++)
|
|
if (b->bdg_ports[i] == ifp)
|
|
break;
|
|
if (i == NM_BDG_MAXPORTS) {
|
|
D("no more ports available");
|
|
err = EINVAL;
|
|
goto done;
|
|
}
|
|
ND("setting %s in netmap mode", ifp->if_xname);
|
|
ifp->if_capenable |= IFCAP_NETMAP;
|
|
NA(ifp)->bdg_port = i;
|
|
b->act_ports |= (1<<i);
|
|
b->bdg_ports[i] = ifp;
|
|
} else {
|
|
/* should be in the list, too -- remove from the mask */
|
|
ND("removing %s from netmap mode", ifp->if_xname);
|
|
ifp->if_capenable &= ~IFCAP_NETMAP;
|
|
i = NA(ifp)->bdg_port;
|
|
b->act_ports &= ~(1<<i);
|
|
}
|
|
done:
|
|
BDG_UNLOCK(b);
|
|
return err;
|
|
}
|
|
|
|
|
|
static int
|
|
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp)
|
|
{
|
|
int i, ifn;
|
|
uint64_t all_dst, dst;
|
|
uint32_t sh, dh;
|
|
uint64_t mysrc = 1 << NA(ifp)->bdg_port;
|
|
uint64_t smac, dmac;
|
|
struct netmap_slot *slot;
|
|
struct nm_bridge *b = ifp->if_bridge;
|
|
|
|
ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports);
|
|
/* only consider valid destinations */
|
|
all_dst = (b->act_ports & ~mysrc);
|
|
/* first pass: hash and find destinations */
|
|
for (i = 0; likely(i < n); i++) {
|
|
uint8_t *buf = ft[i].buf;
|
|
dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff;
|
|
smac = le64toh(*(uint64_t *)(buf + 4));
|
|
smac >>= 16;
|
|
if (unlikely(netmap_verbose)) {
|
|
uint8_t *s = buf+6, *d = buf;
|
|
D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x",
|
|
i,
|
|
ft[i].len,
|
|
s[0], s[1], s[2], s[3], s[4], s[5],
|
|
d[0], d[1], d[2], d[3], d[4], d[5]);
|
|
}
|
|
/*
|
|
* The hash is somewhat expensive, there might be some
|
|
* worthwhile optimizations here.
|
|
*/
|
|
if ((buf[6] & 1) == 0) { /* valid src */
|
|
uint8_t *s = buf+6;
|
|
sh = nm_bridge_rthash(buf+6); // XXX hash of source
|
|
/* update source port forwarding entry */
|
|
b->ht[sh].mac = smac; /* XXX expire ? */
|
|
b->ht[sh].ports = mysrc;
|
|
if (netmap_verbose)
|
|
D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d",
|
|
s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port);
|
|
}
|
|
dst = 0;
|
|
if ( (buf[0] & 1) == 0) { /* unicast */
|
|
uint8_t *d = buf;
|
|
dh = nm_bridge_rthash(buf); // XXX hash of dst
|
|
if (b->ht[dh].mac == dmac) { /* found dst */
|
|
dst = b->ht[dh].ports;
|
|
if (netmap_verbose)
|
|
D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x",
|
|
d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16));
|
|
}
|
|
}
|
|
if (dst == 0)
|
|
dst = all_dst;
|
|
dst &= all_dst; /* only consider valid ports */
|
|
if (unlikely(netmap_verbose))
|
|
D("pkt goes to ports 0x%x", (uint32_t)dst);
|
|
ft[i].dst = dst;
|
|
}
|
|
|
|
/* second pass, scan interfaces and forward */
|
|
all_dst = (b->act_ports & ~mysrc);
|
|
for (ifn = 0; all_dst; ifn++) {
|
|
struct ifnet *dst_ifp = b->bdg_ports[ifn];
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *kring;
|
|
struct netmap_ring *ring;
|
|
int j, lim, sent, locked;
|
|
|
|
if (!dst_ifp)
|
|
continue;
|
|
ND("scan port %d %s", ifn, dst_ifp->if_xname);
|
|
dst = 1 << ifn;
|
|
if ((dst & all_dst) == 0) /* skip if not set */
|
|
continue;
|
|
all_dst &= ~dst; /* clear current node */
|
|
na = NA(dst_ifp);
|
|
|
|
ring = NULL;
|
|
kring = NULL;
|
|
lim = sent = locked = 0;
|
|
/* inside, scan slots */
|
|
for (i = 0; likely(i < n); i++) {
|
|
if ((ft[i].dst & dst) == 0)
|
|
continue; /* not here */
|
|
if (!locked) {
|
|
kring = &na->rx_rings[0];
|
|
ring = kring->ring;
|
|
lim = kring->nkr_num_slots - 1;
|
|
na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0);
|
|
locked = 1;
|
|
}
|
|
if (unlikely(kring->nr_hwavail >= lim)) {
|
|
if (netmap_verbose)
|
|
D("rx ring full on %s", ifp->if_xname);
|
|
break;
|
|
}
|
|
j = kring->nr_hwcur + kring->nr_hwavail;
|
|
if (j > lim)
|
|
j -= kring->nkr_num_slots;
|
|
slot = &ring->slot[j];
|
|
ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j);
|
|
pkt_copy(ft[i].buf, NMB(slot), ft[i].len);
|
|
slot->len = ft[i].len;
|
|
kring->nr_hwavail++;
|
|
sent++;
|
|
}
|
|
if (locked) {
|
|
ND("sent %d on %s", sent, dst_ifp->if_xname);
|
|
if (sent)
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* main dispatch routine
|
|
*/
|
|
static int
|
|
bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->tx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
int i, j, k, lim = kring->nkr_num_slots - 1;
|
|
struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1);
|
|
int ft_i; /* position in the forwarding table */
|
|
|
|
k = ring->cur;
|
|
if (k > lim)
|
|
return netmap_ring_reinit(kring);
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr);
|
|
|
|
if (netmap_bridge <= 0) { /* testing only */
|
|
j = k; // used all
|
|
goto done;
|
|
}
|
|
if (netmap_bridge > NM_BDG_BATCH)
|
|
netmap_bridge = NM_BDG_BATCH;
|
|
|
|
ft_i = 0; /* start from 0 */
|
|
for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) {
|
|
struct netmap_slot *slot = &ring->slot[j];
|
|
int len = ft[ft_i].len = slot->len;
|
|
char *buf = ft[ft_i].buf = NMB(slot);
|
|
|
|
prefetch(buf);
|
|
if (unlikely(len < 14))
|
|
continue;
|
|
if (unlikely(++ft_i == netmap_bridge))
|
|
ft_i = nm_bdg_flush(ft, ft_i, ifp);
|
|
}
|
|
if (ft_i)
|
|
ft_i = nm_bdg_flush(ft, ft_i, ifp);
|
|
/* count how many packets we sent */
|
|
i = k - j;
|
|
if (i < 0)
|
|
i += kring->nkr_num_slots;
|
|
kring->nr_hwavail = kring->nkr_num_slots - 1 - i;
|
|
if (j != k)
|
|
D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail);
|
|
|
|
done:
|
|
kring->nr_hwcur = j;
|
|
ring->avail = kring->nr_hwavail;
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr);
|
|
|
|
if (netmap_verbose)
|
|
D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
int j, n, lim = kring->nkr_num_slots - 1;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
|
|
ND("%s ring %d lock %d avail %d",
|
|
ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail);
|
|
|
|
if (k > lim)
|
|
return netmap_ring_reinit(kring);
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr);
|
|
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur; /* netmap ring index */
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
|
|
}
|
|
|
|
if (j != k) { /* userspace has released some packets. */
|
|
n = k - j;
|
|
if (n < 0)
|
|
n += kring->nkr_num_slots;
|
|
ND("userspace releases %d packets", n);
|
|
for (n = 0; likely(j != k); n++) {
|
|
struct netmap_slot *slot = &ring->slot[j];
|
|
void *addr = NMB(slot);
|
|
|
|
if (addr == netmap_buffer_base) { /* bad buf */
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
|
|
return netmap_ring_reinit(kring);
|
|
}
|
|
/* decrease refcount for buffer */
|
|
|
|
slot->flags &= ~NS_BUF_CHANGED;
|
|
j = unlikely(j == lim) ? 0 : j + 1;
|
|
}
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
/* tell userspace that there are new packets */
|
|
ring->avail = kring->nr_hwavail - resvd;
|
|
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdg_netmap_attach(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter na;
|
|
|
|
ND("attaching virtual bridge");
|
|
bzero(&na, sizeof(na));
|
|
|
|
na.ifp = ifp;
|
|
na.separate_locks = 1;
|
|
na.num_tx_desc = NM_BRIDGE_RINGSIZE;
|
|
na.num_rx_desc = NM_BRIDGE_RINGSIZE;
|
|
na.nm_txsync = bdg_netmap_txsync;
|
|
na.nm_rxsync = bdg_netmap_rxsync;
|
|
na.nm_register = bdg_netmap_reg;
|
|
netmap_attach(&na, 1);
|
|
}
|
|
|
|
#endif /* NM_BRIDGE */
|
|
|
|
static struct cdev *netmap_dev; /* /dev/netmap character device. */
|
|
|
|
|
|
/*
|
|
* Module loader.
|
|
*
|
|
* Create the /dev/netmap device and initialize all global
|
|
* variables.
|
|
*
|
|
* Return 0 on success, errno on failure.
|
|
*/
|
|
static int
|
|
netmap_init(void)
|
|
{
|
|
int error;
|
|
|
|
error = netmap_memory_init();
|
|
if (error != 0) {
|
|
printf("netmap: unable to initialize the memory allocator.");
|
|
return (error);
|
|
}
|
|
printf("netmap: loaded module with %d Mbytes\n",
|
|
(int)(nm_mem->nm_totalsize >> 20));
|
|
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
|
|
"netmap");
|
|
|
|
#ifdef NM_BRIDGE
|
|
{
|
|
int i;
|
|
for (i = 0; i < NM_BRIDGES; i++)
|
|
mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Module unloader.
|
|
*
|
|
* Free all the memory, and destroy the ``/dev/netmap`` device.
|
|
*/
|
|
static void
|
|
netmap_fini(void)
|
|
{
|
|
destroy_dev(netmap_dev);
|
|
netmap_memory_fini();
|
|
printf("netmap: unloaded module.\n");
|
|
}
|
|
|
|
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* Kernel entry point.
|
|
*
|
|
* Initialize/finalize the module and return.
|
|
*
|
|
* Return 0 on success, errno on failure.
|
|
*/
|
|
static int
|
|
netmap_loader(__unused struct module *module, int event, __unused void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (event) {
|
|
case MOD_LOAD:
|
|
error = netmap_init();
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
netmap_fini();
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
DEV_MODULE(netmap, netmap_loader, NULL);
|
|
#endif /* __FreeBSD__ */
|