freebsd-skq/sys/dev/netmap/if_vtnet_netmap.h
vmaffione 9899d78b5d netmap: align codebase to the current upstream (760279cfb2730a585)
Changelist:
  - Replace netmap passthrough host support with a more general
    mechanism to call TXSYNC/RXSYNC from an in-kernel event-loop.
    No kernel threads are used to use this feature: the application
    is required to spawn a thread (or a process) and issue a
    SYNC_KLOOP_START (NIOCCTRL) command in the thread body. The
    kernel loop is executed by the ioctl implementation, which returns
    to userspace only when a different thread calls SYNC_KLOOP_STOP
    or the netmap file descriptor is closed.
  - Update the if_ptnet driver to cope with the new data structures,
    and prune all the obsolete ptnetmap code.
  - Add support for "null" netmap ports, useful to allocate netmap_if,
    netmap_ring and netmap buffers to be used by specialized applications
    (e.g. hypervisors). TXSYNC/RXSYNC on these ports have no effect.
  - Various fixes and code refactoring.

Sponsored by:	Sunny Valley Networks
Differential Revision:	https://reviews.freebsd.org/D18015
2018-12-05 11:57:16 +00:00

541 lines
15 KiB
C

/*
* Copyright (C) 2014-2018 Vincenzo Maffione, Luigi Rizzo.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*/
#include <net/netmap.h>
#include <sys/selinfo.h>
#include <vm/vm.h>
#include <vm/pmap.h> /* vtophys ? */
#include <dev/netmap/netmap_kern.h>
/*
* Return 1 if the queue identified by 't' and 'idx' is in netmap mode.
*/
static int
vtnet_netmap_queue_on(struct vtnet_softc *sc, enum txrx t, int idx)
{
struct netmap_adapter *na = NA(sc->vtnet_ifp);
if (!nm_native_on(na))
return 0;
if (t == NR_RX)
return !!(idx < na->num_rx_rings &&
na->rx_rings[idx]->nr_mode == NKR_NETMAP_ON);
return !!(idx < na->num_tx_rings &&
na->tx_rings[idx]->nr_mode == NKR_NETMAP_ON);
}
static void
vtnet_free_used(struct virtqueue *vq, int netmap_bufs, enum txrx t, int idx)
{
void *cookie;
int deq = 0;
while ((cookie = virtqueue_dequeue(vq, NULL)) != NULL) {
if (netmap_bufs) {
/* These are netmap buffers: there is nothing to do. */
} else {
/* These are mbufs that we need to free. */
struct mbuf *m;
if (t == NR_TX) {
struct vtnet_tx_header *txhdr = cookie;
m = txhdr->vth_mbuf;
m_freem(m);
uma_zfree(vtnet_tx_header_zone, txhdr);
} else {
m = cookie;
m_freem(m);
}
}
deq++;
}
if (deq)
nm_prinf("%d sgs dequeued from %s-%d (netmap=%d)",
deq, nm_txrx2str(t), idx, netmap_bufs);
}
/* Register and unregister. */
static int
vtnet_netmap_reg(struct netmap_adapter *na, int state)
{
struct ifnet *ifp = na->ifp;
struct vtnet_softc *sc = ifp->if_softc;
int success;
enum txrx t;
int i;
/* Drain the taskqueues to make sure that there are no worker threads
* accessing the virtqueues. */
vtnet_drain_taskqueues(sc);
VTNET_CORE_LOCK(sc);
/* We need nm_netmap_on() to return true when called by
* vtnet_init_locked() below. */
if (state)
nm_set_native_flags(na);
/* We need to trigger a device reset in order to unexpose guest buffers
* published to the host. */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* Get pending used buffers. The way they are freed depends on whether
* they are netmap buffer or they are mbufs. We can tell apart the two
* cases by looking at kring->nr_mode, before this is possibly updated
* in the loop below. */
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
struct vtnet_txq *txq = &sc->vtnet_txqs[i];
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[i];
struct netmap_kring *kring;
VTNET_TXQ_LOCK(txq);
kring = NMR(na, NR_TX)[i];
vtnet_free_used(txq->vtntx_vq,
kring->nr_mode == NKR_NETMAP_ON, NR_TX, i);
VTNET_TXQ_UNLOCK(txq);
VTNET_RXQ_LOCK(rxq);
kring = NMR(na, NR_RX)[i];
vtnet_free_used(rxq->vtnrx_vq,
kring->nr_mode == NKR_NETMAP_ON, NR_RX, i);
VTNET_RXQ_UNLOCK(rxq);
}
vtnet_init_locked(sc);
success = (ifp->if_drv_flags & IFF_DRV_RUNNING) ? 0 : ENXIO;
if (state) {
for_rx_tx(t) {
/* Hardware rings. */
for (i = 0; i < nma_get_nrings(na, t); i++) {
struct netmap_kring *kring = NMR(na, t)[i];
if (nm_kring_pending_on(kring))
kring->nr_mode = NKR_NETMAP_ON;
}
/* Host rings. */
for (i = 0; i < nma_get_host_nrings(na, t); i++) {
struct netmap_kring *kring =
NMR(na, t)[nma_get_nrings(na, t) + i];
if (nm_kring_pending_on(kring))
kring->nr_mode = NKR_NETMAP_ON;
}
}
} else {
nm_clear_native_flags(na);
for_rx_tx(t) {
/* Hardware rings. */
for (i = 0; i < nma_get_nrings(na, t); i++) {
struct netmap_kring *kring = NMR(na, t)[i];
if (nm_kring_pending_off(kring))
kring->nr_mode = NKR_NETMAP_OFF;
}
/* Host rings. */
for (i = 0; i < nma_get_host_nrings(na, t); i++) {
struct netmap_kring *kring =
NMR(na, t)[nma_get_nrings(na, t) + i];
if (nm_kring_pending_off(kring))
kring->nr_mode = NKR_NETMAP_OFF;
}
}
}
VTNET_CORE_UNLOCK(sc);
return success;
}
/* Reconcile kernel and user view of the transmit ring. */
static int
vtnet_netmap_txsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct ifnet *ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int ring_nr = kring->ring_id;
u_int nm_i; /* index into the netmap ring */
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
/* device-specific */
struct vtnet_softc *sc = ifp->if_softc;
struct vtnet_txq *txq = &sc->vtnet_txqs[ring_nr];
struct virtqueue *vq = txq->vtntx_vq;
int interrupts = !(kring->nr_kflags & NKR_NOINTR);
u_int n;
/*
* First part: process new packets to send.
*/
rmb();
nm_i = kring->nr_hwcur;
if (nm_i != head) { /* we have new packets to send */
struct sglist *sg = txq->vtntx_sg;
for (; nm_i != head; nm_i = nm_next(nm_i, lim)) {
/* we use an empty header here */
struct netmap_slot *slot = &ring->slot[nm_i];
u_int len = slot->len;
uint64_t paddr;
void *addr = PNMB(na, slot, &paddr);
int err;
NM_CHECK_ADDR_LEN(na, addr, len);
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
/* Initialize the scatterlist, expose it to the hypervisor,
* and kick the hypervisor (if necessary).
*/
sglist_reset(sg); // cheap
err = sglist_append(sg, &txq->vtntx_shrhdr, sc->vtnet_hdr_size);
err |= sglist_append_phys(sg, paddr, len);
KASSERT(err == 0, ("%s: cannot append to sglist %d",
__func__, err));
err = virtqueue_enqueue(vq, /*cookie=*/txq, sg,
/*readable=*/sg->sg_nseg,
/*writeable=*/0);
if (unlikely(err)) {
if (err != ENOSPC)
nm_prerr("virtqueue_enqueue(%s) failed: %d",
kring->name, err);
break;
}
}
virtqueue_notify(vq);
/* Update hwcur depending on where we stopped. */
kring->nr_hwcur = nm_i; /* note we migth break early */
}
/* Free used slots. We only consider our own used buffers, recognized
* by the token we passed to virtqueue_enqueue.
*/
n = 0;
for (;;) {
void *token = virtqueue_dequeue(vq, NULL);
if (token == NULL)
break;
if (unlikely(token != (void *)txq))
nm_prerr("BUG: TX token mismatch");
else
n++;
}
if (n > 0) {
kring->nr_hwtail += n;
if (kring->nr_hwtail > lim)
kring->nr_hwtail -= lim + 1;
}
if (interrupts && virtqueue_nfree(vq) < 32)
virtqueue_postpone_intr(vq, VQ_POSTPONE_LONG);
return 0;
}
static int
vtnet_netmap_kring_refill(struct netmap_kring *kring, u_int nm_i, u_int head)
{
struct netmap_adapter *na = kring->na;
struct ifnet *ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int ring_nr = kring->ring_id;
u_int const lim = kring->nkr_num_slots - 1;
/* device-specific */
struct vtnet_softc *sc = ifp->if_softc;
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[ring_nr];
struct virtqueue *vq = rxq->vtnrx_vq;
/* use a local sglist, default might be short */
struct sglist_seg ss[2];
struct sglist sg = { ss, 0, 0, 2 };
for (; nm_i != head; nm_i = nm_next(nm_i, lim)) {
struct netmap_slot *slot = &ring->slot[nm_i];
uint64_t paddr;
void *addr = PNMB(na, slot, &paddr);
int err;
if (addr == NETMAP_BUF_BASE(na)) { /* bad buf */
if (netmap_ring_reinit(kring))
return -1;
}
slot->flags &= ~NS_BUF_CHANGED;
sglist_reset(&sg);
err = sglist_append(&sg, &rxq->vtnrx_shrhdr, sc->vtnet_hdr_size);
err |= sglist_append_phys(&sg, paddr, NETMAP_BUF_SIZE(na));
KASSERT(err == 0, ("%s: cannot append to sglist %d",
__func__, err));
/* writable for the host */
err = virtqueue_enqueue(vq, /*cookie=*/rxq, &sg,
/*readable=*/0, /*writeable=*/sg.sg_nseg);
if (unlikely(err)) {
if (err != ENOSPC)
nm_prerr("virtqueue_enqueue(%s) failed: %d",
kring->name, err);
break;
}
}
return nm_i;
}
/*
* Publish netmap buffers on a RX virtqueue.
* Returns -1 if this virtqueue is not being opened in netmap mode.
* If the virtqueue is being opened in netmap mode, return 0 on success and
* a positive error code on failure.
*/
static int
vtnet_netmap_rxq_populate(struct vtnet_rxq *rxq)
{
struct netmap_adapter *na = NA(rxq->vtnrx_sc->vtnet_ifp);
struct netmap_kring *kring;
int error;
if (!nm_native_on(na) || rxq->vtnrx_id >= na->num_rx_rings)
return -1;
kring = na->rx_rings[rxq->vtnrx_id];
if (!(nm_kring_pending_on(kring) ||
kring->nr_pending_mode == NKR_NETMAP_ON))
return -1;
/* Expose all the RX netmap buffers. Note that the number of
* netmap slots in the RX ring matches the maximum number of
* 2-elements sglist that the RX virtqueue can accommodate. */
error = vtnet_netmap_kring_refill(kring, 0, na->num_rx_desc);
virtqueue_notify(rxq->vtnrx_vq);
return error < 0 ? ENXIO : 0;
}
/* Reconcile kernel and user view of the receive ring. */
static int
vtnet_netmap_rxsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct ifnet *ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int ring_nr = kring->ring_id;
u_int nm_i; /* index into the netmap ring */
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
int force_update = (flags & NAF_FORCE_READ) ||
(kring->nr_kflags & NKR_PENDINTR);
int interrupts = !(kring->nr_kflags & NKR_NOINTR);
/* device-specific */
struct vtnet_softc *sc = ifp->if_softc;
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[ring_nr];
struct virtqueue *vq = rxq->vtnrx_vq;
rmb();
/*
* First part: import newly received packets.
* Only accept our own buffers (matching the token). We should only get
* matching buffers. We may need to stop early to avoid hwtail to overrun
* hwcur.
*/
if (netmap_no_pendintr || force_update) {
uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
void *token;
vtnet_rxq_disable_intr(rxq);
nm_i = kring->nr_hwtail;
while (nm_i != hwtail_lim) {
int len;
token = virtqueue_dequeue(vq, &len);
if (token == NULL) {
if (interrupts && vtnet_rxq_enable_intr(rxq)) {
vtnet_rxq_disable_intr(rxq);
continue;
}
break;
}
if (unlikely(token != (void *)rxq)) {
nm_prerr("BUG: RX token mismatch");
} else {
/* Skip the virtio-net header. */
len -= sc->vtnet_hdr_size;
if (unlikely(len < 0)) {
RD(1, "Truncated virtio-net-header, "
"missing %d bytes", -len);
len = 0;
}
ring->slot[nm_i].len = len;
ring->slot[nm_i].flags = 0;
nm_i = nm_next(nm_i, lim);
}
}
kring->nr_hwtail = nm_i;
kring->nr_kflags &= ~NKR_PENDINTR;
}
ND("[B] h %d c %d hwcur %d hwtail %d", ring->head, ring->cur,
kring->nr_hwcur, kring->nr_hwtail);
/*
* Second part: skip past packets that userspace has released.
*/
nm_i = kring->nr_hwcur; /* netmap ring index */
if (nm_i != head) {
int nm_j = vtnet_netmap_kring_refill(kring, nm_i, head);
if (nm_j < 0)
return nm_j;
kring->nr_hwcur = nm_j;
virtqueue_notify(vq);
}
ND("[C] h %d c %d t %d hwcur %d hwtail %d", ring->head, ring->cur,
ring->tail, kring->nr_hwcur, kring->nr_hwtail);
return 0;
}
/* Enable/disable interrupts on all virtqueues. */
static void
vtnet_netmap_intr(struct netmap_adapter *na, int state)
{
struct vtnet_softc *sc = na->ifp->if_softc;
int i;
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[i];
struct vtnet_txq *txq = &sc->vtnet_txqs[i];
struct virtqueue *txvq = txq->vtntx_vq;
if (state) {
vtnet_rxq_enable_intr(rxq);
virtqueue_enable_intr(txvq);
} else {
vtnet_rxq_disable_intr(rxq);
virtqueue_disable_intr(txvq);
}
}
}
static int
vtnet_netmap_tx_slots(struct vtnet_softc *sc)
{
int div;
/* We need to prepend a virtio-net header to each netmap buffer to be
* transmitted, therefore calling virtqueue_enqueue() passing sglist
* with 2 elements.
* TX virtqueues use indirect descriptors if the feature was negotiated
* with the host, and if sc->vtnet_tx_nsegs > 1. With indirect
* descriptors, a single virtio descriptor is sufficient to reference
* each TX sglist. Without them, we need two separate virtio descriptors
* for each TX sglist. We therefore compute the number of netmap TX
* slots according to these assumptions.
*/
if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) && sc->vtnet_tx_nsegs > 1)
div = 1;
else
div = 2;
return virtqueue_size(sc->vtnet_txqs[0].vtntx_vq) / div;
}
static int
vtnet_netmap_rx_slots(struct vtnet_softc *sc)
{
int div;
/* We need to prepend a virtio-net header to each netmap buffer to be
* received, therefore calling virtqueue_enqueue() passing sglist
* with 2 elements.
* RX virtqueues use indirect descriptors if the feature was negotiated
* with the host, and if sc->vtnet_rx_nsegs > 1. With indirect
* descriptors, a single virtio descriptor is sufficient to reference
* each RX sglist. Without them, we need two separate virtio descriptors
* for each RX sglist. We therefore compute the number of netmap RX
* slots according to these assumptions.
*/
if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) && sc->vtnet_rx_nsegs > 1)
div = 1;
else
div = 2;
return virtqueue_size(sc->vtnet_rxqs[0].vtnrx_vq) / div;
}
static int
vtnet_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
{
struct vtnet_softc *sc = na->ifp->if_softc;
info->num_tx_rings = sc->vtnet_act_vq_pairs;
info->num_rx_rings = sc->vtnet_act_vq_pairs;
info->num_tx_descs = vtnet_netmap_tx_slots(sc);
info->num_rx_descs = vtnet_netmap_rx_slots(sc);
info->rx_buf_maxsize = NETMAP_BUF_SIZE(na);
return 0;
}
static void
vtnet_netmap_attach(struct vtnet_softc *sc)
{
struct netmap_adapter na;
bzero(&na, sizeof(na));
na.ifp = sc->vtnet_ifp;
na.na_flags = 0;
na.num_tx_desc = vtnet_netmap_tx_slots(sc);
na.num_rx_desc = vtnet_netmap_rx_slots(sc);
na.num_tx_rings = na.num_rx_rings = sc->vtnet_max_vq_pairs;
na.rx_buf_maxsize = 0;
na.nm_register = vtnet_netmap_reg;
na.nm_txsync = vtnet_netmap_txsync;
na.nm_rxsync = vtnet_netmap_rxsync;
na.nm_intr = vtnet_netmap_intr;
na.nm_config = vtnet_netmap_config;
netmap_attach(&na);
nm_prinf("vtnet attached txq=%d, txd=%d rxq=%d, rxd=%d",
na.num_tx_rings, na.num_tx_desc,
na.num_tx_rings, na.num_rx_desc);
}
/* end of file */