Navdeep Parhar ed7e5640a5 cxgbe(4): Use smaller min/max bursts for fl descriptors with a T6.
Sponsored by:	Chelsio Communications
2016-09-11 17:51:17 +00:00

5222 lines
135 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/types.h>
#include <sys/eventhandler.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/counter.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <machine/in_cksum.h>
#include <machine/md_var.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#ifdef DEV_NETMAP
#include <machine/bus.h>
#include <sys/selinfo.h>
#include <net/if_var.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#endif
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_msg.h"
#include "t4_l2t.h"
#include "t4_mp_ring.h"
#ifdef T4_PKT_TIMESTAMP
#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
#else
#define RX_COPY_THRESHOLD MINCLSIZE
#endif
/*
* Ethernet frames are DMA'd at this byte offset into the freelist buffer.
* 0-7 are valid values.
*/
static int fl_pktshift = 2;
TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
/*
* Pad ethernet payload up to this boundary.
* -1: driver should figure out a good value.
* 0: disable padding.
* Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
*/
int fl_pad = -1;
TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
/*
* Status page length.
* -1: driver should figure out a good value.
* 64 or 128 are the only other valid values.
*/
static int spg_len = -1;
TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
/*
* Congestion drops.
* -1: no congestion feedback (not recommended).
* 0: backpressure the channel instead of dropping packets right away.
* 1: no backpressure, drop packets for the congested queue immediately.
*/
static int cong_drop = 0;
TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
/*
* Deliver multiple frames in the same free list buffer if they fit.
* -1: let the driver decide whether to enable buffer packing or not.
* 0: disable buffer packing.
* 1: enable buffer packing.
*/
static int buffer_packing = -1;
TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
/*
* Start next frame in a packed buffer at this boundary.
* -1: driver should figure out a good value.
* T4: driver will ignore this and use the same value as fl_pad above.
* T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
*/
static int fl_pack = -1;
TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
/*
* Allow the driver to create mbuf(s) in a cluster allocated for rx.
* 0: never; always allocate mbufs from the zone_mbuf UMA zone.
* 1: ok to create mbuf(s) within a cluster if there is room.
*/
static int allow_mbufs_in_cluster = 1;
TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
/*
* Largest rx cluster size that the driver is allowed to allocate.
*/
static int largest_rx_cluster = MJUM16BYTES;
TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
/*
* Size of cluster allocation that's most likely to succeed. The driver will
* fall back to this size if it fails to allocate clusters larger than this.
*/
static int safest_rx_cluster = PAGE_SIZE;
TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
struct txpkts {
u_int wr_type; /* type 0 or type 1 */
u_int npkt; /* # of packets in this work request */
u_int plen; /* total payload (sum of all packets) */
u_int len16; /* # of 16B pieces used by this work request */
};
/* A packet's SGL. This + m_pkthdr has all info needed for tx */
struct sgl {
struct sglist sg;
struct sglist_seg seg[TX_SGL_SEGS];
};
static int service_iq(struct sge_iq *, int);
static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
uint16_t, char *);
static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
bus_addr_t *, void **);
static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
void *);
static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
int, int);
static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_fl *);
static int alloc_fwq(struct adapter *);
static int free_fwq(struct adapter *);
static int alloc_mgmtq(struct adapter *);
static int free_mgmtq(struct adapter *);
static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
struct sysctl_oid *);
static int free_rxq(struct vi_info *, struct sge_rxq *);
#ifdef TCP_OFFLOAD
static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
struct sysctl_oid *);
static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
#endif
#ifdef DEV_NETMAP
static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
struct sysctl_oid *);
static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
struct sysctl_oid *);
static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
#endif
static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
#ifdef TCP_OFFLOAD
static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
#endif
static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
static int free_eq(struct adapter *, struct sge_eq *);
static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
struct sysctl_oid *);
static int free_wrq(struct adapter *, struct sge_wrq *);
static int alloc_txq(struct vi_info *, struct sge_txq *, int,
struct sysctl_oid *);
static int free_txq(struct vi_info *, struct sge_txq *);
static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
static inline void ring_fl_db(struct adapter *, struct sge_fl *);
static int refill_fl(struct adapter *, struct sge_fl *, int);
static void refill_sfl(void *);
static int alloc_fl_sdesc(struct sge_fl *);
static void free_fl_sdesc(struct adapter *, struct sge_fl *);
static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
static void find_safe_refill_source(struct adapter *, struct sge_fl *);
static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
static inline void get_pkt_gl(struct mbuf *, struct sglist *);
static inline u_int txpkt_len16(u_int, u_int);
static inline u_int txpkt_vm_len16(u_int, u_int);
static inline u_int txpkts0_len16(u_int);
static inline u_int txpkts1_len16(void);
static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
struct mbuf *, u_int);
static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
struct mbuf *, const struct txpkts *, u_int);
static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
static inline uint16_t read_hw_cidx(struct sge_eq *);
static inline u_int reclaimable_tx_desc(struct sge_eq *);
static inline u_int total_available_tx_desc(struct sge_eq *);
static u_int reclaim_tx_descs(struct sge_txq *, u_int);
static void tx_reclaim(void *, int);
static __be64 get_flit(struct sglist_seg *, int, int);
static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
static void wrq_tx_drain(void *, int);
static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
static int sysctl_tc(SYSCTL_HANDLER_ARGS);
static counter_u64_t extfree_refs;
static counter_u64_t extfree_rels;
an_handler_t t4_an_handler;
fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
static int
an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl)
{
#ifdef INVARIANTS
panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl);
#else
log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n",
__func__, iq, ctrl);
#endif
return (EDOOFUS);
}
int
t4_register_an_handler(an_handler_t h)
{
uintptr_t *loc, new;
new = h ? (uintptr_t)h : (uintptr_t)an_not_handled;
loc = (uintptr_t *) &t4_an_handler;
atomic_store_rel_ptr(loc, new);
return (0);
}
static int
fw_msg_not_handled(struct adapter *sc, const __be64 *rpl)
{
const struct cpl_fw6_msg *cpl =
__containerof(rpl, struct cpl_fw6_msg, data[0]);
#ifdef INVARIANTS
panic("%s: fw_msg type %d", __func__, cpl->type);
#else
log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type);
#endif
return (EDOOFUS);
}
int
t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
{
uintptr_t *loc, new;
if (type >= nitems(t4_fw_msg_handler))
return (EINVAL);
/*
* These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
* handler dispatch table. Reject any attempt to install a handler for
* this subtype.
*/
if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL)
return (EINVAL);
new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled;
loc = (uintptr_t *) &t4_fw_msg_handler[type];
atomic_store_rel_ptr(loc, new);
return (0);
}
static int
cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
#ifdef INVARIANTS
panic("%s: opcode 0x%02x on iq %p with payload %p",
__func__, rss->opcode, iq, m);
#else
log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n",
__func__, rss->opcode, iq, m);
m_freem(m);
#endif
return (EDOOFUS);
}
int
t4_register_cpl_handler(int opcode, cpl_handler_t h)
{
uintptr_t *loc, new;
if (opcode >= nitems(t4_cpl_handler))
return (EINVAL);
new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled;
loc = (uintptr_t *) &t4_cpl_handler[opcode];
atomic_store_rel_ptr(loc, new);
return (0);
}
/*
* Called on MOD_LOAD. Validates and calculates the SGE tunables.
*/
void
t4_sge_modload(void)
{
int i;
if (fl_pktshift < 0 || fl_pktshift > 7) {
printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
" using 2 instead.\n", fl_pktshift);
fl_pktshift = 2;
}
if (spg_len != 64 && spg_len != 128) {
int len;
#if defined(__i386__) || defined(__amd64__)
len = cpu_clflush_line_size > 64 ? 128 : 64;
#else
len = 64;
#endif
if (spg_len != -1) {
printf("Invalid hw.cxgbe.spg_len value (%d),"
" using %d instead.\n", spg_len, len);
}
spg_len = len;
}
if (cong_drop < -1 || cong_drop > 1) {
printf("Invalid hw.cxgbe.cong_drop value (%d),"
" using 0 instead.\n", cong_drop);
cong_drop = 0;
}
extfree_refs = counter_u64_alloc(M_WAITOK);
extfree_rels = counter_u64_alloc(M_WAITOK);
counter_u64_zero(extfree_refs);
counter_u64_zero(extfree_rels);
t4_an_handler = an_not_handled;
for (i = 0; i < nitems(t4_fw_msg_handler); i++)
t4_fw_msg_handler[i] = fw_msg_not_handled;
for (i = 0; i < nitems(t4_cpl_handler); i++)
t4_cpl_handler[i] = cpl_not_handled;
t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
}
void
t4_sge_modunload(void)
{
counter_u64_free(extfree_refs);
counter_u64_free(extfree_rels);
}
uint64_t
t4_sge_extfree_refs(void)
{
uint64_t refs, rels;
rels = counter_u64_fetch(extfree_rels);
refs = counter_u64_fetch(extfree_refs);
return (refs - rels);
}
static inline void
setup_pad_and_pack_boundaries(struct adapter *sc)
{
uint32_t v, m;
int pad, pack, pad_shift;
pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
X_INGPADBOUNDARY_SHIFT;
pad = fl_pad;
if (fl_pad < (1 << pad_shift) ||
fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
!powerof2(fl_pad)) {
/*
* If there is any chance that we might use buffer packing and
* the chip is a T4, then pick 64 as the pad/pack boundary. Set
* it to the minimum allowed in all other cases.
*/
pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
/*
* For fl_pad = 0 we'll still write a reasonable value to the
* register but all the freelists will opt out of padding.
* We'll complain here only if the user tried to set it to a
* value greater than 0 that was invalid.
*/
if (fl_pad > 0) {
device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
" (%d), using %d instead.\n", fl_pad, pad);
}
}
m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
if (is_t4(sc)) {
if (fl_pack != -1 && fl_pack != pad) {
/* Complain but carry on. */
device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
" using %d instead.\n", fl_pack, pad);
}
return;
}
pack = fl_pack;
if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
!powerof2(fl_pack)) {
pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
MPASS(powerof2(pack));
if (pack < 16)
pack = 16;
if (pack == 32)
pack = 64;
if (pack > 4096)
pack = 4096;
if (fl_pack != -1) {
device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
" (%d), using %d instead.\n", fl_pack, pack);
}
}
m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
if (pack == 16)
v = V_INGPACKBOUNDARY(0);
else
v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */
t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
}
/*
* adap->params.vpd.cclk must be set up before this is called.
*/
void
t4_tweak_chip_settings(struct adapter *sc)
{
int i;
uint32_t v, m;
int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sge_flbuf_sizes[] = {
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
MJUMPAGESIZE - CL_METADATA_SIZE,
MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
#endif
MJUM9BYTES,
MJUM16BYTES,
MCLBYTES - MSIZE - CL_METADATA_SIZE,
MJUM9BYTES - CL_METADATA_SIZE,
MJUM16BYTES - CL_METADATA_SIZE,
};
KASSERT(sc->flags & MASTER_PF,
("%s: trying to change chip settings when not master.", __func__));
m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(spg_len == 128);
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
setup_pad_and_pack_boundaries(sc);
v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
("%s: hw buffer size table too big", __func__));
for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
sge_flbuf_sizes[i]);
}
v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
KASSERT(intr_timer[0] <= timer_max,
("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
timer_max));
for (i = 1; i < nitems(intr_timer); i++) {
KASSERT(intr_timer[i] >= intr_timer[i - 1],
("%s: timers not listed in increasing order (%d)",
__func__, i));
while (intr_timer[i] > timer_max) {
if (i == nitems(intr_timer) - 1) {
intr_timer[i] = timer_max;
break;
}
intr_timer[i] += intr_timer[i - 1];
intr_timer[i] /= 2;
}
}
v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
/*
* 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been
* chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we
* may have to deal with is MAXPHYS + 1 page.
*/
v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
}
/*
* SGE wants the buffer to be at least 64B and then a multiple of 16. If
* padding is in use, the buffer's start and end need to be aligned to the pad
* boundary as well. We'll just make sure that the size is a multiple of the
* boundary here, it is up to the buffer allocation code to make sure the start
* of the buffer is aligned as well.
*/
static inline int
hwsz_ok(struct adapter *sc, int hwsz)
{
int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
return (hwsz >= 64 && (hwsz & mask) == 0);
}
/*
* XXX: driver really should be able to deal with unexpected settings.
*/
int
t4_read_chip_settings(struct adapter *sc)
{
struct sge *s = &sc->sge;
struct sge_params *sp = &sc->params.sge;
int i, j, n, rc = 0;
uint32_t m, v, r;
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sw_buf_sizes[] = { /* Sorted by size */
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
#endif
MJUM9BYTES,
MJUM16BYTES
};
struct sw_zone_info *swz, *safe_swz;
struct hw_buf_info *hwb;
m = F_RXPKTCPLMODE;
v = F_RXPKTCPLMODE;
r = sc->params.sge.sge_control;
if ((r & m) != v) {
device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
rc = EINVAL;
}
/*
* If this changes then every single use of PAGE_SHIFT in the driver
* needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
*/
if (sp->page_shift != PAGE_SHIFT) {
device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
rc = EINVAL;
}
/* Filter out unusable hw buffer sizes entirely (mark with -2). */
hwb = &s->hw_buf_info[0];
for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
r = sc->params.sge.sge_fl_buffer_size[i];
hwb->size = r;
hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
hwb->next = -1;
}
/*
* Create a sorted list in decreasing order of hw buffer sizes (and so
* increasing order of spare area) for each software zone.
*
* If padding is enabled then the start and end of the buffer must align
* to the pad boundary; if packing is enabled then they must align with
* the pack boundary as well. Allocations from the cluster zones are
* aligned to min(size, 4K), so the buffer starts at that alignment and
* ends at hwb->size alignment. If mbuf inlining is allowed the
* starting alignment will be reduced to MSIZE and the driver will
* exercise appropriate caution when deciding on the best buffer layout
* to use.
*/
n = 0; /* no usable buffer size to begin with */
swz = &s->sw_zone_info[0];
safe_swz = NULL;
for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
int8_t head = -1, tail = -1;
swz->size = sw_buf_sizes[i];
swz->zone = m_getzone(swz->size);
swz->type = m_gettype(swz->size);
if (swz->size < PAGE_SIZE) {
MPASS(powerof2(swz->size));
if (fl_pad && (swz->size % sp->pad_boundary != 0))
continue;
}
if (swz->size == safest_rx_cluster)
safe_swz = swz;
hwb = &s->hw_buf_info[0];
for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
if (hwb->zidx != -1 || hwb->size > swz->size)
continue;
#ifdef INVARIANTS
if (fl_pad)
MPASS(hwb->size % sp->pad_boundary == 0);
#endif
hwb->zidx = i;
if (head == -1)
head = tail = j;
else if (hwb->size < s->hw_buf_info[tail].size) {
s->hw_buf_info[tail].next = j;
tail = j;
} else {
int8_t *cur;
struct hw_buf_info *t;
for (cur = &head; *cur != -1; cur = &t->next) {
t = &s->hw_buf_info[*cur];
if (hwb->size == t->size) {
hwb->zidx = -2;
break;
}
if (hwb->size > t->size) {
hwb->next = *cur;
*cur = j;
break;
}
}
}
}
swz->head_hwidx = head;
swz->tail_hwidx = tail;
if (tail != -1) {
n++;
if (swz->size - s->hw_buf_info[tail].size >=
CL_METADATA_SIZE)
sc->flags |= BUF_PACKING_OK;
}
}
if (n == 0) {
device_printf(sc->dev, "no usable SGE FL buffer size.\n");
rc = EINVAL;
}
s->safe_hwidx1 = -1;
s->safe_hwidx2 = -1;
if (safe_swz != NULL) {
s->safe_hwidx1 = safe_swz->head_hwidx;
for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
int spare;
hwb = &s->hw_buf_info[i];
#ifdef INVARIANTS
if (fl_pad)
MPASS(hwb->size % sp->pad_boundary == 0);
#endif
spare = safe_swz->size - hwb->size;
if (spare >= CL_METADATA_SIZE) {
s->safe_hwidx2 = i;
break;
}
}
}
if (sc->flags & IS_VF)
return (0);
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
if (r != v) {
device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
rc = EINVAL;
}
m = v = F_TDDPTAGTCB;
r = t4_read_reg(sc, A_ULP_RX_CTL);
if ((r & m) != v) {
device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
rc = EINVAL;
}
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
r = t4_read_reg(sc, A_TP_PARA_REG5);
if ((r & m) != v) {
device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
rc = EINVAL;
}
t4_init_tp_params(sc);
t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
return (rc);
}
int
t4_create_dma_tag(struct adapter *sc)
{
int rc;
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
NULL, &sc->dmat);
if (rc != 0) {
device_printf(sc->dev,
"failed to create main DMA tag: %d\n", rc);
}
return (rc);
}
void
t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *children)
{
struct sge_params *sp = &sc->params.sge;
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
"freelist buffer sizes");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
NULL, sp->pad_boundary, "payload pad boundary (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
NULL, sp->spg_len, "status page size (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
NULL, cong_drop, "congestion drop setting");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
NULL, sp->pack_boundary, "payload pack boundary (bytes)");
}
int
t4_destroy_dma_tag(struct adapter *sc)
{
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
return (0);
}
/*
* Allocate and initialize the firmware event queue and the management queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
int
t4_setup_adapter_queues(struct adapter *sc)
{
int rc;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
sysctl_ctx_init(&sc->ctx);
sc->flags |= ADAP_SYSCTL_CTX;
/*
* Firmware event queue
*/
rc = alloc_fwq(sc);
if (rc != 0)
return (rc);
/*
* Management queue. This is just a control queue that uses the fwq as
* its associated iq.
*/
if (!(sc->flags & IS_VF))
rc = alloc_mgmtq(sc);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_adapter_queues(struct adapter *sc)
{
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/* Do this before freeing the queue */
if (sc->flags & ADAP_SYSCTL_CTX) {
sysctl_ctx_free(&sc->ctx);
sc->flags &= ~ADAP_SYSCTL_CTX;
}
free_mgmtq(sc);
free_fwq(sc);
return (0);
}
static inline int
first_vector(struct vi_info *vi)
{
struct adapter *sc = vi->pi->adapter;
if (sc->intr_count == 1)
return (0);
return (vi->first_intr);
}
/*
* Given an arbitrary "index," come up with an iq that can be used by other
* queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
* The iq returned is guaranteed to be something that takes direct interrupts.
*/
static struct sge_iq *
vi_intr_iq(struct vi_info *vi, int idx)
{
struct adapter *sc = vi->pi->adapter;
struct sge *s = &sc->sge;
struct sge_iq *iq = NULL;
int nintr, i;
if (sc->intr_count == 1)
return (&sc->sge.fwq);
nintr = vi->nintr;
KASSERT(nintr != 0,
("%s: vi %p has no exclusive interrupts, total interrupts = %d",
__func__, vi, sc->intr_count));
i = idx % nintr;
if (vi->flags & INTR_RXQ) {
if (i < vi->nrxq) {
iq = &s->rxq[vi->first_rxq + i].iq;
goto done;
}
i -= vi->nrxq;
}
#ifdef TCP_OFFLOAD
if (vi->flags & INTR_OFLD_RXQ) {
if (i < vi->nofldrxq) {
iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
goto done;
}
i -= vi->nofldrxq;
}
#endif
panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
vi, vi->flags & INTR_ALL, idx, nintr);
done:
MPASS(iq != NULL);
KASSERT(iq->flags & IQ_INTR,
("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
vi->flags & INTR_ALL, idx));
return (iq);
}
/* Maximum payload that can be delivered with a single iq descriptor */
static inline int
mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
{
int payload;
#ifdef TCP_OFFLOAD
if (toe) {
payload = sc->tt.rx_coalesce ?
G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
} else {
#endif
/* large enough even when hw VLAN extraction is disabled */
payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
ETHER_VLAN_ENCAP_LEN + mtu;
#ifdef TCP_OFFLOAD
}
#endif
return (payload);
}
int
t4_setup_vi_queues(struct vi_info *vi)
{
int rc = 0, i, j, intr_idx, iqid;
struct sge_rxq *rxq;
struct sge_txq *txq;
struct sge_wrq *ctrlq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
#ifdef DEV_NETMAP
int saved_idx;
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
#endif
char name[16];
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct ifnet *ifp = vi->ifp;
struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
int maxp, mtu = ifp->if_mtu;
/* Interrupt vector to start from (when using multiple vectors) */
intr_idx = first_vector(vi);
#ifdef DEV_NETMAP
saved_idx = intr_idx;
if (ifp->if_capabilities & IFCAP_NETMAP) {
/* netmap is supported with direct interrupts only. */
MPASS(vi->flags & INTR_RXQ);
/*
* We don't have buffers to back the netmap rx queues
* right now so we create the queues in a way that
* doesn't set off any congestion signal in the chip.
*/
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
CTLFLAG_RD, NULL, "rx queues");
for_each_nm_rxq(vi, i, nm_rxq) {
rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
CTLFLAG_RD, NULL, "tx queues");
for_each_nm_txq(vi, i, nm_txq) {
iqid = vi->first_nm_rxq + (i % vi->nnmrxq);
rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
if (rc != 0)
goto done;
}
}
/* Normal rx queues and netmap rx queues share the same interrupts. */
intr_idx = saved_idx;
#endif
/*
* First pass over all NIC and TOE rx queues:
* a) initialize iq and fl
* b) allocate queue iff it will take direct interrupts.
*/
maxp = mtu_to_max_payload(sc, mtu, 0);
if (vi->flags & INTR_RXQ) {
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
CTLFLAG_RD, NULL, "rx queues");
}
for_each_rxq(vi, i, rxq) {
init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
snprintf(name, sizeof(name), "%s rxq%d-fl",
device_get_nameunit(vi->dev), i);
init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
if (vi->flags & INTR_RXQ) {
rxq->iq.flags |= IQ_INTR;
rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
}
#ifdef DEV_NETMAP
if (ifp->if_capabilities & IFCAP_NETMAP)
intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
#endif
#ifdef TCP_OFFLOAD
maxp = mtu_to_max_payload(sc, mtu, 1);
if (vi->flags & INTR_OFLD_RXQ) {
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
CTLFLAG_RD, NULL,
"rx queues for offloaded TCP connections");
}
for_each_ofld_rxq(vi, i, ofld_rxq) {
init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
vi->qsize_rxq);
snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
device_get_nameunit(vi->dev), i);
init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
if (vi->flags & INTR_OFLD_RXQ) {
ofld_rxq->iq.flags |= IQ_INTR;
rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
}
#endif
/*
* Second pass over all NIC and TOE rx queues. The queues forwarding
* their interrupts are allocated now.
*/
j = 0;
if (!(vi->flags & INTR_RXQ)) {
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
CTLFLAG_RD, NULL, "rx queues");
for_each_rxq(vi, i, rxq) {
MPASS(!(rxq->iq.flags & IQ_INTR));
intr_idx = vi_intr_iq(vi, j)->abs_id;
rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
j++;
}
}
#ifdef TCP_OFFLOAD
if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
CTLFLAG_RD, NULL,
"rx queues for offloaded TCP connections");
for_each_ofld_rxq(vi, i, ofld_rxq) {
MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
intr_idx = vi_intr_iq(vi, j)->abs_id;
rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
j++;
}
}
#endif
/*
* Now the tx queues. Only one pass needed.
*/
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
NULL, "tx queues");
j = 0;
for_each_txq(vi, i, txq) {
iqid = vi_intr_iq(vi, j)->cntxt_id;
snprintf(name, sizeof(name), "%s txq%d",
device_get_nameunit(vi->dev), i);
init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
name);
rc = alloc_txq(vi, txq, i, oid);
if (rc != 0)
goto done;
j++;
}
#ifdef TCP_OFFLOAD
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
for_each_ofld_txq(vi, i, ofld_txq) {
struct sysctl_oid *oid2;
iqid = vi_intr_iq(vi, j)->cntxt_id;
snprintf(name, sizeof(name), "%s ofld_txq%d",
device_get_nameunit(vi->dev), i);
init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
iqid, name);
snprintf(name, sizeof(name), "%d", i);
oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
name, CTLFLAG_RD, NULL, "offload tx queue");
rc = alloc_wrq(sc, vi, ofld_txq, oid2);
if (rc != 0)
goto done;
j++;
}
#endif
/*
* Finally, the control queue.
*/
if (!IS_MAIN_VI(vi) || sc->flags & IS_VF)
goto done;
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
NULL, "ctrl queue");
ctrlq = &sc->sge.ctrlq[pi->port_id];
iqid = vi_intr_iq(vi, 0)->cntxt_id;
snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid,
name);
rc = alloc_wrq(sc, vi, ctrlq, oid);
done:
if (rc)
t4_teardown_vi_queues(vi);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_vi_queues(struct vi_info *vi)
{
int i;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
#ifdef DEV_NETMAP
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
#endif
/* Do this before freeing the queues */
if (vi->flags & VI_SYSCTL_CTX) {
sysctl_ctx_free(&vi->ctx);
vi->flags &= ~VI_SYSCTL_CTX;
}
#ifdef DEV_NETMAP
if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
for_each_nm_txq(vi, i, nm_txq) {
free_nm_txq(vi, nm_txq);
}
for_each_nm_rxq(vi, i, nm_rxq) {
free_nm_rxq(vi, nm_rxq);
}
}
#endif
/*
* Take down all the tx queues first, as they reference the rx queues
* (for egress updates, etc.).
*/
if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
for_each_txq(vi, i, txq) {
free_txq(vi, txq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_txq(vi, i, ofld_txq) {
free_wrq(sc, ofld_txq);
}
#endif
/*
* Then take down the rx queues that forward their interrupts, as they
* reference other rx queues.
*/
for_each_rxq(vi, i, rxq) {
if ((rxq->iq.flags & IQ_INTR) == 0)
free_rxq(vi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(vi, i, ofld_rxq) {
if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
free_ofld_rxq(vi, ofld_rxq);
}
#endif
/*
* Then take down the rx queues that take direct interrupts.
*/
for_each_rxq(vi, i, rxq) {
if (rxq->iq.flags & IQ_INTR)
free_rxq(vi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(vi, i, ofld_rxq) {
if (ofld_rxq->iq.flags & IQ_INTR)
free_ofld_rxq(vi, ofld_rxq);
}
#endif
return (0);
}
/*
* Deals with errors and the firmware event queue. All data rx queues forward
* their interrupt to the firmware event queue.
*/
void
t4_intr_all(void *arg)
{
struct adapter *sc = arg;
struct sge_iq *fwq = &sc->sge.fwq;
t4_intr_err(arg);
if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(fwq, 0);
atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
}
}
/* Deals with error interrupts */
void
t4_intr_err(void *arg)
{
struct adapter *sc = arg;
t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
t4_slow_intr_handler(sc);
}
void
t4_intr_evt(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
void
t4_intr(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
void
t4_vi_intr(void *arg)
{
struct irq *irq = arg;
#ifdef DEV_NETMAP
if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
t4_nm_intr(irq->nm_rxq);
atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
}
#endif
if (irq->rxq != NULL)
t4_intr(irq->rxq);
}
/*
* Deals with anything and everything on the given ingress queue.
*/
static int
service_iq(struct sge_iq *iq, int budget)
{
struct sge_iq *q;
struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
struct sge_fl *fl; /* Use iff IQ_HAS_FL */
struct adapter *sc = iq->adapter;
struct iq_desc *d = &iq->desc[iq->cidx];
int ndescs = 0, limit;
int rsp_type, refill;
uint32_t lq;
uint16_t fl_hw_cidx;
struct mbuf *m0;
STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
#if defined(INET) || defined(INET6)
const struct timeval lro_timeout = {0, sc->lro_timeout};
#endif
KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
limit = budget ? budget : iq->qsize / 16;
if (iq->flags & IQ_HAS_FL) {
fl = &rxq->fl;
fl_hw_cidx = fl->hw_cidx; /* stable snapshot */
} else {
fl = NULL;
fl_hw_cidx = 0; /* to silence gcc warning */
}
/*
* We always come back and check the descriptor ring for new indirect
* interrupts and other responses after running a single handler.
*/
for (;;) {
while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
rmb();
refill = 0;
m0 = NULL;
rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
lq = be32toh(d->rsp.pldbuflen_qid);
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
KASSERT(iq->flags & IQ_HAS_FL,
("%s: data for an iq (%p) with no freelist",
__func__, iq));
m0 = get_fl_payload(sc, fl, lq);
if (__predict_false(m0 == NULL))
goto process_iql;
refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
#ifdef T4_PKT_TIMESTAMP
/*
* 60 bit timestamp for the payload is
* *(uint64_t *)m0->m_pktdat. Note that it is
* in the leading free-space in the mbuf. The
* kernel can clobber it during a pullup,
* m_copymdata, etc. You need to make sure that
* the mbuf reaches you unmolested if you care
* about the timestamp.
*/
*(uint64_t *)m0->m_pktdat =
be64toh(ctrl->u.last_flit) &
0xfffffffffffffff;
#endif
/* fall through */
case X_RSPD_TYPE_CPL:
KASSERT(d->rss.opcode < NUM_CPL_CMDS,
("%s: bad opcode %02x.", __func__,
d->rss.opcode));
t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
break;
case X_RSPD_TYPE_INTR:
/*
* Interrupts should be forwarded only to queues
* that are not forwarding their interrupts.
* This means service_iq can recurse but only 1
* level deep.
*/
KASSERT(budget == 0,
("%s: budget %u, rsp_type %u", __func__,
budget, rsp_type));
/*
* There are 1K interrupt-capable queues (qids 0
* through 1023). A response type indicating a
* forwarded interrupt with a qid >= 1K is an
* iWARP async notification.
*/
if (lq >= 1024) {
t4_an_handler(iq, &d->rsp);
break;
}
q = sc->sge.iqmap[lq - sc->sge.iq_start -
sc->sge.iq_base];
if (atomic_cmpset_int(&q->state, IQS_IDLE,
IQS_BUSY)) {
if (service_iq(q, q->qsize / 16) == 0) {
atomic_cmpset_int(&q->state,
IQS_BUSY, IQS_IDLE);
} else {
STAILQ_INSERT_TAIL(&iql, q,
link);
}
}
break;
default:
KASSERT(0,
("%s: illegal response type %d on iq %p",
__func__, rsp_type, iq));
log(LOG_ERR,
"%s: illegal response type %d on iq %p",
device_get_nameunit(sc->dev), rsp_type, iq);
break;
}
d++;
if (__predict_false(++iq->cidx == iq->sidx)) {
iq->cidx = 0;
iq->gen ^= F_RSPD_GEN;
d = &iq->desc[0];
}
if (__predict_false(++ndescs == limit)) {
t4_write_reg(sc, sc->sge_gts_reg,
V_CIDXINC(ndescs) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndescs = 0;
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED &&
sc->lro_timeout != 0) {
tcp_lro_flush_inactive(&rxq->lro,
&lro_timeout);
}
#endif
if (budget) {
if (iq->flags & IQ_HAS_FL) {
FL_LOCK(fl);
refill_fl(sc, fl, 32);
FL_UNLOCK(fl);
}
return (EINPROGRESS);
}
}
if (refill) {
FL_LOCK(fl);
refill_fl(sc, fl, 32);
FL_UNLOCK(fl);
fl_hw_cidx = fl->hw_cidx;
}
}
process_iql:
if (STAILQ_EMPTY(&iql))
break;
/*
* Process the head only, and send it to the back of the list if
* it's still not done.
*/
q = STAILQ_FIRST(&iql);
STAILQ_REMOVE_HEAD(&iql, link);
if (service_iq(q, q->qsize / 8) == 0)
atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
else
STAILQ_INSERT_TAIL(&iql, q, link);
}
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED) {
struct lro_ctrl *lro = &rxq->lro;
tcp_lro_flush_all(lro);
}
#endif
t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
if (iq->flags & IQ_HAS_FL) {
int starved;
FL_LOCK(fl);
starved = refill_fl(sc, fl, 64);
FL_UNLOCK(fl);
if (__predict_false(starved != 0))
add_fl_to_sfl(sc, fl);
}
return (0);
}
static inline int
cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
{
int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
if (rc)
MPASS(cll->region3 >= CL_METADATA_SIZE);
return (rc);
}
static inline struct cluster_metadata *
cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
caddr_t cl)
{
if (cl_has_metadata(fl, cll)) {
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
return ((struct cluster_metadata *)(cl + swz->size) - 1);
}
return (NULL);
}
static void
rxb_free(struct mbuf *m, void *arg1, void *arg2)
{
uma_zone_t zone = arg1;
caddr_t cl = arg2;
uma_zfree(zone, cl);
counter_u64_add(extfree_rels, 1);
}
/*
* The mbuf returned by this function could be allocated from zone_mbuf or
* constructed in spare room in the cluster.
*
* The mbuf carries the payload in one of these ways
* a) frame inside the mbuf (mbuf from zone_mbuf)
* b) m_cljset (for clusters without metadata) zone_mbuf
* c) m_extaddref (cluster with metadata) inline mbuf
* d) m_extaddref (cluster with metadata) zone_mbuf
*/
static struct mbuf *
get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
int remaining)
{
struct mbuf *m;
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
struct cluster_layout *cll = &sd->cll;
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
int len, blen;
caddr_t payload;
blen = hwb->size - fl->rx_offset; /* max possible in this buf */
len = min(remaining, blen);
payload = sd->cl + cll->region1 + fl->rx_offset;
if (fl->flags & FL_BUF_PACKING) {
const u_int l = fr_offset + len;
const u_int pad = roundup2(l, fl->buf_boundary) - l;
if (fl->rx_offset + len + pad < hwb->size)
blen = len + pad;
MPASS(fl->rx_offset + blen <= hwb->size);
} else {
MPASS(fl->rx_offset == 0); /* not packing */
}
if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
/*
* Copy payload into a freshly allocated mbuf.
*/
m = fr_offset == 0 ?
m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
fl->mbuf_allocated++;
#ifdef T4_PKT_TIMESTAMP
/* Leave room for a timestamp */
m->m_data += 8;
#endif
/* copy data to mbuf */
bcopy(payload, mtod(m, caddr_t), len);
} else if (sd->nmbuf * MSIZE < cll->region1) {
/*
* There's spare room in the cluster for an mbuf. Create one
* and associate it with the payload that's in the cluster.
*/
MPASS(clm != NULL);
m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
/* No bzero required */
if (m_init(m, M_NOWAIT, MT_DATA,
fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
return (NULL);
fl->mbuf_inlined++;
m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
swz->zone, sd->cl);
if (sd->nmbuf++ == 0)
counter_u64_add(extfree_refs, 1);
} else {
/*
* Grab an mbuf from zone_mbuf and associate it with the
* payload in the cluster.
*/
m = fr_offset == 0 ?
m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
fl->mbuf_allocated++;
if (clm != NULL) {
m_extaddref(m, payload, blen, &clm->refcount,
rxb_free, swz->zone, sd->cl);
if (sd->nmbuf++ == 0)
counter_u64_add(extfree_refs, 1);
} else {
m_cljset(m, sd->cl, swz->type);
sd->cl = NULL; /* consumed, not a recycle candidate */
}
}
if (fr_offset == 0)
m->m_pkthdr.len = remaining;
m->m_len = len;
if (fl->flags & FL_BUF_PACKING) {
fl->rx_offset += blen;
MPASS(fl->rx_offset <= hwb->size);
if (fl->rx_offset < hwb->size)
return (m); /* without advancing the cidx */
}
if (__predict_false(++fl->cidx % 8 == 0)) {
uint16_t cidx = fl->cidx / 8;
if (__predict_false(cidx == fl->sidx))
fl->cidx = cidx = 0;
fl->hw_cidx = cidx;
}
fl->rx_offset = 0;
return (m);
}
static struct mbuf *
get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
{
struct mbuf *m0, *m, **pnext;
u_int remaining;
const u_int total = G_RSPD_LEN(len_newbuf);
if (__predict_false(fl->flags & FL_BUF_RESUME)) {
M_ASSERTPKTHDR(fl->m0);
MPASS(fl->m0->m_pkthdr.len == total);
MPASS(fl->remaining < total);
m0 = fl->m0;
pnext = fl->pnext;
remaining = fl->remaining;
fl->flags &= ~FL_BUF_RESUME;
goto get_segment;
}
if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
fl->rx_offset = 0;
if (__predict_false(++fl->cidx % 8 == 0)) {
uint16_t cidx = fl->cidx / 8;
if (__predict_false(cidx == fl->sidx))
fl->cidx = cidx = 0;
fl->hw_cidx = cidx;
}
}
/*
* Payload starts at rx_offset in the current hw buffer. Its length is
* 'len' and it may span multiple hw buffers.
*/
m0 = get_scatter_segment(sc, fl, 0, total);
if (m0 == NULL)
return (NULL);
remaining = total - m0->m_len;
pnext = &m0->m_next;
while (remaining > 0) {
get_segment:
MPASS(fl->rx_offset == 0);
m = get_scatter_segment(sc, fl, total - remaining, remaining);
if (__predict_false(m == NULL)) {
fl->m0 = m0;
fl->pnext = pnext;
fl->remaining = remaining;
fl->flags |= FL_BUF_RESUME;
return (NULL);
}
*pnext = m;
pnext = &m->m_next;
remaining -= m->m_len;
}
*pnext = NULL;
M_ASSERTPKTHDR(m0);
return (m0);
}
static int
t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
{
struct sge_rxq *rxq = iq_to_rxq(iq);
struct ifnet *ifp = rxq->ifp;
struct adapter *sc = iq->adapter;
const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
#if defined(INET) || defined(INET6)
struct lro_ctrl *lro = &rxq->lro;
#endif
static const int sw_hashtype[4][2] = {
{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
};
KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
rss->opcode));
m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
m0->m_len -= sc->params.sge.fl_pktshift;
m0->m_data += sc->params.sge.fl_pktshift;
m0->m_pkthdr.rcvif = ifp;
M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
m0->m_pkthdr.flowid = be32toh(rss->hash_val);
if (cpl->csum_calc && !cpl->err_vec) {
if (ifp->if_capenable & IFCAP_RXCSUM &&
cpl->l2info & htobe32(F_RXF_IP)) {
m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
rxq->rxcsum++;
} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
cpl->l2info & htobe32(F_RXF_IP6)) {
m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
CSUM_PSEUDO_HDR);
rxq->rxcsum++;
}
if (__predict_false(cpl->ip_frag))
m0->m_pkthdr.csum_data = be16toh(cpl->csum);
else
m0->m_pkthdr.csum_data = 0xffff;
}
if (cpl->vlan_ex) {
m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
m0->m_flags |= M_VLANTAG;
rxq->vlan_extraction++;
}
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED &&
tcp_lro_rx(lro, m0, 0) == 0) {
/* queued for LRO */
} else
#endif
ifp->if_input(ifp, m0);
return (0);
}
/*
* Must drain the wrq or make sure that someone else will.
*/
static void
wrq_tx_drain(void *arg, int n)
{
struct sge_wrq *wrq = arg;
struct sge_eq *eq = &wrq->eq;
EQ_LOCK(eq);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(wrq->adapter, wrq);
EQ_UNLOCK(eq);
}
static void
drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
{
struct sge_eq *eq = &wrq->eq;
u_int available, dbdiff; /* # of hardware descriptors */
u_int n;
struct wrqe *wr;
struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */
EQ_LOCK_ASSERT_OWNED(eq);
MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
wr = STAILQ_FIRST(&wrq->wr_list);
MPASS(wr != NULL); /* Must be called with something useful to do */
MPASS(eq->pidx == eq->dbidx);
dbdiff = 0;
do {
eq->cidx = read_hw_cidx(eq);
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
MPASS(wr->wrq == wrq);
n = howmany(wr->wr_len, EQ_ESIZE);
if (available < n)
break;
dst = (void *)&eq->desc[eq->pidx];
if (__predict_true(eq->sidx - eq->pidx > n)) {
/* Won't wrap, won't end exactly at the status page. */
bcopy(&wr->wr[0], dst, wr->wr_len);
eq->pidx += n;
} else {
int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
bcopy(&wr->wr[0], dst, first_portion);
if (wr->wr_len > first_portion) {
bcopy(&wr->wr[first_portion], &eq->desc[0],
wr->wr_len - first_portion);
}
eq->pidx = n - (eq->sidx - eq->pidx);
}
if (available < eq->sidx / 4 &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
}
dbdiff += n;
if (dbdiff >= 16) {
ring_eq_db(sc, eq, dbdiff);
dbdiff = 0;
}
STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
free_wrqe(wr);
MPASS(wrq->nwr_pending > 0);
wrq->nwr_pending--;
MPASS(wrq->ndesc_needed >= n);
wrq->ndesc_needed -= n;
} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
if (dbdiff)
ring_eq_db(sc, eq, dbdiff);
}
/*
* Doesn't fail. Holds on to work requests it can't send right away.
*/
void
t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
{
#ifdef INVARIANTS
struct sge_eq *eq = &wrq->eq;
#endif
EQ_LOCK_ASSERT_OWNED(eq);
MPASS(wr != NULL);
MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
MPASS((wr->wr_len & 0x7) == 0);
STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
wrq->nwr_pending++;
wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
return; /* commit_wrq_wr will drain wr_list as well. */
drain_wrq_wr_list(sc, wrq);
/* Doorbell must have caught up to the pidx. */
MPASS(eq->pidx == eq->dbidx);
}
void
t4_update_fl_bufsize(struct ifnet *ifp)
{
struct vi_info *vi = ifp->if_softc;
struct adapter *sc = vi->pi->adapter;
struct sge_rxq *rxq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
struct sge_fl *fl;
int i, maxp, mtu = ifp->if_mtu;
maxp = mtu_to_max_payload(sc, mtu, 0);
for_each_rxq(vi, i, rxq) {
fl = &rxq->fl;
FL_LOCK(fl);
find_best_refill_source(sc, fl, maxp);
FL_UNLOCK(fl);
}
#ifdef TCP_OFFLOAD
maxp = mtu_to_max_payload(sc, mtu, 1);
for_each_ofld_rxq(vi, i, ofld_rxq) {
fl = &ofld_rxq->fl;
FL_LOCK(fl);
find_best_refill_source(sc, fl, maxp);
FL_UNLOCK(fl);
}
#endif
}
static inline int
mbuf_nsegs(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
KASSERT(m->m_pkthdr.l5hlen > 0,
("%s: mbuf %p missing information on # of segments.", __func__, m));
return (m->m_pkthdr.l5hlen);
}
static inline void
set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.l5hlen = nsegs;
}
static inline int
mbuf_len16(struct mbuf *m)
{
int n;
M_ASSERTPKTHDR(m);
n = m->m_pkthdr.PH_loc.eight[0];
MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
return (n);
}
static inline void
set_mbuf_len16(struct mbuf *m, uint8_t len16)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[0] = len16;
}
static inline int
needs_tso(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
KASSERT(m->m_pkthdr.tso_segsz > 0,
("%s: TSO requested in mbuf %p but MSS not provided",
__func__, m));
return (1);
}
return (0);
}
static inline int
needs_l3_csum(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
return (1);
return (0);
}
static inline int
needs_l4_csum(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
CSUM_TCP_IPV6 | CSUM_TSO))
return (1);
return (0);
}
static inline int
needs_vlan_insertion(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_flags & M_VLANTAG) {
KASSERT(m->m_pkthdr.ether_vtag != 0,
("%s: HWVLAN requested in mbuf %p but tag not provided",
__func__, m));
return (1);
}
return (0);
}
static void *
m_advance(struct mbuf **pm, int *poffset, int len)
{
struct mbuf *m = *pm;
int offset = *poffset;
uintptr_t p = 0;
MPASS(len > 0);
for (;;) {
if (offset + len < m->m_len) {
offset += len;
p = mtod(m, uintptr_t) + offset;
break;
}
len -= m->m_len - offset;
m = m->m_next;
offset = 0;
MPASS(m != NULL);
}
*poffset = offset;
*pm = m;
return ((void *)p);
}
static inline int
same_paddr(char *a, char *b)
{
if (a == b)
return (1);
else if (a != NULL && b != NULL) {
vm_offset_t x = (vm_offset_t)a;
vm_offset_t y = (vm_offset_t)b;
if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
pmap_kextract(x) == pmap_kextract(y))
return (1);
}
return (0);
}
/*
* Can deal with empty mbufs in the chain that have m_len = 0, but the chain
* must have at least one mbuf that's not empty.
*/
static inline int
count_mbuf_nsegs(struct mbuf *m)
{
char *prev_end, *start;
int len, nsegs;
MPASS(m != NULL);
nsegs = 0;
prev_end = NULL;
for (; m; m = m->m_next) {
len = m->m_len;
if (__predict_false(len == 0))
continue;
start = mtod(m, char *);
nsegs += sglist_count(start, len);
if (same_paddr(prev_end, start))
nsegs--;
prev_end = start + len;
}
MPASS(nsegs > 0);
return (nsegs);
}
/*
* Analyze the mbuf to determine its tx needs. The mbuf passed in may change:
* a) caller can assume it's been freed if this function returns with an error.
* b) it may get defragged up if the gather list is too long for the hardware.
*/
int
parse_pkt(struct adapter *sc, struct mbuf **mp)
{
struct mbuf *m0 = *mp, *m;
int rc, nsegs, defragged = 0, offset;
struct ether_header *eh;
void *l3hdr;
#if defined(INET) || defined(INET6)
struct tcphdr *tcp;
#endif
uint16_t eh_type;
M_ASSERTPKTHDR(m0);
if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
rc = EINVAL;
fail:
m_freem(m0);
*mp = NULL;
return (rc);
}
restart:
/*
* First count the number of gather list segments in the payload.
* Defrag the mbuf if nsegs exceeds the hardware limit.
*/
M_ASSERTPKTHDR(m0);
MPASS(m0->m_pkthdr.len > 0);
nsegs = count_mbuf_nsegs(m0);
if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
rc = EFBIG;
goto fail;
}
*mp = m0 = m; /* update caller's copy after defrag */
goto restart;
}
if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
m0 = m_pullup(m0, m0->m_pkthdr.len);
if (m0 == NULL) {
/* Should have left well enough alone. */
rc = EFBIG;
goto fail;
}
*mp = m0; /* update caller's copy after pullup */
goto restart;
}
set_mbuf_nsegs(m0, nsegs);
if (sc->flags & IS_VF)
set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
else
set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
if (!needs_tso(m0) &&
!(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
return (0);
m = m0;
eh = mtod(m, struct ether_header *);
eh_type = ntohs(eh->ether_type);
if (eh_type == ETHERTYPE_VLAN) {
struct ether_vlan_header *evh = (void *)eh;
eh_type = ntohs(evh->evl_proto);
m0->m_pkthdr.l2hlen = sizeof(*evh);
} else
m0->m_pkthdr.l2hlen = sizeof(*eh);
offset = 0;
l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6 = l3hdr;
MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
m0->m_pkthdr.l3hlen = sizeof(*ip6);
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip = l3hdr;
m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
break;
}
#endif
default:
panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled"
" with the same INET/INET6 options as the kernel.",
__func__, eh_type);
}
#if defined(INET) || defined(INET6)
if (needs_tso(m0)) {
tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
m0->m_pkthdr.l4hlen = tcp->th_off * 4;
}
#endif
MPASS(m0 == *mp);
return (0);
}
void *
start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
{
struct sge_eq *eq = &wrq->eq;
struct adapter *sc = wrq->adapter;
int ndesc, available;
struct wrqe *wr;
void *w;
MPASS(len16 > 0);
ndesc = howmany(len16, EQ_ESIZE / 16);
MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
EQ_LOCK(eq);
if (!STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(sc, wrq);
if (!STAILQ_EMPTY(&wrq->wr_list)) {
slowpath:
EQ_UNLOCK(eq);
wr = alloc_wrqe(len16 * 16, wrq);
if (__predict_false(wr == NULL))
return (NULL);
cookie->pidx = -1;
cookie->ndesc = ndesc;
return (&wr->wr);
}
eq->cidx = read_hw_cidx(eq);
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
if (available < ndesc)
goto slowpath;
cookie->pidx = eq->pidx;
cookie->ndesc = ndesc;
TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
w = &eq->desc[eq->pidx];
IDXINCR(eq->pidx, ndesc, eq->sidx);
if (__predict_false(eq->pidx < ndesc - 1)) {
w = &wrq->ss[0];
wrq->ss_pidx = cookie->pidx;
wrq->ss_len = len16 * 16;
}
EQ_UNLOCK(eq);
return (w);
}
void
commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
{
struct sge_eq *eq = &wrq->eq;
struct adapter *sc = wrq->adapter;
int ndesc, pidx;
struct wrq_cookie *prev, *next;
if (cookie->pidx == -1) {
struct wrqe *wr = __containerof(w, struct wrqe, wr);
t4_wrq_tx(sc, wr);
return;
}
ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */
pidx = cookie->pidx;
MPASS(pidx >= 0 && pidx < eq->sidx);
if (__predict_false(w == &wrq->ss[0])) {
int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
MPASS(wrq->ss_len > n); /* WR had better wrap around. */
bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
wrq->tx_wrs_ss++;
} else
wrq->tx_wrs_direct++;
EQ_LOCK(eq);
prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
next = TAILQ_NEXT(cookie, link);
if (prev == NULL) {
MPASS(pidx == eq->dbidx);
if (next == NULL || ndesc >= 16)
ring_eq_db(wrq->adapter, eq, ndesc);
else {
MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
next->pidx = pidx;
next->ndesc += ndesc;
}
} else {
MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
prev->ndesc += ndesc;
}
TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(sc, wrq);
#ifdef INVARIANTS
if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
/* Doorbell must have caught up to the pidx. */
MPASS(wrq->eq.pidx == wrq->eq.dbidx);
}
#endif
EQ_UNLOCK(eq);
}
static u_int
can_resume_eth_tx(struct mp_ring *r)
{
struct sge_eq *eq = r->cookie;
return (total_available_tx_desc(eq) > eq->sidx / 8);
}
static inline int
cannot_use_txpkts(struct mbuf *m)
{
/* maybe put a GL limit too, to avoid silliness? */
return (needs_tso(m));
}
/*
* r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
* be consumed. Return the actual number consumed. 0 indicates a stall.
*/
static u_int
eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
{
struct sge_txq *txq = r->cookie;
struct sge_eq *eq = &txq->eq;
struct ifnet *ifp = txq->ifp;
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
u_int total, remaining; /* # of packets */
u_int available, dbdiff; /* # of hardware descriptors */
u_int n, next_cidx;
struct mbuf *m0, *tail;
struct txpkts txp;
struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */
remaining = IDXDIFF(pidx, cidx, r->size);
MPASS(remaining > 0); /* Must not be called without work to do. */
total = 0;
TXQ_LOCK(txq);
if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
while (cidx != pidx) {
m0 = r->items[cidx];
m_freem(m0);
if (++cidx == r->size)
cidx = 0;
}
reclaim_tx_descs(txq, 2048);
total = remaining;
goto done;
}
/* How many hardware descriptors do we have readily available. */
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
while (remaining > 0) {
m0 = r->items[cidx];
M_ASSERTPKTHDR(m0);
MPASS(m0->m_nextpkt == NULL);
if (available < SGE_MAX_WR_NDESC) {
available += reclaim_tx_descs(txq, 64);
if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
break; /* out of descriptors */
}
next_cidx = cidx + 1;
if (__predict_false(next_cidx == r->size))
next_cidx = 0;
wr = (void *)&eq->desc[eq->pidx];
if (sc->flags & IS_VF) {
total++;
remaining--;
ETHER_BPF_MTAP(ifp, m0);
n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
available);
} else if (remaining > 1 &&
try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
/* pkts at cidx, next_cidx should both be in txp. */
MPASS(txp.npkt == 2);
tail = r->items[next_cidx];
MPASS(tail->m_nextpkt == NULL);
ETHER_BPF_MTAP(ifp, m0);
ETHER_BPF_MTAP(ifp, tail);
m0->m_nextpkt = tail;
if (__predict_false(++next_cidx == r->size))
next_cidx = 0;
while (next_cidx != pidx) {
if (add_to_txpkts(r->items[next_cidx], &txp,
available) != 0)
break;
tail->m_nextpkt = r->items[next_cidx];
tail = tail->m_nextpkt;
ETHER_BPF_MTAP(ifp, tail);
if (__predict_false(++next_cidx == r->size))
next_cidx = 0;
}
n = write_txpkts_wr(txq, wr, m0, &txp, available);
total += txp.npkt;
remaining -= txp.npkt;
} else {
total++;
remaining--;
ETHER_BPF_MTAP(ifp, m0);
n = write_txpkt_wr(txq, (void *)wr, m0, available);
}
MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
available -= n;
dbdiff += n;
IDXINCR(eq->pidx, n, eq->sidx);
if (total_available_tx_desc(eq) < eq->sidx / 4 &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
}
if (dbdiff >= 16 && remaining >= 4) {
ring_eq_db(sc, eq, dbdiff);
available += reclaim_tx_descs(txq, 4 * dbdiff);
dbdiff = 0;
}
cidx = next_cidx;
}
if (dbdiff != 0) {
ring_eq_db(sc, eq, dbdiff);
reclaim_tx_descs(txq, 32);
}
done:
TXQ_UNLOCK(txq);
return (total);
}
static inline void
init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
int qsize)
{
KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
("%s: bad tmr_idx %d", __func__, tmr_idx));
KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
("%s: bad pktc_idx %d", __func__, pktc_idx));
iq->flags = 0;
iq->adapter = sc;
iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
if (pktc_idx >= 0) {
iq->intr_params |= F_QINTR_CNT_EN;
iq->intr_pktc_idx = pktc_idx;
}
iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */
iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
}
static inline void
init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
{
fl->qsize = qsize;
fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
strlcpy(fl->lockname, name, sizeof(fl->lockname));
if (sc->flags & BUF_PACKING_OK &&
((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */
(is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
fl->flags |= FL_BUF_PACKING;
find_best_refill_source(sc, fl, maxp);
find_safe_refill_source(sc, fl);
}
static inline void
init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
uint8_t tx_chan, uint16_t iqid, char *name)
{
KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
eq->flags = eqtype & EQ_TYPEMASK;
eq->tx_chan = tx_chan;
eq->iqid = iqid;
eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
strlcpy(eq->lockname, name, sizeof(eq->lockname));
}
static int
alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
bus_dmamap_t *map, bus_addr_t *pa, void **va)
{
int rc;
rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
goto done;
}
rc = bus_dmamem_alloc(*tag, va,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
goto done;
}
rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
if (rc != 0) {
device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
goto done;
}
done:
if (rc)
free_ring(sc, *tag, *map, *pa, *va);
return (rc);
}
static int
free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
bus_addr_t pa, void *va)
{
if (pa)
bus_dmamap_unload(tag, map);
if (va)
bus_dmamem_free(tag, va, map);
if (tag)
bus_dma_tag_destroy(tag);
return (0);
}
/*
* Allocates the ring for an ingress queue and an optional freelist. If the
* freelist is specified it will be allocated and then associated with the
* ingress queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*
* If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
* the intr_idx specifies the vector, starting from 0. Otherwise it specifies
* the abs_id of the ingress queue to which its interrupts should be forwarded.
*/
static int
alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
int intr_idx, int cong)
{
int rc, i, cntxt_id;
size_t len;
struct fw_iq_cmd c;
struct port_info *pi = vi->pi;
struct adapter *sc = iq->adapter;
struct sge_params *sp = &sc->params.sge;
__be32 v = 0;
len = iq->qsize * IQ_ESIZE;
rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
(void **)&iq->desc);
if (rc != 0)
return (rc);
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
/* Special handling for firmware event queue */
if (iq == &sc->sge.fwq)
v |= F_FW_IQ_CMD_IQASYNCH;
if (iq->flags & IQ_INTR) {
KASSERT(intr_idx < sc->intr_count,
("%s: invalid direct intr_idx %d", __func__, intr_idx));
} else
v |= F_FW_IQ_CMD_IQANDST;
v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
c.type_to_iqandstindex = htobe32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(vi->viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
c.iqsize = htobe16(iq->qsize);
c.iqaddr = htobe64(iq->ba);
if (cong >= 0)
c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl) {
mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
len = fl->qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
&fl->ba, (void **)&fl->desc);
if (rc)
return (rc);
/* Allocate space for one software descriptor per buffer. */
rc = alloc_fl_sdesc(fl);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup fl software descriptors: %d\n",
rc);
return (rc);
}
if (fl->flags & FL_BUF_PACKING) {
fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
fl->buf_boundary = sp->pack_boundary;
} else {
fl->lowat = roundup2(sp->fl_starve_threshold, 8);
fl->buf_boundary = 16;
}
if (fl_pad && fl->buf_boundary < sp->pad_boundary)
fl->buf_boundary = sp->pad_boundary;
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
0));
if (cong >= 0) {
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
}
c.fl0dcaen_to_fl0cidxfthresh =
htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
c.fl0size = htobe16(fl->qsize);
c.fl0addr = htobe64(fl->ba);
}
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create ingress queue: %d\n", rc);
return (rc);
}
iq->cidx = 0;
iq->gen = F_RSPD_GEN;
iq->intr_next = iq->intr_params;
iq->cntxt_id = be16toh(c.iqid);
iq->abs_id = be16toh(c.physiqid);
iq->flags |= IQ_ALLOCATED;
cntxt_id = iq->cntxt_id - sc->sge.iq_start;
if (cntxt_id >= sc->sge.niq) {
panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.niq - 1);
}
sc->sge.iqmap[cntxt_id] = iq;
if (fl) {
u_int qid;
iq->flags |= IQ_HAS_FL;
fl->cntxt_id = be16toh(c.fl0id);
fl->pidx = fl->cidx = 0;
cntxt_id = fl->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq) {
panic("%s: fl->cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.neq - 1);
}
sc->sge.eqmap[cntxt_id] = (void *)fl;
qid = fl->cntxt_id;
if (isset(&sc->doorbells, DOORBELL_UDB)) {
uint32_t s_qpp = sc->params.sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (qid >> s_qpp) << PAGE_SHIFT;
qid &= mask;
if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
udb += qid << UDBS_SEG_SHIFT;
qid = 0;
}
fl->udb = (volatile void *)udb;
}
fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
FL_LOCK(fl);
/* Enough to make sure the SGE doesn't think it's starved */
refill_fl(sc, fl, fl->lowat);
FL_UNLOCK(fl);
}
if (is_t5(sc) && !(sc->flags & IS_VF) && cong >= 0) {
uint32_t param, val;
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
if (cong == 0)
val = 1 << 19;
else {
val = 2 << 19;
for (i = 0; i < 4; i++) {
if (cong & (1 << i))
val |= 1 << (i << 2);
}
}
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* report error but carry on */
device_printf(sc->dev,
"failed to set congestion manager context for "
"ingress queue %d: %d\n", iq->cntxt_id, rc);
}
}
/* Enable IQ interrupts */
atomic_store_rel_int(&iq->state, IQS_IDLE);
t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
V_INGRESSQID(iq->cntxt_id));
return (0);
}
static int
free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
{
int rc;
struct adapter *sc = iq->adapter;
device_t dev;
if (sc == NULL)
return (0); /* nothing to do */
dev = vi ? vi->dev : sc->dev;
if (iq->flags & IQ_ALLOCATED) {
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
device_printf(dev,
"failed to free queue %p: %d\n", iq, rc);
return (rc);
}
iq->flags &= ~IQ_ALLOCATED;
}
free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
bzero(iq, sizeof(*iq));
if (fl) {
free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
fl->desc);
if (fl->sdesc)
free_fl_sdesc(sc, fl);
if (mtx_initialized(&fl->fl_lock))
mtx_destroy(&fl->fl_lock);
bzero(fl, sizeof(*fl));
}
return (0);
}
static void
add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_fl *fl)
{
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
"freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the freelist");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
fl_pad ? 1 : 0, "padding enabled");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
0, "consumer index");
if (fl->flags & FL_BUF_PACKING) {
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
}
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
0, "producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
}
static int
alloc_fwq(struct adapter *sc)
{
int rc, intr_idx;
struct sge_iq *fwq = &sc->sge.fwq;
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
fwq->flags |= IQ_INTR; /* always */
if (sc->flags & IS_VF)
intr_idx = 0;
else {
intr_idx = sc->intr_count > 1 ? 1 : 0;
fwq->set_tcb_rpl = t4_filter_rpl;
fwq->l2t_write_rpl = do_l2t_write_rpl;
}
rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
if (rc != 0) {
device_printf(sc->dev,
"failed to create firmware event queue: %d\n", rc);
return (rc);
}
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
NULL, "firmware event queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
"consumer index");
return (0);
}
static int
free_fwq(struct adapter *sc)
{
return free_iq_fl(NULL, &sc->sge.fwq, NULL);
}
static int
alloc_mgmtq(struct adapter *sc)
{
int rc;
struct sge_wrq *mgmtq = &sc->sge.mgmtq;
char name[16];
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
NULL, "management queue");
snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
sc->sge.fwq.cntxt_id, name);
rc = alloc_wrq(sc, NULL, mgmtq, oid);
if (rc != 0) {
device_printf(sc->dev,
"failed to create management queue: %d\n", rc);
return (rc);
}
return (0);
}
static int
free_mgmtq(struct adapter *sc)
{
return free_wrq(sc, &sc->sge.mgmtq);
}
int
tnl_cong(struct port_info *pi, int drop)
{
if (drop == -1)
return (-1);
else if (drop == 1)
return (0);
else
return (pi->rx_chan_map);
}
static int
alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
struct sysctl_oid *oid)
{
int rc;
struct adapter *sc = vi->pi->adapter;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
tnl_cong(vi->pi, cong_drop));
if (rc != 0)
return (rc);
if (idx == 0)
sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
else
KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
("iq_base mismatch"));
KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
("PF with non-zero iq_base"));
/*
* The freelist is just barely above the starvation threshold right now,
* fill it up a bit more.
*/
FL_LOCK(&rxq->fl);
refill_fl(sc, &rxq->fl, 128);
FL_UNLOCK(&rxq->fl);
#if defined(INET) || defined(INET6)
rc = tcp_lro_init(&rxq->lro);
if (rc != 0)
return (rc);
rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */
if (vi->ifp->if_capenable & IFCAP_LRO)
rxq->iq.flags |= IQ_LRO_ENABLED;
#endif
rxq->ifp = vi->ifp;
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
#if defined(INET) || defined(INET6)
SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
&rxq->lro.lro_queued, 0, NULL);
SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
&rxq->lro.lro_flushed, 0, NULL);
#endif
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
&rxq->rxcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
CTLFLAG_RD, &rxq->vlan_extraction,
"# of times hardware extracted 802.1Q tag");
add_fl_sysctls(&vi->ctx, oid, &rxq->fl);
return (rc);
}
static int
free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
{
int rc;
#if defined(INET) || defined(INET6)
if (rxq->lro.ifp) {
tcp_lro_free(&rxq->lro);
rxq->lro.ifp = NULL;
}
#endif
rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
if (rc == 0)
bzero(rxq, sizeof(*rxq));
return (rc);
}
#ifdef TCP_OFFLOAD
static int
alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
int intr_idx, int idx, struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
vi->pi->rx_chan_map);
if (rc != 0)
return (rc);
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
"I", "absolute id of the queue");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the queue");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl);
return (rc);
}
static int
free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
{
int rc;
rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
if (rc == 0)
bzero(ofld_rxq, sizeof(*ofld_rxq));
return (rc);
}
#endif
#ifdef DEV_NETMAP
static int
alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
int idx, struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
struct sysctl_ctx_list *ctx;
char name[16];
size_t len;
struct adapter *sc = vi->pi->adapter;
struct netmap_adapter *na = NA(vi->ifp);
MPASS(na != NULL);
len = vi->qsize_rxq * IQ_ESIZE;
rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
&nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
if (rc != 0)
return (rc);
len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
&nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
if (rc != 0)
return (rc);
nm_rxq->vi = vi;
nm_rxq->nid = idx;
nm_rxq->iq_cidx = 0;
nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
nm_rxq->iq_gen = F_RSPD_GEN;
nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
nm_rxq->fl_sidx = na->num_rx_desc;
nm_rxq->intr_idx = intr_idx;
ctx = &vi->ctx;
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
"rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
"I", "absolute id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
"consumer index");
children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
"freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the freelist");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
&nm_rxq->fl_cidx, 0, "consumer index");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
&nm_rxq->fl_pidx, 0, "producer index");
return (rc);
}
static int
free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
{
struct adapter *sc = vi->pi->adapter;
free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
nm_rxq->iq_desc);
free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
nm_rxq->fl_desc);
return (0);
}
static int
alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
struct sysctl_oid *oid)
{
int rc;
size_t len;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct netmap_adapter *na = NA(vi->ifp);
char name[16];
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
&nm_txq->ba, (void **)&nm_txq->desc);
if (rc)
return (rc);
nm_txq->pidx = nm_txq->cidx = 0;
nm_txq->sidx = na->num_tx_desc;
nm_txq->nid = idx;
nm_txq->iqidx = iqidx;
nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
V_TXPKT_VF(vi->viid));
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "netmap tx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&nm_txq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
"producer index");
return (rc);
}
static int
free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
{
struct adapter *sc = vi->pi->adapter;
free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
nm_txq->desc);
return (0);
}
#endif
static int
ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ctrl_cmd c;
int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
c.physeqid_pkd = htobe32(0);
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create control queue %d: %d\n", eq->tx_chan, rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
static int
eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_eth_cmd c;
int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(vi->dev,
"failed to create Ethernet egress queue: %d\n", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#ifdef TCP_OFFLOAD
static int
ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ofld_cmd c;
int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
V_FW_EQ_OFLD_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(vi->dev,
"failed to create egress queue for TCP offload: %d\n", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#endif
static int
alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
{
int rc, qsize;
size_t len;
mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
len = qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
&eq->ba, (void **)&eq->desc);
if (rc)
return (rc);
eq->pidx = eq->cidx = 0;
eq->equeqidx = eq->dbidx = 0;
eq->doorbells = sc->doorbells;
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = ctrl_eq_alloc(sc, eq);
break;
case EQ_ETH:
rc = eth_eq_alloc(sc, vi, eq);
break;
#ifdef TCP_OFFLOAD
case EQ_OFLD:
rc = ofld_eq_alloc(sc, vi, eq);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
device_printf(sc->dev,
"failed to allocate egress queue(%d): %d\n",
eq->flags & EQ_TYPEMASK, rc);
}
if (isset(&eq->doorbells, DOORBELL_UDB) ||
isset(&eq->doorbells, DOORBELL_UDBWC) ||
isset(&eq->doorbells, DOORBELL_WCWR)) {
uint32_t s_qpp = sc->params.sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
eq->udb_qid = eq->cntxt_id & mask; /* id in page */
if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
clrbit(&eq->doorbells, DOORBELL_WCWR);
else {
udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
eq->udb_qid = 0;
}
eq->udb = (volatile void *)udb;
}
return (rc);
}
static int
free_eq(struct adapter *sc, struct sge_eq *eq)
{
int rc;
if (eq->flags & EQ_ALLOCATED) {
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
case EQ_ETH:
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#ifdef TCP_OFFLOAD
case EQ_OFLD:
rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
device_printf(sc->dev,
"failed to free egress queue (%d): %d\n",
eq->flags & EQ_TYPEMASK, rc);
return (rc);
}
eq->flags &= ~EQ_ALLOCATED;
}
free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
if (mtx_initialized(&eq->eq_lock))
mtx_destroy(&eq->eq_lock);
bzero(eq, sizeof(*eq));
return (0);
}
static int
alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
struct sysctl_oid *oid)
{
int rc;
struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
rc = alloc_eq(sc, vi, &wrq->eq);
if (rc)
return (rc);
wrq->adapter = sc;
TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
TAILQ_INIT(&wrq->incomplete_wrs);
STAILQ_INIT(&wrq->wr_list);
wrq->nwr_pending = 0;
wrq->ndesc_needed = 0;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&wrq->eq.cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
&wrq->tx_wrs_direct, "# of work requests (direct)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
&wrq->tx_wrs_copied, "# of work requests (copied)");
return (rc);
}
static int
free_wrq(struct adapter *sc, struct sge_wrq *wrq)
{
int rc;
rc = free_eq(sc, &wrq->eq);
if (rc)
return (rc);
bzero(wrq, sizeof(*wrq));
return (0);
}
static int
alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
struct sysctl_oid *oid)
{
int rc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
char name[16];
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
M_CXGBE, M_WAITOK);
if (rc != 0) {
device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
return (rc);
}
rc = alloc_eq(sc, vi, eq);
if (rc != 0) {
mp_ring_free(txq->r);
txq->r = NULL;
return (rc);
}
/* Can't fail after this point. */
if (idx == 0)
sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
else
KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
("eq_base mismatch"));
KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
("PF with non-zero eq_base"));
TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
txq->ifp = vi->ifp;
txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
if (sc->flags & IS_VF)
txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
V_TXPKT_INTF(pi->tx_chan));
else
txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
V_TXPKT_VF(vi->viid));
txq->tc_idx = -1;
txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "tx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
&eq->abs_id, 0, "absolute id of the queue");
SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&eq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
"traffic class (-1 means none)");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
&txq->txcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
CTLFLAG_RD, &txq->vlan_insertion,
"# of times hardware inserted 802.1Q tag");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
&txq->tso_wrs, "# of TSO work requests");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
&txq->imm_wrs, "# of work requests with immediate data");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
&txq->sgl_wrs, "# of work requests with direct SGL");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
&txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
CTLFLAG_RD, &txq->txpkts0_wrs,
"# of txpkts (type 0) work requests");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
CTLFLAG_RD, &txq->txpkts1_wrs,
"# of txpkts (type 1) work requests");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
CTLFLAG_RD, &txq->txpkts0_pkts,
"# of frames tx'd using type0 txpkts work requests");
SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
CTLFLAG_RD, &txq->txpkts1_pkts,
"# of frames tx'd using type1 txpkts work requests");
SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
CTLFLAG_RD, &txq->r->enqueues,
"# of enqueues to the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
CTLFLAG_RD, &txq->r->drops,
"# of drops in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
CTLFLAG_RD, &txq->r->starts,
"# of normal consumer starts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
CTLFLAG_RD, &txq->r->stalls,
"# of consumer stalls in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
CTLFLAG_RD, &txq->r->restarts,
"# of consumer restarts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
CTLFLAG_RD, &txq->r->abdications,
"# of consumer abdications in the mp_ring for this queue");
return (0);
}
static int
free_txq(struct vi_info *vi, struct sge_txq *txq)
{
int rc;
struct adapter *sc = vi->pi->adapter;
struct sge_eq *eq = &txq->eq;
rc = free_eq(sc, eq);
if (rc)
return (rc);
sglist_free(txq->gl);
free(txq->sdesc, M_CXGBE);
mp_ring_free(txq->r);
bzero(txq, sizeof(*txq));
return (0);
}
static void
oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *ba = arg;
KASSERT(nseg == 1,
("%s meant for single segment mappings only.", __func__));
*ba = error ? 0 : segs->ds_addr;
}
static inline void
ring_fl_db(struct adapter *sc, struct sge_fl *fl)
{
uint32_t n, v;
n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
MPASS(n > 0);
wmb();
v = fl->dbval | V_PIDX(n);
if (fl->udb)
*fl->udb = htole32(v);
else
t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
IDXINCR(fl->dbidx, n, fl->sidx);
}
/*
* Fills up the freelist by allocating up to 'n' buffers. Buffers that are
* recycled do not count towards this allocation budget.
*
* Returns non-zero to indicate that this freelist should be added to the list
* of starving freelists.
*/
static int
refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
{
__be64 *d;
struct fl_sdesc *sd;
uintptr_t pa;
caddr_t cl;
struct cluster_layout *cll;
struct sw_zone_info *swz;
struct cluster_metadata *clm;
uint16_t max_pidx;
uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */
FL_LOCK_ASSERT_OWNED(fl);
/*
* We always stop at the beginning of the hardware descriptor that's just
* before the one with the hw cidx. This is to avoid hw pidx = hw cidx,
* which would mean an empty freelist to the chip.
*/
max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
if (fl->pidx == max_pidx * 8)
return (0);
d = &fl->desc[fl->pidx];
sd = &fl->sdesc[fl->pidx];
cll = &fl->cll_def; /* default layout */
swz = &sc->sge.sw_zone_info[cll->zidx];
while (n > 0) {
if (sd->cl != NULL) {
if (sd->nmbuf == 0) {
/*
* Fast recycle without involving any atomics on
* the cluster's metadata (if the cluster has
* metadata). This happens when all frames
* received in the cluster were small enough to
* fit within a single mbuf each.
*/
fl->cl_fast_recycled++;
#ifdef INVARIANTS
clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
if (clm != NULL)
MPASS(clm->refcount == 1);
#endif
goto recycled_fast;
}
/*
* Cluster is guaranteed to have metadata. Clusters
* without metadata always take the fast recycle path
* when they're recycled.
*/
clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
MPASS(clm != NULL);
if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
fl->cl_recycled++;
counter_u64_add(extfree_rels, 1);
goto recycled;
}
sd->cl = NULL; /* gave up my reference */
}
MPASS(sd->cl == NULL);
alloc:
cl = uma_zalloc(swz->zone, M_NOWAIT);
if (__predict_false(cl == NULL)) {
if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
fl->cll_def.zidx == fl->cll_alt.zidx)
break;
/* fall back to the safe zone */
cll = &fl->cll_alt;
swz = &sc->sge.sw_zone_info[cll->zidx];
goto alloc;
}
fl->cl_allocated++;
n--;
pa = pmap_kextract((vm_offset_t)cl);
pa += cll->region1;
sd->cl = cl;
sd->cll = *cll;
*d = htobe64(pa | cll->hwidx);
clm = cl_metadata(sc, fl, cll, cl);
if (clm != NULL) {
recycled:
#ifdef INVARIANTS
clm->sd = sd;
#endif
clm->refcount = 1;
}
sd->nmbuf = 0;
recycled_fast:
d++;
sd++;
if (__predict_false(++fl->pidx % 8 == 0)) {
uint16_t pidx = fl->pidx / 8;
if (__predict_false(pidx == fl->sidx)) {
fl->pidx = 0;
pidx = 0;
sd = fl->sdesc;
d = fl->desc;
}
if (pidx == max_pidx)
break;
if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
ring_fl_db(sc, fl);
}
}
if (fl->pidx / 8 != fl->dbidx)
ring_fl_db(sc, fl);
return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
}
/*
* Attempt to refill all starving freelists.
*/
static void
refill_sfl(void *arg)
{
struct adapter *sc = arg;
struct sge_fl *fl, *fl_temp;
mtx_assert(&sc->sfl_lock, MA_OWNED);
TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
FL_LOCK(fl);
refill_fl(sc, fl, 64);
if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
TAILQ_REMOVE(&sc->sfl, fl, link);
fl->flags &= ~FL_STARVING;
}
FL_UNLOCK(fl);
}
if (!TAILQ_EMPTY(&sc->sfl))
callout_schedule(&sc->sfl_callout, hz / 5);
}
static int
alloc_fl_sdesc(struct sge_fl *fl)
{
fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
return (0);
}
static void
free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
{
struct fl_sdesc *sd;
struct cluster_metadata *clm;
struct cluster_layout *cll;
int i;
sd = fl->sdesc;
for (i = 0; i < fl->sidx * 8; i++, sd++) {
if (sd->cl == NULL)
continue;
cll = &sd->cll;
clm = cl_metadata(sc, fl, cll, sd->cl);
if (sd->nmbuf == 0)
uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
counter_u64_add(extfree_rels, 1);
}
sd->cl = NULL;
}
free(fl->sdesc, M_CXGBE);
fl->sdesc = NULL;
}
static inline void
get_pkt_gl(struct mbuf *m, struct sglist *gl)
{
int rc;
M_ASSERTPKTHDR(m);
sglist_reset(gl);
rc = sglist_append_mbuf(gl, m);
if (__predict_false(rc != 0)) {
panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
"with %d.", __func__, m, mbuf_nsegs(m), rc);
}
KASSERT(gl->sg_nseg == mbuf_nsegs(m),
("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
mbuf_nsegs(m), gl->sg_nseg));
KASSERT(gl->sg_nseg > 0 &&
gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
}
/*
* len16 for a txpkt WR with a GL. Includes the firmware work request header.
*/
static inline u_int
txpkt_len16(u_int nsegs, u_int tso)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
if (tso)
n += sizeof(struct cpl_tx_pkt_lso_core);
return (howmany(n, 16));
}
/*
* len16 for a txpkt_vm WR with a GL. Includes the firmware work
* request header.
*/
static inline u_int
txpkt_vm_len16(u_int nsegs, u_int tso)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
sizeof(struct cpl_tx_pkt_core) +
sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
if (tso)
n += sizeof(struct cpl_tx_pkt_lso_core);
return (howmany(n, 16));
}
/*
* len16 for a txpkts type 0 WR with a GL. Does not include the firmware work
* request header.
*/
static inline u_int
txpkts0_len16(u_int nsegs)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (howmany(n, 16));
}
/*
* len16 for a txpkts type 1 WR with a GL. Does not include the firmware work
* request header.
*/
static inline u_int
txpkts1_len16(void)
{
u_int n;
n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
return (howmany(n, 16));
}
static inline u_int
imm_payload(u_int ndesc)
{
u_int n;
n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
sizeof(struct cpl_tx_pkt_core);
return (n);
}
/*
* Write a VM txpkt WR for this packet to the hardware descriptors, update the
* software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
{
struct sge_eq *eq = &txq->eq;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int csum_type, len16, ndesc, pktlen, nsegs;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
M_ASSERTPKTHDR(m0);
MPASS(available > 0 && available < eq->sidx);
len16 = mbuf_len16(m0);
nsegs = mbuf_nsegs(m0);
pktlen = m0->m_pkthdr.len;
ctrl = sizeof(struct cpl_tx_pkt_core);
if (needs_tso(m0))
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
ndesc = howmany(len16, EQ_ESIZE / 16);
MPASS(ndesc <= available);
/* Firmware work request header */
MPASS(wr == (void *)&eq->desc[eq->pidx]);
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3[0] = 0;
wr->r3[1] = 0;
/*
* Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
* vlantci is ignored unless the ethtype is 0x8100, so it's
* simpler to always copy it rather than making it
* conditional. Also, it seems that we do not have to set
* vlantci or fake the ethtype when doing VLAN tag insertion.
*/
m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
csum_type = -1;
if (needs_tso(m0)) {
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
m0->m_pkthdr.l4hlen > 0,
("%s: mbuf %p needs TSO but missing header lengths",
__func__, m0));
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
| V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
ctrl |= V_LSO_ETHHDR_LEN(1);
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_LSO_IPV6;
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(pktlen);
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
csum_type = TX_CSUM_TCPIP6;
else
csum_type = TX_CSUM_TCPIP;
cpl = (void *)(lso + 1);
txq->tso_wrs++;
} else {
if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
csum_type = TX_CSUM_TCPIP;
else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
csum_type = TX_CSUM_UDPIP;
else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
csum_type = TX_CSUM_TCPIP6;
else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
csum_type = TX_CSUM_UDPIP6;
#if defined(INET)
else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
/*
* XXX: The firmware appears to stomp on the
* fragment/flags field of the IP header when
* using TX_CSUM_IP. Fall back to doing
* software checksums.
*/
u_short *sump;
struct mbuf *m;
int offset;
m = m0;
offset = 0;
sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
offsetof(struct ip, ip_sum));
*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
m0->m_pkthdr.csum_flags &= ~CSUM_IP;
}
#endif
cpl = (void *)(wr + 1);
}
/* Checksum offload */
ctrl1 = 0;
if (needs_l3_csum(m0) == 0)
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (csum_type >= 0) {
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
("%s: mbuf %p needs checksum offload but missing header lengths",
__func__, m0));
if (chip_id(sc) <= CHELSIO_T5) {
ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
ETHER_HDR_LEN);
} else {
ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
ETHER_HDR_LEN);
}
ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
} else
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m0)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* SGL */
dst = (void *)(cpl + 1);
/*
* A packet using TSO will use up an entire descriptor for the
* firmware work request header, LSO CPL, and TX_PKT_XT CPL.
* If this descriptor is the last descriptor in the ring, wrap
* around to the front of the ring explicitly for the start of
* the sgl.
*/
if (dst == (void *)&eq->desc[eq->sidx]) {
dst = (void *)&eq->desc[0];
write_gl_to_txd(txq, m0, &dst, 0);
} else
write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
txq->sgl_wrs++;
txq->txpkt_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
/*
* Write a txpkt WR for this packet to the hardware descriptors, update the
* software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
struct mbuf *m0, u_int available)
{
struct sge_eq *eq = &txq->eq;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int len16, ndesc, pktlen, nsegs;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
M_ASSERTPKTHDR(m0);
MPASS(available > 0 && available < eq->sidx);
len16 = mbuf_len16(m0);
nsegs = mbuf_nsegs(m0);
pktlen = m0->m_pkthdr.len;
ctrl = sizeof(struct cpl_tx_pkt_core);
if (needs_tso(m0))
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
else if (pktlen <= imm_payload(2) && available >= 2) {
/* Immediate data. Recalculate len16 and set nsegs to 0. */
ctrl += pktlen;
len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
nsegs = 0;
}
ndesc = howmany(len16, EQ_ESIZE / 16);
MPASS(ndesc <= available);
/* Firmware work request header */
MPASS(wr == (void *)&eq->desc[eq->pidx]);
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3 = 0;
if (needs_tso(m0)) {
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
m0->m_pkthdr.l4hlen > 0,
("%s: mbuf %p needs TSO but missing header lengths",
__func__, m0));
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
| V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
ctrl |= V_LSO_ETHHDR_LEN(1);
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_LSO_IPV6;
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(pktlen);
cpl = (void *)(lso + 1);
txq->tso_wrs++;
} else
cpl = (void *)(wr + 1);
/* Checksum offload */
ctrl1 = 0;
if (needs_l3_csum(m0) == 0)
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (needs_l4_csum(m0) == 0)
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m0)) {
ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* SGL */
dst = (void *)(cpl + 1);
if (nsegs > 0) {
write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
txq->sgl_wrs++;
} else {
struct mbuf *m;
for (m = m0; m != NULL; m = m->m_next) {
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
#ifdef INVARIANTS
pktlen -= m->m_len;
#endif
}
#ifdef INVARIANTS
KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
#endif
txq->imm_wrs++;
}
txq->txpkt_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
static int
try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
{
u_int needed, nsegs1, nsegs2, l1, l2;
if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
return (1);
nsegs1 = mbuf_nsegs(m);
nsegs2 = mbuf_nsegs(n);
if (nsegs1 + nsegs2 == 2) {
txp->wr_type = 1;
l1 = l2 = txpkts1_len16();
} else {
txp->wr_type = 0;
l1 = txpkts0_len16(nsegs1);
l2 = txpkts0_len16(nsegs2);
}
txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
needed = howmany(txp->len16, EQ_ESIZE / 16);
if (needed > SGE_MAX_WR_NDESC || needed > available)
return (1);
txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
if (txp->plen > 65535)
return (1);
txp->npkt = 2;
set_mbuf_len16(m, l1);
set_mbuf_len16(n, l2);
return (0);
}
static int
add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
{
u_int plen, len16, needed, nsegs;
MPASS(txp->wr_type == 0 || txp->wr_type == 1);
nsegs = mbuf_nsegs(m);
if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
return (1);
plen = txp->plen + m->m_pkthdr.len;
if (plen > 65535)
return (1);
if (txp->wr_type == 0)
len16 = txpkts0_len16(nsegs);
else
len16 = txpkts1_len16();
needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
if (needed > SGE_MAX_WR_NDESC || needed > available)
return (1);
txp->npkt++;
txp->plen = plen;
txp->len16 += len16;
set_mbuf_len16(m, len16);
return (0);
}
/*
* Write a txpkts WR for the packets in txp to the hardware descriptors, update
* the software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
struct mbuf *m0, const struct txpkts *txp, u_int available)
{
struct sge_eq *eq = &txq->eq;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl;
uint64_t ctrl1;
int ndesc, checkwrap;
struct mbuf *m;
void *flitp;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(txp->npkt > 0);
MPASS(txp->plen < 65536);
MPASS(m0 != NULL);
MPASS(m0->m_nextpkt != NULL);
MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
MPASS(available > 0 && available < eq->sidx);
ndesc = howmany(txp->len16, EQ_ESIZE / 16);
MPASS(ndesc <= available);
MPASS(wr == (void *)&eq->desc[eq->pidx]);
wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
ctrl = V_FW_WR_LEN16(txp->len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->plen = htobe16(txp->plen);
wr->npkt = txp->npkt;
wr->r3 = 0;
wr->type = txp->wr_type;
flitp = wr + 1;
/*
* At this point we are 16B into a hardware descriptor. If checkwrap is
* set then we know the WR is going to wrap around somewhere. We'll
* check for that at appropriate points.
*/
checkwrap = eq->sidx - ndesc < eq->pidx;
for (m = m0; m != NULL; m = m->m_nextpkt) {
if (txp->wr_type == 0) {
struct ulp_txpkt *ulpmc;
struct ulptx_idata *ulpsc;
/* ULP master command */
ulpmc = flitp;
ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
ulpmc->len = htobe32(mbuf_len16(m));
/* ULP subcommand */
ulpsc = (void *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
F_ULP_TX_SC_MORE);
ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
cpl = (void *)(ulpsc + 1);
if (checkwrap &&
(uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
cpl = (void *)&eq->desc[0];
txq->txpkts0_pkts += txp->npkt;
txq->txpkts0_wrs++;
} else {
cpl = flitp;
txq->txpkts1_pkts += txp->npkt;
txq->txpkts1_wrs++;
}
/* Checksum offload */
ctrl1 = 0;
if (needs_l3_csum(m) == 0)
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (needs_l4_csum(m) == 0)
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(m->m_pkthdr.len);
cpl->ctrl1 = htobe64(ctrl1);
flitp = cpl + 1;
if (checkwrap &&
(uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
flitp = (void *)&eq->desc[0];
write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
}
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
/*
* If the SGL ends on an address that is not 16 byte aligned, this function will
* add a 0 filled flit at the end.
*/
static void
write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
{
struct sge_eq *eq = &txq->eq;
struct sglist *gl = txq->gl;
struct sglist_seg *seg;
__be64 *flitp, *wrap;
struct ulptx_sgl *usgl;
int i, nflits, nsegs;
KASSERT(((uintptr_t)(*to) & 0xf) == 0,
("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
get_pkt_gl(m, gl);
nsegs = gl->sg_nseg;
MPASS(nsegs > 0);
nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
flitp = (__be64 *)(*to);
wrap = (__be64 *)(&eq->desc[eq->sidx]);
seg = &gl->sg_segs[0];
usgl = (void *)flitp;
/*
* We start at a 16 byte boundary somewhere inside the tx descriptor
* ring, so we're at least 16 bytes away from the status page. There is
* no chance of a wrap around in the middle of usgl (which is 16 bytes).
*/
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
usgl->len0 = htobe32(seg->ss_len);
usgl->addr0 = htobe64(seg->ss_paddr);
seg++;
if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
/* Won't wrap around at all */
for (i = 0; i < nsegs - 1; i++, seg++) {
usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
flitp += nflits;
} else {
/* Will wrap somewhere in the rest of the SGL */
/* 2 flits already written, write the rest flit by flit */
flitp = (void *)(usgl + 1);
for (i = 0; i < nflits - 2; i++) {
if (flitp == wrap)
flitp = (void *)eq->desc;
*flitp++ = get_flit(seg, nsegs - 1, i);
}
}
if (nflits & 1) {
MPASS(((uintptr_t)flitp) & 0xf);
*flitp++ = 0;
}
MPASS((((uintptr_t)flitp) & 0xf) == 0);
if (__predict_false(flitp == wrap))
*to = (void *)eq->desc;
else
*to = (void *)flitp;
}
static inline void
copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
{
MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
if (__predict_true((uintptr_t)(*to) + len <=
(uintptr_t)&eq->desc[eq->sidx])) {
bcopy(from, *to, len);
(*to) += len;
} else {
int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
bcopy(from, *to, portion);
from += portion;
portion = len - portion; /* remaining */
bcopy(from, (void *)eq->desc, portion);
(*to) = (caddr_t)eq->desc + portion;
}
}
static inline void
ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
{
u_int db;
MPASS(n > 0);
db = eq->doorbells;
if (n > 1)
clrbit(&db, DOORBELL_WCWR);
wmb();
switch (ffs(db) - 1) {
case DOORBELL_UDB:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
break;
case DOORBELL_WCWR: {
volatile uint64_t *dst, *src;
int i;
/*
* Queues whose 128B doorbell segment fits in the page do not
* use relative qid (udb_qid is always 0). Only queues with
* doorbell segments can do WCWR.
*/
KASSERT(eq->udb_qid == 0 && n == 1,
("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
__func__, eq->doorbells, n, eq->dbidx, eq));
dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
UDBS_DB_OFFSET);
i = eq->dbidx;
src = (void *)&eq->desc[i];
while (src != (void *)&eq->desc[i + 1])
*dst++ = *src++;
wmb();
break;
}
case DOORBELL_UDBWC:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
wmb();
break;
case DOORBELL_KDB:
t4_write_reg(sc, sc->sge_kdoorbell_reg,
V_QID(eq->cntxt_id) | V_PIDX(n));
break;
}
IDXINCR(eq->dbidx, n, eq->sidx);
}
static inline u_int
reclaimable_tx_desc(struct sge_eq *eq)
{
uint16_t hw_cidx;
hw_cidx = read_hw_cidx(eq);
return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
}
static inline u_int
total_available_tx_desc(struct sge_eq *eq)
{
uint16_t hw_cidx, pidx;
hw_cidx = read_hw_cidx(eq);
pidx = eq->pidx;
if (pidx == hw_cidx)
return (eq->sidx - 1);
else
return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
}
static inline uint16_t
read_hw_cidx(struct sge_eq *eq)
{
struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
uint16_t cidx = spg->cidx; /* stable snapshot */
return (be16toh(cidx));
}
/*
* Reclaim 'n' descriptors approximately.
*/
static u_int
reclaim_tx_descs(struct sge_txq *txq, u_int n)
{
struct tx_sdesc *txsd;
struct sge_eq *eq = &txq->eq;
u_int can_reclaim, reclaimed;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(n > 0);
reclaimed = 0;
can_reclaim = reclaimable_tx_desc(eq);
while (can_reclaim && reclaimed < n) {
int ndesc;
struct mbuf *m, *nextpkt;
txsd = &txq->sdesc[eq->cidx];
ndesc = txsd->desc_used;
/* Firmware doesn't return "partial" credits. */
KASSERT(can_reclaim >= ndesc,
("%s: unexpected number of credits: %d, %d",
__func__, can_reclaim, ndesc));
for (m = txsd->m; m != NULL; m = nextpkt) {
nextpkt = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
}
reclaimed += ndesc;
can_reclaim -= ndesc;
IDXINCR(eq->cidx, ndesc, eq->sidx);
}
return (reclaimed);
}
static void
tx_reclaim(void *arg, int n)
{
struct sge_txq *txq = arg;
struct sge_eq *eq = &txq->eq;
do {
if (TXQ_TRYLOCK(txq) == 0)
break;
n = reclaim_tx_descs(txq, 32);
if (eq->cidx == eq->pidx)
eq->equeqidx = eq->pidx;
TXQ_UNLOCK(txq);
} while (n > 0);
}
static __be64
get_flit(struct sglist_seg *segs, int nsegs, int idx)
{
int i = (idx / 3) * 2;
switch (idx % 3) {
case 0: {
__be64 rc;
rc = htobe32(segs[i].ss_len);
if (i + 1 < nsegs)
rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
return (rc);
}
case 1:
return (htobe64(segs[i].ss_paddr));
case 2:
return (htobe64(segs[i + 1].ss_paddr));
}
return (0);
}
static void
find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
{
int8_t zidx, hwidx, idx;
uint16_t region1, region3;
int spare, spare_needed, n;
struct sw_zone_info *swz;
struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
/*
* Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
* large enough for the max payload and cluster metadata. Otherwise
* settle for the largest bufsize that leaves enough room in the cluster
* for metadata.
*
* Without buffer packing: Look for the smallest zone which has a
* bufsize large enough for the max payload. Settle for the largest
* bufsize available if there's nothing big enough for max payload.
*/
spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
swz = &sc->sge.sw_zone_info[0];
hwidx = -1;
for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
if (swz->size > largest_rx_cluster) {
if (__predict_true(hwidx != -1))
break;
/*
* This is a misconfiguration. largest_rx_cluster is
* preventing us from finding a refill source. See
* dev.t5nex.<n>.buffer_sizes to figure out why.
*/
device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
" refill source for fl %p (dma %u). Ignored.\n",
largest_rx_cluster, fl, maxp);
}
for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
hwb = &hwb_list[idx];
spare = swz->size - hwb->size;
if (spare < spare_needed)
continue;
hwidx = idx; /* best option so far */
if (hwb->size >= maxp) {
if ((fl->flags & FL_BUF_PACKING) == 0)
goto done; /* stop looking (not packing) */
if (swz->size >= safest_rx_cluster)
goto done; /* stop looking (packing) */
}
break; /* keep looking, next zone */
}
}
done:
/* A usable hwidx has been located. */
MPASS(hwidx != -1);
hwb = &hwb_list[hwidx];
zidx = hwb->zidx;
swz = &sc->sge.sw_zone_info[zidx];
region1 = 0;
region3 = swz->size - hwb->size;
/*
* Stay within this zone and see if there is a better match when mbuf
* inlining is allowed. Remember that the hwidx's are sorted in
* decreasing order of size (so in increasing order of spare area).
*/
for (idx = hwidx; idx != -1; idx = hwb->next) {
hwb = &hwb_list[idx];
spare = swz->size - hwb->size;
if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
break;
/*
* Do not inline mbufs if doing so would violate the pad/pack
* boundary alignment requirement.
*/
if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
continue;
if (fl->flags & FL_BUF_PACKING &&
(MSIZE % sc->params.sge.pack_boundary) != 0)
continue;
if (spare < CL_METADATA_SIZE + MSIZE)
continue;
n = (spare - CL_METADATA_SIZE) / MSIZE;
if (n > howmany(hwb->size, maxp))
break;
hwidx = idx;
if (fl->flags & FL_BUF_PACKING) {
region1 = n * MSIZE;
region3 = spare - region1;
} else {
region1 = MSIZE;
region3 = spare - region1;
break;
}
}
KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
sc->sge.sw_zone_info[zidx].size,
("%s: bad buffer layout for fl %p, maxp %d. "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
if (fl->flags & FL_BUF_PACKING || region1 > 0) {
KASSERT(region3 >= CL_METADATA_SIZE,
("%s: no room for metadata. fl %p, maxp %d; "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
KASSERT(region1 % MSIZE == 0,
("%s: bad mbuf region for fl %p, maxp %d. "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
}
fl->cll_def.zidx = zidx;
fl->cll_def.hwidx = hwidx;
fl->cll_def.region1 = region1;
fl->cll_def.region3 = region3;
}
static void
find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
{
struct sge *s = &sc->sge;
struct hw_buf_info *hwb;
struct sw_zone_info *swz;
int spare;
int8_t hwidx;
if (fl->flags & FL_BUF_PACKING)
hwidx = s->safe_hwidx2; /* with room for metadata */
else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
hwidx = s->safe_hwidx2;
hwb = &s->hw_buf_info[hwidx];
swz = &s->sw_zone_info[hwb->zidx];
spare = swz->size - hwb->size;
/* no good if there isn't room for an mbuf as well */
if (spare < CL_METADATA_SIZE + MSIZE)
hwidx = s->safe_hwidx1;
} else
hwidx = s->safe_hwidx1;
if (hwidx == -1) {
/* No fallback source */
fl->cll_alt.hwidx = -1;
fl->cll_alt.zidx = -1;
return;
}
hwb = &s->hw_buf_info[hwidx];
swz = &s->sw_zone_info[hwb->zidx];
spare = swz->size - hwb->size;
fl->cll_alt.hwidx = hwidx;
fl->cll_alt.zidx = hwb->zidx;
if (allow_mbufs_in_cluster &&
(fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
else
fl->cll_alt.region1 = 0;
fl->cll_alt.region3 = spare - fl->cll_alt.region1;
}
static void
add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
{
mtx_lock(&sc->sfl_lock);
FL_LOCK(fl);
if ((fl->flags & FL_DOOMED) == 0) {
fl->flags |= FL_STARVING;
TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
}
FL_UNLOCK(fl);
mtx_unlock(&sc->sfl_lock);
}
static void
handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
{
struct sge_wrq *wrq = (void *)eq;
atomic_readandclear_int(&eq->equiq);
taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
}
static void
handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
{
struct sge_txq *txq = (void *)eq;
MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
atomic_readandclear_int(&eq->equiq);
mp_ring_check_drainage(txq->r, 0);
taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
}
static int
handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
struct adapter *sc = iq->adapter;
struct sge *s = &sc->sge;
struct sge_eq *eq;
static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
&handle_wrq_egr_update, &handle_eth_egr_update,
&handle_wrq_egr_update};
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
eq = s->eqmap[qid - s->eq_start - s->eq_base];
(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
return (0);
}
/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
offsetof(struct cpl_fw6_msg, data));
static int
handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
const struct rss_header *rss2;
rss2 = (const struct rss_header *)&cpl->data[0];
return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
}
return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
}
/**
* t4_handle_wrerr_rpl - process a FW work request error message
* @adap: the adapter
* @rpl: start of the FW message
*/
static int
t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
{
u8 opcode = *(const u8 *)rpl;
const struct fw_error_cmd *e = (const void *)rpl;
unsigned int i;
if (opcode != FW_ERROR_CMD) {
log(LOG_ERR,
"%s: Received WRERR_RPL message with opcode %#x\n",
device_get_nameunit(adap->dev), opcode);
return (EINVAL);
}
log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
"non-fatal");
switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
case FW_ERROR_TYPE_EXCEPTION:
log(LOG_ERR, "exception info:\n");
for (i = 0; i < nitems(e->u.exception.info); i++)
log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
be32toh(e->u.exception.info[i]));
log(LOG_ERR, "\n");
break;
case FW_ERROR_TYPE_HWMODULE:
log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
be32toh(e->u.hwmodule.regaddr),
be32toh(e->u.hwmodule.regval));
break;
case FW_ERROR_TYPE_WR:
log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
be16toh(e->u.wr.cidx),
G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
be32toh(e->u.wr.eqid));
for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
e->u.wr.wrhdr[i]);
log(LOG_ERR, "\n");
break;
case FW_ERROR_TYPE_ACL:
log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
be16toh(e->u.acl.cidx),
G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
be32toh(e->u.acl.eqid),
G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
"MAC");
for (i = 0; i < nitems(e->u.acl.val); i++)
log(LOG_ERR, " %02x", e->u.acl.val[i]);
log(LOG_ERR, "\n");
break;
default:
log(LOG_ERR, "type %#x\n",
G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
return (EINVAL);
}
return (0);
}
static int
sysctl_uint16(SYSCTL_HANDLER_ARGS)
{
uint16_t *id = arg1;
int i = *id;
return sysctl_handle_int(oidp, &i, 0, req);
}
static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
{
struct sge *s = arg1;
struct hw_buf_info *hwb = &s->hw_buf_info[0];
struct sw_zone_info *swz = &s->sw_zone_info[0];
int i, rc;
struct sbuf sb;
char c;
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
c = '*';
else
c = '\0';
sbuf_printf(&sb, "%u%c ", hwb->size, c);
}
sbuf_trim(&sb);
sbuf_finish(&sb);
rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (rc);
}
static int
sysctl_tc(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
struct port_info *pi;
struct adapter *sc;
struct sge_txq *txq;
struct tx_sched_class *tc;
int qidx = arg2, rc, tc_idx;
uint32_t fw_queue, fw_class;
MPASS(qidx >= 0 && qidx < vi->ntxq);
pi = vi->pi;
sc = pi->adapter;
txq = &sc->sge.txq[vi->first_txq + qidx];
tc_idx = txq->tc_idx;
rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
/* Note that -1 is legitimate input (it means unbind). */
if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
return (EINVAL);
rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
if (rc)
return (rc);
if (tc_idx == txq->tc_idx) {
rc = 0; /* No change, nothing to do. */
goto done;
}
fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
if (tc_idx == -1)
fw_class = 0xffffffff; /* Unbind. */
else {
/*
* Bind to a different class. Ethernet txq's are only allowed
* to bind to cl-rl mode-class for now. XXX: too restrictive.
*/
tc = &pi->tc[tc_idx];
if (tc->flags & TX_SC_OK &&
tc->params.level == SCHED_CLASS_LEVEL_CL_RL &&
tc->params.mode == SCHED_CLASS_MODE_CLASS) {
/* Ok to proceed. */
fw_class = tc_idx;
} else {
rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO;
goto done;
}
}
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
if (rc == 0) {
if (txq->tc_idx != -1) {
tc = &pi->tc[txq->tc_idx];
MPASS(tc->refcount > 0);
tc->refcount--;
}
if (tc_idx != -1) {
tc = &pi->tc[tc_idx];
tc->refcount++;
}
txq->tc_idx = tc_idx;
}
done:
end_synchronized_op(sc, 0);
return (rc);
}