freebsd-skq/sys/dev/bnxt/bnxt_txrx.c
Stephen Hurd d933e97f9d New driver for Broadcom NetXtreme-C and NetXtreme-E devices.
This driver uses the iflib framework supporting Broadcom
25/50Gbps devices.

Reviewed by:	gallatin, wblock
Approved by:	davidch
MFC after:	2 weeks
Relnotes:	yes
Sponsored by:	Broadcom Limited
Differential Revision:	https://reviews.freebsd.org/D7551
2016-11-15 20:35:29 +00:00

642 lines
19 KiB
C

/*-
* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2016 Broadcom, All Rights Reserved.
* The term Broadcom refers to Broadcom Limited and/or its subsidiaries
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/endian.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/ethernet.h>
#include <net/iflib.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_rss.h"
#include "bnxt.h"
/*
* Function prototypes
*/
static int bnxt_isc_txd_encap(void *sc, if_pkt_info_t pi);
static void bnxt_isc_txd_flush(void *sc, uint16_t txqid, uint32_t pidx);
static int bnxt_isc_txd_credits_update(void *sc, uint16_t txqid, uint32_t cidx,
bool clear);
static void bnxt_isc_rxd_refill(void *sc, uint16_t rxqid, uint8_t flid,
uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs, uint16_t count,
uint16_t buf_size);
static void bnxt_isc_rxd_flush(void *sc, uint16_t rxqid, uint8_t flid,
uint32_t pidx);
static int bnxt_isc_rxd_available(void *sc, uint16_t rxqid, uint32_t idx,
int budget);
static int bnxt_isc_rxd_pkt_get(void *sc, if_rxd_info_t ri);
static int bnxt_intr(void *sc);
struct if_txrx bnxt_txrx = {
bnxt_isc_txd_encap,
bnxt_isc_txd_flush,
bnxt_isc_txd_credits_update,
bnxt_isc_rxd_available,
bnxt_isc_rxd_pkt_get,
bnxt_isc_rxd_refill,
bnxt_isc_rxd_flush,
bnxt_intr
};
/*
* Device Dependent Packet Transmit and Receive Functions
*/
static const uint16_t bnxt_tx_lhint[] = {
TX_BD_SHORT_FLAGS_LHINT_LT512,
TX_BD_SHORT_FLAGS_LHINT_LT1K,
TX_BD_SHORT_FLAGS_LHINT_LT2K,
TX_BD_SHORT_FLAGS_LHINT_LT2K,
TX_BD_SHORT_FLAGS_LHINT_GTE2K,
};
static int
bnxt_isc_txd_encap(void *sc, if_pkt_info_t pi)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_ring *txr = &softc->tx_rings[pi->ipi_qsidx];
struct tx_bd_long *tbd;
struct tx_bd_long_hi *tbdh;
bool need_hi = false;
uint16_t flags_type;
uint16_t lflags;
uint32_t cfa_meta;
int seg = 0;
/* If we have offloads enabled, we need to use two BDs. */
if ((pi->ipi_csum_flags & (CSUM_OFFLOAD | CSUM_TSO | CSUM_IP)) ||
pi->ipi_mflags & M_VLANTAG)
need_hi = true;
/* TODO: Devices before Cu+B1 need to not mix long and short BDs */
need_hi = true;
pi->ipi_new_pidx = pi->ipi_pidx;
tbd = &((struct tx_bd_long *)txr->vaddr)[pi->ipi_new_pidx];
pi->ipi_ndescs = 0;
/* No need to byte-swap the opaque value */
tbd->opaque = ((pi->ipi_nsegs + need_hi) << 24) | pi->ipi_new_pidx;
tbd->len = htole16(pi->ipi_segs[seg].ds_len);
tbd->addr = htole64(pi->ipi_segs[seg++].ds_addr);
flags_type = ((pi->ipi_nsegs + need_hi) <<
TX_BD_SHORT_FLAGS_BD_CNT_SFT) & TX_BD_SHORT_FLAGS_BD_CNT_MASK;
if (pi->ipi_len >= 2048)
flags_type |= TX_BD_SHORT_FLAGS_LHINT_GTE2K;
else
flags_type |= bnxt_tx_lhint[pi->ipi_len >> 9];
if (need_hi) {
flags_type |= TX_BD_LONG_TYPE_TX_BD_LONG;
pi->ipi_new_pidx = RING_NEXT(txr, pi->ipi_new_pidx);
tbdh = &((struct tx_bd_long_hi *)txr->vaddr)[pi->ipi_new_pidx];
tbdh->mss = htole16(pi->ipi_tso_segsz);
tbdh->hdr_size = htole16((pi->ipi_ehdrlen + pi->ipi_ip_hlen +
pi->ipi_tcp_hlen) >> 1);
tbdh->cfa_action = 0;
lflags = 0;
cfa_meta = 0;
if (pi->ipi_mflags & M_VLANTAG) {
/* TODO: Do we need to byte-swap the vtag here? */
cfa_meta = TX_BD_LONG_CFA_META_KEY_VLAN_TAG |
pi->ipi_vtag;
cfa_meta |= TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
}
tbdh->cfa_meta = htole32(cfa_meta);
if (pi->ipi_csum_flags & CSUM_TSO) {
lflags |= TX_BD_LONG_LFLAGS_LSO |
TX_BD_LONG_LFLAGS_T_IPID;
}
else if(pi->ipi_csum_flags & CSUM_OFFLOAD) {
lflags |= TX_BD_LONG_LFLAGS_TCP_UDP_CHKSUM |
TX_BD_LONG_LFLAGS_IP_CHKSUM;
}
else if(pi->ipi_csum_flags & CSUM_IP) {
lflags |= TX_BD_LONG_LFLAGS_IP_CHKSUM;
}
tbdh->lflags = htole16(lflags);
}
else {
flags_type |= TX_BD_SHORT_TYPE_TX_BD_SHORT;
}
for (; seg < pi->ipi_nsegs; seg++) {
tbd->flags_type = htole16(flags_type);
pi->ipi_new_pidx = RING_NEXT(txr, pi->ipi_new_pidx);
tbd = &((struct tx_bd_long *)txr->vaddr)[pi->ipi_new_pidx];
tbd->len = htole16(pi->ipi_segs[seg].ds_len);
tbd->addr = htole64(pi->ipi_segs[seg].ds_addr);
flags_type = TX_BD_SHORT_TYPE_TX_BD_SHORT;
}
flags_type |= TX_BD_SHORT_FLAGS_PACKET_END;
tbd->flags_type = htole16(flags_type);
pi->ipi_new_pidx = RING_NEXT(txr, pi->ipi_new_pidx);
return 0;
}
static void
bnxt_isc_txd_flush(void *sc, uint16_t txqid, uint32_t pidx)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_ring *tx_ring = &softc->tx_rings[txqid];
/* pidx is what we last set ipi_new_pidx to */
BNXT_TX_DB(tx_ring, pidx);
/* TODO: Cumulus+ doesn't need the double doorbell */
BNXT_TX_DB(tx_ring, pidx);
return;
}
static int
bnxt_isc_txd_credits_update(void *sc, uint16_t txqid, uint32_t idx, bool clear)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_cp_ring *cpr = &softc->tx_cp_rings[txqid];
struct tx_cmpl *cmpl = (struct tx_cmpl *)cpr->ring.vaddr;
int avail = 0;
uint32_t cons = cpr->cons;
bool v_bit = cpr->v_bit;
bool last_v_bit;
uint32_t last_cons;
uint16_t type;
uint16_t err;
for (;;) {
last_cons = cons;
last_v_bit = v_bit;
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmpl[cons], v_bit))
goto done;
type = cmpl[cons].flags_type & TX_CMPL_TYPE_MASK;
switch (type) {
case TX_CMPL_TYPE_TX_L2:
err = (le16toh(cmpl[cons].errors_v) &
TX_CMPL_ERRORS_BUFFER_ERROR_MASK) >>
TX_CMPL_ERRORS_BUFFER_ERROR_SFT;
if (err)
device_printf(softc->dev,
"TX completion error %u\n", err);
/* No need to byte-swap the opaque value */
avail += cmpl[cons].opaque >> 24;
/*
* If we're not clearing, iflib only cares if there's
* at least one buffer. Don't scan the whole ring in
* this case.
*/
if (!clear)
goto done;
break;
default:
if (type & 1) {
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
if (!CMP_VALID(&cmpl[cons], v_bit))
goto done;
}
device_printf(softc->dev,
"Unhandled TX completion type %u\n", type);
break;
}
}
done:
if (clear && avail) {
cpr->cons = last_cons;
cpr->v_bit = last_v_bit;
BNXT_CP_IDX_DISABLE_DB(&cpr->ring, cpr->cons);
}
return avail;
}
static void
bnxt_isc_rxd_refill(void *sc, uint16_t rxqid, uint8_t flid,
uint32_t pidx, uint64_t *paddrs,
caddr_t *vaddrs, uint16_t count, uint16_t len)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_ring *rx_ring;
struct rx_prod_pkt_bd *rxbd;
uint16_t type;
uint16_t i;
if (flid == 0) {
rx_ring = &softc->rx_rings[rxqid];
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
}
else {
rx_ring = &softc->ag_rings[rxqid];
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
}
rxbd = (void *)rx_ring->vaddr;
for (i=0; i<count; i++) {
rxbd[pidx].flags_type = htole16(type);
rxbd[pidx].len = htole16(len);
/* No need to byte-swap the opaque value */
rxbd[pidx].opaque = ((rxqid & 0xff) << 24) | (flid << 16)
| pidx;
rxbd[pidx].addr = htole64(paddrs[i]);
if (++pidx == rx_ring->ring_size)
pidx = 0;
}
return;
}
static void
bnxt_isc_rxd_flush(void *sc, uint16_t rxqid, uint8_t flid,
uint32_t pidx)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_ring *rx_ring;
if (flid == 0)
rx_ring = &softc->rx_rings[rxqid];
else
rx_ring = &softc->ag_rings[rxqid];
/*
* We *must* update the completion ring before updating the RX ring
* or we will overrun the completion ring and the device will wedge for
* RX.
*/
if (softc->rx_cp_rings[rxqid].cons != UINT32_MAX)
BNXT_CP_IDX_DISABLE_DB(&softc->rx_cp_rings[rxqid].ring,
softc->rx_cp_rings[rxqid].cons);
/* We're given the last filled RX buffer here, not the next empty one */
BNXT_RX_DB(rx_ring, RING_NEXT(rx_ring, pidx));
/* TODO: Cumulus+ doesn't need the double doorbell */
BNXT_RX_DB(rx_ring, RING_NEXT(rx_ring, pidx));
return;
}
static int
bnxt_isc_rxd_available(void *sc, uint16_t rxqid, uint32_t idx, int budget)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_cp_ring *cpr = &softc->rx_cp_rings[rxqid];
struct rx_pkt_cmpl *rcp;
struct rx_tpa_start_cmpl *rtpa;
struct rx_tpa_end_cmpl *rtpae;
struct cmpl_base *cmp = (struct cmpl_base *)cpr->ring.vaddr;
int avail = 0;
uint32_t cons = cpr->cons;
bool v_bit = cpr->v_bit;
uint8_t ags;
int i;
uint16_t type;
uint8_t agg_id;
for (;;) {
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
type = le16toh(cmp[cons].type) & CMPL_BASE_TYPE_MASK;
switch (type) {
case CMPL_BASE_TYPE_RX_L2:
rcp = (void *)&cmp[cons];
ags = (rcp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK) >>
RX_PKT_CMPL_AGG_BUFS_SFT;
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
/* Now account for all the AG completions */
for (i=0; i<ags; i++) {
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
}
avail++;
break;
case CMPL_BASE_TYPE_RX_TPA_END:
rtpae = (void *)&cmp[cons];
ags = (rtpae->agg_bufs_v1 &
RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
RX_TPA_END_CMPL_AGG_BUFS_SFT;
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
/* Now account for all the AG completions */
for (i=0; i<ags; i++) {
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
}
avail++;
break;
case CMPL_BASE_TYPE_RX_TPA_START:
rtpa = (void *)&cmp[cons];
agg_id = (rtpa->agg_id &
RX_TPA_START_CMPL_AGG_ID_MASK) >>
RX_TPA_START_CMPL_AGG_ID_SFT;
softc->tpa_start[agg_id].low = *rtpa;
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
softc->tpa_start[agg_id].high =
((struct rx_tpa_start_cmpl_hi *)cmp)[cons];
break;
case CMPL_BASE_TYPE_RX_AGG:
break;
default:
device_printf(softc->dev,
"Unhandled completion type %d on RXQ %d\n",
type, rxqid);
/* Odd completion types use two completions */
if (type & 1) {
NEXT_CP_CONS_V(&cpr->ring, cons, v_bit);
CMPL_PREFETCH_NEXT(cpr, cons);
if (!CMP_VALID(&cmp[cons], v_bit))
goto cmpl_invalid;
}
break;
}
if (avail > budget)
break;
}
cmpl_invalid:
return avail;
}
static int
bnxt_pkt_get_l2(struct bnxt_softc *softc, if_rxd_info_t ri,
struct bnxt_cp_ring *cpr, uint16_t flags_type)
{
struct rx_pkt_cmpl *rcp;
struct rx_pkt_cmpl_hi *rcph;
struct rx_abuf_cmpl *acp;
uint32_t flags2;
uint32_t errors;
uint8_t ags;
int i;
rcp = &((struct rx_pkt_cmpl *)cpr->ring.vaddr)[cpr->cons];
/* Extract from the first 16-byte BD */
if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
ri->iri_flowid = le32toh(rcp->rss_hash);
/*
* TODO: Extract something useful from rcp->rss_hash_type
* (undocumented)
* May be documented in the "LSI ES"
* also check the firmware code.
*/
ri->iri_rsstype = M_HASHTYPE_OPAQUE;
}
else {
ri->iri_rsstype = M_HASHTYPE_NONE;
}
ags = (rcp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK) >>
RX_PKT_CMPL_AGG_BUFS_SFT;
ri->iri_nfrags = ags + 1;
/* No need to byte-swap the opaque value */
ri->iri_frags[0].irf_flid = (rcp->opaque >> 16) & 0xff;
ri->iri_frags[0].irf_idx = rcp->opaque & 0xffff;
ri->iri_frags[0].irf_len = le16toh(rcp->len);
ri->iri_len = le16toh(rcp->len);
/* Now the second 16-byte BD */
NEXT_CP_CONS_V(&cpr->ring, cpr->cons, cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring, ri->iri_cidx);
rcph = &((struct rx_pkt_cmpl_hi *)cpr->ring.vaddr)[cpr->cons];
flags2 = le32toh(rcph->flags2);
errors = le16toh(rcph->errors_v2);
if ((flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_MASK) ==
RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
ri->iri_flags |= M_VLANTAG;
/* TODO: Should this be the entire 16-bits? */
ri->iri_vtag = le32toh(rcph->metadata) &
(RX_PKT_CMPL_METADATA_VID_MASK | RX_PKT_CMPL_METADATA_DE |
RX_PKT_CMPL_METADATA_PRI_MASK);
}
if (flags2 & RX_PKT_CMPL_FLAGS2_IP_CS_CALC) {
ri->iri_csum_flags |= CSUM_IP_CHECKED;
if (!(errors & RX_PKT_CMPL_ERRORS_IP_CS_ERROR))
ri->iri_csum_flags |= CSUM_IP_VALID;
}
if (flags2 & RX_PKT_CMPL_FLAGS2_L4_CS_CALC) {
ri->iri_csum_flags |= CSUM_L4_CALC;
if (!(errors & RX_PKT_CMPL_ERRORS_L4_CS_ERROR)) {
ri->iri_csum_flags |= CSUM_L4_VALID;
ri->iri_csum_data = 0xffff;
}
}
/* And finally the ag ring stuff. */
for (i=1; i < ri->iri_nfrags; i++) {
NEXT_CP_CONS_V(&cpr->ring, cpr->cons, cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring, ri->iri_cidx);
acp = &((struct rx_abuf_cmpl *)cpr->ring.vaddr)[cpr->cons];
/* No need to byte-swap the opaque value */
ri->iri_frags[i].irf_flid = (acp->opaque >> 16 & 0xff);
ri->iri_frags[i].irf_idx = acp->opaque & 0xffff;
ri->iri_frags[i].irf_len = le16toh(acp->len);
ri->iri_len += le16toh(acp->len);
}
return 0;
}
static int
bnxt_pkt_get_tpa(struct bnxt_softc *softc, if_rxd_info_t ri,
struct bnxt_cp_ring *cpr, uint16_t flags_type)
{
struct rx_tpa_end_cmpl *agend =
&((struct rx_tpa_end_cmpl *)cpr->ring.vaddr)[cpr->cons];
struct rx_tpa_end_cmpl_hi *agendh;
struct rx_abuf_cmpl *acp;
struct bnxt_full_tpa_start *tpas;
uint32_t flags2;
uint8_t ags;
uint8_t agg_id;
int i;
/* Get the agg_id */
agg_id = (agend->agg_id & RX_TPA_END_CMPL_AGG_ID_MASK) >>
RX_TPA_END_CMPL_AGG_ID_SFT;
tpas = &softc->tpa_start[agg_id];
/* Extract from the first 16-byte BD */
if (le16toh(tpas->low.flags_type) & RX_TPA_START_CMPL_FLAGS_RSS_VALID) {
ri->iri_flowid = le32toh(tpas->low.rss_hash);
/*
* TODO: Extract something useful from tpas->low.rss_hash_type
* (undocumented)
* May be documented in the "LSI ES"
* also check the firmware code.
*/
ri->iri_rsstype = M_HASHTYPE_OPAQUE;
}
else {
ri->iri_rsstype = M_HASHTYPE_NONE;
}
ags = (agend->agg_bufs_v1 & RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
RX_TPA_END_CMPL_AGG_BUFS_SFT;
ri->iri_nfrags = ags + 1;
/* No need to byte-swap the opaque value */
ri->iri_frags[0].irf_flid = (tpas->low.opaque >> 16) & 0xff;
ri->iri_frags[0].irf_idx = tpas->low.opaque & 0xffff;
ri->iri_frags[0].irf_len = le16toh(tpas->low.len);
ri->iri_len = le16toh(tpas->low.len);
/* Now the second 16-byte BD */
NEXT_CP_CONS_V(&cpr->ring, cpr->cons, cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring, ri->iri_cidx);
agendh = &((struct rx_tpa_end_cmpl_hi *)cpr->ring.vaddr)[cpr->cons];
flags2 = le32toh(tpas->high.flags2);
if ((flags2 & RX_TPA_START_CMPL_FLAGS2_META_FORMAT_MASK) ==
RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN) {
ri->iri_flags |= M_VLANTAG;
/* TODO: Should this be the entire 16-bits? */
ri->iri_vtag = le32toh(tpas->high.metadata) &
(RX_TPA_START_CMPL_METADATA_VID_MASK |
RX_TPA_START_CMPL_METADATA_DE |
RX_TPA_START_CMPL_METADATA_PRI_MASK);
}
if (flags2 & RX_TPA_START_CMPL_FLAGS2_IP_CS_CALC) {
ri->iri_csum_flags |= CSUM_IP_CHECKED;
ri->iri_csum_flags |= CSUM_IP_VALID;
}
if (flags2 & RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC) {
ri->iri_csum_flags |= CSUM_L4_CALC;
ri->iri_csum_flags |= CSUM_L4_VALID;
ri->iri_csum_data = 0xffff;
}
/* Now the ag ring stuff. */
for (i=1; i < ri->iri_nfrags; i++) {
NEXT_CP_CONS_V(&cpr->ring, cpr->cons, cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring, ri->iri_cidx);
acp = &((struct rx_abuf_cmpl *)cpr->ring.vaddr)[cpr->cons];
/* No need to byte-swap the opaque value */
ri->iri_frags[i].irf_flid = (acp->opaque >> 16) & 0xff;
ri->iri_frags[i].irf_idx = acp->opaque & 0xffff;
ri->iri_frags[i].irf_len = le16toh(acp->len);
ri->iri_len += le16toh(acp->len);
}
/* And finally, the empty BD at the end... */
ri->iri_nfrags++;
/* No need to byte-swap the opaque value */
ri->iri_frags[i].irf_flid = (agend->opaque >> 16) % 0xff;
ri->iri_frags[i].irf_idx = agend->opaque & 0xffff;
ri->iri_frags[i].irf_len = le16toh(agend->len);
ri->iri_len += le16toh(agend->len);
return 0;
}
/* If we return anything but zero, iflib will assert... */
static int
bnxt_isc_rxd_pkt_get(void *sc, if_rxd_info_t ri)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
struct bnxt_cp_ring *cpr = &softc->rx_cp_rings[ri->iri_qsidx];
struct cmpl_base *cmp;
uint16_t flags_type;
uint16_t type;
for (;;) {
NEXT_CP_CONS_V(&cpr->ring, cpr->cons, cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring, ri->iri_cidx);
CMPL_PREFETCH_NEXT(cpr, cpr->cons);
cmp = &((struct cmpl_base *)cpr->ring.vaddr)[cpr->cons];
flags_type = le16toh(cmp->type);
type = flags_type & CMPL_BASE_TYPE_MASK;
switch (type) {
case CMPL_BASE_TYPE_RX_L2:
return bnxt_pkt_get_l2(softc, ri, cpr, flags_type);
case CMPL_BASE_TYPE_RX_TPA_END:
return bnxt_pkt_get_tpa(softc, ri, cpr, flags_type);
case CMPL_BASE_TYPE_RX_TPA_START:
NEXT_CP_CONS_V(&cpr->ring, cpr->cons, cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring, ri->iri_cidx);
CMPL_PREFETCH_NEXT(cpr, cpr->cons);
break;
default:
device_printf(softc->dev,
"Unhandled completion type %d on RXQ %d get\n",
type, ri->iri_qsidx);
if (type & 1) {
NEXT_CP_CONS_V(&cpr->ring, cpr->cons,
cpr->v_bit);
ri->iri_cidx = RING_NEXT(&cpr->ring,
ri->iri_cidx);
CMPL_PREFETCH_NEXT(cpr, cpr->cons);
}
break;
}
}
return 0;
}
static int
bnxt_intr(void *sc)
{
struct bnxt_softc *softc = (struct bnxt_softc *)sc;
device_printf(softc->dev, "STUB: %s @ %s:%d\n", __func__, __FILE__, __LINE__);
return ENOSYS;
}