jmallett cdfefa0ba0 Merge Cavium Octeon SDK 2.0 Simple Executive; this brings some fixes and new
facilities as well as support for the Octeon 2 family of SoCs.

XXX Note that with our antediluvian assembler, we can't support some Octeon 2
    instructions and fall back to using the old ones instead.
2010-11-28 08:18:16 +00:00

1417 lines
44 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* Implementation of the Level 2 Cache (L2C) control,
* measurement, and debugging facilities.
*
* <hr>$Revision: 52004 $<hr>
*
*/
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-l2c.h>
#include <asm/octeon/cvmx-spinlock.h>
#else
#if !defined(__FreeBSD__) || !defined(_KERNEL)
#include "cvmx-config.h"
#endif
#include "cvmx.h"
#include "cvmx-l2c.h"
#include "cvmx-spinlock.h"
#include "cvmx-interrupt.h"
#endif
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* This spinlock is used internally to ensure that only one core is performing
** certain L2 operations at a time.
**
** NOTE: This only protects calls from within a single application - if multiple applications
** or operating systems are running, then it is up to the user program to coordinate between them.
*/
CVMX_SHARED cvmx_spinlock_t cvmx_l2c_spinlock;
#endif
CVMX_SHARED cvmx_spinlock_t cvmx_l2c_vrt_spinlock;
int cvmx_l2c_get_core_way_partition(uint32_t core)
{
uint32_t field;
/* Validate the core number */
if (core >= cvmx_octeon_num_cores())
return -1;
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
return (cvmx_read_csr(CVMX_L2C_WPAR_PPX(core)) & 0xffff);
/* Use the lower two bits of the coreNumber to determine the bit offset
* of the UMSK[] field in the L2C_SPAR register.
*/
field = (core & 0x3) * 8;
/* Return the UMSK[] field from the appropriate L2C_SPAR register based
* on the coreNumber.
*/
switch (core & 0xC)
{
case 0x0:
return((cvmx_read_csr(CVMX_L2C_SPAR0) & (0xFF << field)) >> field);
case 0x4:
return((cvmx_read_csr(CVMX_L2C_SPAR1) & (0xFF << field)) >> field);
case 0x8:
return((cvmx_read_csr(CVMX_L2C_SPAR2) & (0xFF << field)) >> field);
case 0xC:
return((cvmx_read_csr(CVMX_L2C_SPAR3) & (0xFF << field)) >> field);
}
return(0);
}
int cvmx_l2c_set_core_way_partition(uint32_t core, uint32_t mask)
{
uint32_t field;
uint32_t valid_mask;
valid_mask = (0x1 << cvmx_l2c_get_num_assoc()) - 1;
mask &= valid_mask;
/* A UMSK setting which blocks all L2C Ways is an error on some chips */
if (mask == valid_mask && !OCTEON_IS_MODEL(OCTEON_CN63XX))
return -1;
/* Validate the core number */
if (core >= cvmx_octeon_num_cores())
return -1;
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
cvmx_write_csr(CVMX_L2C_WPAR_PPX(core), mask);
return 0;
}
/* Use the lower two bits of core to determine the bit offset of the
* UMSK[] field in the L2C_SPAR register.
*/
field = (core & 0x3) * 8;
/* Assign the new mask setting to the UMSK[] field in the appropriate
* L2C_SPAR register based on the core_num.
*
*/
switch (core & 0xC)
{
case 0x0:
cvmx_write_csr(CVMX_L2C_SPAR0,
(cvmx_read_csr(CVMX_L2C_SPAR0) & ~(0xFF << field)) |
mask << field);
break;
case 0x4:
cvmx_write_csr(CVMX_L2C_SPAR1,
(cvmx_read_csr(CVMX_L2C_SPAR1) & ~(0xFF << field)) |
mask << field);
break;
case 0x8:
cvmx_write_csr(CVMX_L2C_SPAR2,
(cvmx_read_csr(CVMX_L2C_SPAR2) & ~(0xFF << field)) |
mask << field);
break;
case 0xC:
cvmx_write_csr(CVMX_L2C_SPAR3,
(cvmx_read_csr(CVMX_L2C_SPAR3) & ~(0xFF << field)) |
mask << field);
break;
}
return 0;
}
int cvmx_l2c_set_hw_way_partition(uint32_t mask)
{
uint32_t valid_mask;
valid_mask = (0x1 << cvmx_l2c_get_num_assoc()) - 1;
mask &= valid_mask;
/* A UMSK setting which blocks all L2C Ways is an error on some chips */
if (mask == valid_mask && !OCTEON_IS_MODEL(OCTEON_CN63XX))
return -1;
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
cvmx_write_csr(CVMX_L2C_WPAR_IOBX(0), mask);
else
cvmx_write_csr(CVMX_L2C_SPAR4, (cvmx_read_csr(CVMX_L2C_SPAR4) & ~0xFF) | mask);
return 0;
}
int cvmx_l2c_get_hw_way_partition(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
return(cvmx_read_csr(CVMX_L2C_WPAR_IOBX(0)) & 0xffff);
else
return(cvmx_read_csr(CVMX_L2C_SPAR4) & (0xFF));
}
void cvmx_l2c_config_perf(uint32_t counter, cvmx_l2c_event_t event,
uint32_t clear_on_read)
{
if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX))
{
cvmx_l2c_pfctl_t pfctl;
pfctl.u64 = cvmx_read_csr(CVMX_L2C_PFCTL);
switch (counter)
{
case 0:
pfctl.s.cnt0sel = event;
pfctl.s.cnt0ena = 1;
pfctl.s.cnt0rdclr = clear_on_read;
break;
case 1:
pfctl.s.cnt1sel = event;
pfctl.s.cnt1ena = 1;
pfctl.s.cnt1rdclr = clear_on_read;
break;
case 2:
pfctl.s.cnt2sel = event;
pfctl.s.cnt2ena = 1;
pfctl.s.cnt2rdclr = clear_on_read;
break;
case 3:
default:
pfctl.s.cnt3sel = event;
pfctl.s.cnt3ena = 1;
pfctl.s.cnt3rdclr = clear_on_read;
break;
}
cvmx_write_csr(CVMX_L2C_PFCTL, pfctl.u64);
}
else
{
cvmx_l2c_tadx_prf_t l2c_tadx_prf;
int tad;
cvmx_warn("L2C performance counter events are different for this chip, mapping 'event' to cvmx_l2c_tad_event_t\n");
cvmx_warn_if(clear_on_read, "L2C counters don't support clear on read for this chip\n");
l2c_tadx_prf.u64 = cvmx_read_csr(CVMX_L2C_TADX_PRF(0));
switch (counter)
{
case 0:
l2c_tadx_prf.s.cnt0sel = event;
break;
case 1:
l2c_tadx_prf.s.cnt1sel = event;
break;
case 2:
l2c_tadx_prf.s.cnt2sel = event;
break;
default:
case 3:
l2c_tadx_prf.s.cnt3sel = event;
break;
}
for (tad=0; tad<CVMX_L2C_TADS; tad++)
cvmx_write_csr(CVMX_L2C_TADX_PRF(tad), l2c_tadx_prf.u64);
}
}
uint64_t cvmx_l2c_read_perf(uint32_t counter)
{
switch (counter)
{
case 0:
if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX))
return(cvmx_read_csr(CVMX_L2C_PFC0));
else
{
uint64_t counter = 0;
int tad;
for (tad=0; tad<CVMX_L2C_TADS; tad++)
counter += cvmx_read_csr(CVMX_L2C_TADX_PFC0(tad));
return counter;
}
case 1:
if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX))
return(cvmx_read_csr(CVMX_L2C_PFC1));
else
{
uint64_t counter = 0;
int tad;
for (tad=0; tad<CVMX_L2C_TADS; tad++)
counter += cvmx_read_csr(CVMX_L2C_TADX_PFC1(tad));
return counter;
}
case 2:
if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX))
return(cvmx_read_csr(CVMX_L2C_PFC2));
else
{
uint64_t counter = 0;
int tad;
for (tad=0; tad<CVMX_L2C_TADS; tad++)
counter += cvmx_read_csr(CVMX_L2C_TADX_PFC2(tad));
return counter;
}
case 3:
default:
if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX))
return(cvmx_read_csr(CVMX_L2C_PFC3));
else
{
uint64_t counter = 0;
int tad;
for (tad=0; tad<CVMX_L2C_TADS; tad++)
counter += cvmx_read_csr(CVMX_L2C_TADX_PFC3(tad));
return counter;
}
}
}
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/**
* @INTERNAL
* Helper function use to fault in cache lines for L2 cache locking
*
* @param addr Address of base of memory region to read into L2 cache
* @param len Length (in bytes) of region to fault in
*/
static void fault_in(uint64_t addr, int len)
{
volatile char *ptr;
volatile char dummy;
/* Adjust addr and length so we get all cache lines even for
** small ranges spanning two cache lines */
len += addr & CVMX_CACHE_LINE_MASK;
addr &= ~CVMX_CACHE_LINE_MASK;
ptr = (volatile char *)cvmx_phys_to_ptr(addr);
CVMX_DCACHE_INVALIDATE; /* Invalidate L1 cache to make sure all loads result in data being in L2 */
while (len > 0)
{
dummy += *ptr;
len -= CVMX_CACHE_LINE_SIZE;
ptr += CVMX_CACHE_LINE_SIZE;
}
}
int cvmx_l2c_lock_line(uint64_t addr)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
int shift = CVMX_L2C_TAG_ADDR_ALIAS_SHIFT;
uint64_t assoc = cvmx_l2c_get_num_assoc();
uint64_t tag = addr >> shift;
uint64_t index = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, cvmx_l2c_address_to_index(addr) << CVMX_L2C_IDX_ADDR_SHIFT);
uint64_t way;
cvmx_l2c_tadx_tag_t l2c_tadx_tag;
CVMX_CACHE_LCKL2(CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, addr), 0);
/* Make sure we were able to lock the line */
for (way = 0; way < assoc; way++)
{
CVMX_CACHE_LTGL2I(index | (way << shift), 0);
CVMX_SYNC; // make sure CVMX_L2C_TADX_TAG is updated
l2c_tadx_tag.u64 = cvmx_read_csr(CVMX_L2C_TADX_TAG(0));
if (l2c_tadx_tag.s.valid && l2c_tadx_tag.s.tag == tag)
break;
}
/* Check if a valid line is found */
if (way >= assoc)
{
//cvmx_dprintf("ERROR: cvmx_l2c_lock_line: line not found for locking at 0x%llx address\n", (unsigned long long)addr);
return -1;
}
/* Check if lock bit is not set */
if (!l2c_tadx_tag.s.lock)
{
//cvmx_dprintf("ERROR: cvmx_l2c_lock_line: Not able to lock at 0x%llx address\n", (unsigned long long)addr);
return -1;
}
return way;
}
else
{
int retval = 0;
cvmx_l2c_dbg_t l2cdbg;
cvmx_l2c_lckbase_t lckbase;
cvmx_l2c_lckoff_t lckoff;
cvmx_l2t_err_t l2t_err;
cvmx_spinlock_lock(&cvmx_l2c_spinlock);
l2cdbg.u64 = 0;
lckbase.u64 = 0;
lckoff.u64 = 0;
/* Clear l2t error bits if set */
l2t_err.u64 = cvmx_read_csr(CVMX_L2T_ERR);
l2t_err.s.lckerr = 1;
l2t_err.s.lckerr2 = 1;
cvmx_write_csr(CVMX_L2T_ERR, l2t_err.u64);
addr &= ~CVMX_CACHE_LINE_MASK;
/* Set this core as debug core */
l2cdbg.s.ppnum = cvmx_get_core_num();
CVMX_SYNC;
cvmx_write_csr(CVMX_L2C_DBG, l2cdbg.u64);
cvmx_read_csr(CVMX_L2C_DBG);
lckoff.s.lck_offset = 0; /* Only lock 1 line at a time */
cvmx_write_csr(CVMX_L2C_LCKOFF, lckoff.u64);
cvmx_read_csr(CVMX_L2C_LCKOFF);
if (((cvmx_l2c_cfg_t)(cvmx_read_csr(CVMX_L2C_CFG))).s.idxalias)
{
int alias_shift = CVMX_L2C_IDX_ADDR_SHIFT + 2 * CVMX_L2_SET_BITS - 1;
uint64_t addr_tmp = addr ^ (addr & ((1 << alias_shift) - 1)) >> CVMX_L2_SET_BITS;
lckbase.s.lck_base = addr_tmp >> 7;
}
else
{
lckbase.s.lck_base = addr >> 7;
}
lckbase.s.lck_ena = 1;
cvmx_write_csr(CVMX_L2C_LCKBASE, lckbase.u64);
cvmx_read_csr(CVMX_L2C_LCKBASE); // Make sure it gets there
fault_in(addr, CVMX_CACHE_LINE_SIZE);
lckbase.s.lck_ena = 0;
cvmx_write_csr(CVMX_L2C_LCKBASE, lckbase.u64);
cvmx_read_csr(CVMX_L2C_LCKBASE); // Make sure it gets there
/* Stop being debug core */
cvmx_write_csr(CVMX_L2C_DBG, 0);
cvmx_read_csr(CVMX_L2C_DBG);
l2t_err.u64 = cvmx_read_csr(CVMX_L2T_ERR);
if (l2t_err.s.lckerr || l2t_err.s.lckerr2)
retval = 1; /* We were unable to lock the line */
cvmx_spinlock_unlock(&cvmx_l2c_spinlock);
return(retval);
}
}
int cvmx_l2c_lock_mem_region(uint64_t start, uint64_t len)
{
int retval = 0;
/* Round start/end to cache line boundaries */
len += start & CVMX_CACHE_LINE_MASK;
start &= ~CVMX_CACHE_LINE_MASK;
len = (len + CVMX_CACHE_LINE_MASK) & ~CVMX_CACHE_LINE_MASK;
while (len)
{
retval += cvmx_l2c_lock_line(start);
start += CVMX_CACHE_LINE_SIZE;
len -= CVMX_CACHE_LINE_SIZE;
}
return(retval);
}
void cvmx_l2c_flush(void)
{
uint64_t assoc, set;
uint64_t n_assoc, n_set;
n_set = cvmx_l2c_get_num_sets();
n_assoc = cvmx_l2c_get_num_assoc();
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
uint64_t address;
/* These may look like constants, but they aren't... */
int assoc_shift = CVMX_L2C_TAG_ADDR_ALIAS_SHIFT;
int set_shift = CVMX_L2C_IDX_ADDR_SHIFT;
for (set=0; set < n_set; set++)
{
for(assoc=0; assoc < n_assoc; assoc++)
{
address = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
(assoc << assoc_shift) |
(set << set_shift));
CVMX_CACHE_WBIL2I(address, 0);
}
}
}
else
{
for (set=0; set < n_set; set++)
for(assoc=0; assoc < n_assoc; assoc++)
cvmx_l2c_flush_line(assoc, set);
}
}
int cvmx_l2c_unlock_line(uint64_t address)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
int assoc; cvmx_l2c_tag_t tag;
uint32_t tag_addr;
uint32_t index = cvmx_l2c_address_to_index(address);
tag_addr = ((address >> CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) & ((1 << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) - 1));
/* For 63XX, we can flush a line by using the physical address directly,
** so finding the cache line used by the address is only required to provide
** the proper return value for the function.
*/
for(assoc = 0; assoc < CVMX_L2_ASSOC; assoc++)
{
tag = cvmx_l2c_get_tag(assoc, index);
if (tag.s.V && (tag.s.addr == tag_addr))
{
CVMX_CACHE_WBIL2(CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, address), 0);
return tag.s.L;
}
}
}
else
{
int assoc;
cvmx_l2c_tag_t tag;
uint32_t tag_addr;
uint32_t index = cvmx_l2c_address_to_index(address);
/* Compute portion of address that is stored in tag */
tag_addr = ((address >> CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) & ((1 << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) - 1));
for(assoc = 0; assoc < CVMX_L2_ASSOC; assoc++)
{
tag = cvmx_l2c_get_tag(assoc, index);
if (tag.s.V && (tag.s.addr == tag_addr))
{
cvmx_l2c_flush_line(assoc, index);
return tag.s.L;
}
}
}
return 0;
}
int cvmx_l2c_unlock_mem_region(uint64_t start, uint64_t len)
{
int num_unlocked = 0;
/* Round start/end to cache line boundaries */
len += start & CVMX_CACHE_LINE_MASK;
start &= ~CVMX_CACHE_LINE_MASK;
len = (len + CVMX_CACHE_LINE_MASK) & ~CVMX_CACHE_LINE_MASK;
while (len > 0)
{
num_unlocked += cvmx_l2c_unlock_line(start);
start += CVMX_CACHE_LINE_SIZE;
len -= CVMX_CACHE_LINE_SIZE;
}
return num_unlocked;
}
/* Internal l2c tag types. These are converted to a generic structure
** that can be used on all chips */
typedef union
{
uint64_t u64;
#if __BYTE_ORDER == __BIG_ENDIAN
struct cvmx_l2c_tag_cn50xx
{
uint64_t reserved : 40;
uint64_t V : 1; // Line valid
uint64_t D : 1; // Line dirty
uint64_t L : 1; // Line locked
uint64_t U : 1; // Use, LRU eviction
uint64_t addr : 20; // Phys mem addr (33..14)
} cn50xx;
struct cvmx_l2c_tag_cn30xx
{
uint64_t reserved : 41;
uint64_t V : 1; // Line valid
uint64_t D : 1; // Line dirty
uint64_t L : 1; // Line locked
uint64_t U : 1; // Use, LRU eviction
uint64_t addr : 19; // Phys mem addr (33..15)
} cn30xx;
struct cvmx_l2c_tag_cn31xx
{
uint64_t reserved : 42;
uint64_t V : 1; // Line valid
uint64_t D : 1; // Line dirty
uint64_t L : 1; // Line locked
uint64_t U : 1; // Use, LRU eviction
uint64_t addr : 18; // Phys mem addr (33..16)
} cn31xx;
struct cvmx_l2c_tag_cn38xx
{
uint64_t reserved : 43;
uint64_t V : 1; // Line valid
uint64_t D : 1; // Line dirty
uint64_t L : 1; // Line locked
uint64_t U : 1; // Use, LRU eviction
uint64_t addr : 17; // Phys mem addr (33..17)
} cn38xx;
struct cvmx_l2c_tag_cn58xx
{
uint64_t reserved : 44;
uint64_t V : 1; // Line valid
uint64_t D : 1; // Line dirty
uint64_t L : 1; // Line locked
uint64_t U : 1; // Use, LRU eviction
uint64_t addr : 16; // Phys mem addr (33..18)
} cn58xx;
struct cvmx_l2c_tag_cn58xx cn56xx; /* 2048 sets */
struct cvmx_l2c_tag_cn31xx cn52xx; /* 512 sets */
#endif
} __cvmx_l2c_tag_t;
/**
* @INTERNAL
* Function to read a L2C tag. This code make the current core
* the 'debug core' for the L2. This code must only be executed by
* 1 core at a time.
*
* @param assoc Association (way) of the tag to dump
* @param index Index of the cacheline
*
* @return The Octeon model specific tag structure. This is translated by a wrapper
* function to a generic form that is easier for applications to use.
*/
static __cvmx_l2c_tag_t __read_l2_tag(uint64_t assoc, uint64_t index)
{
uint64_t debug_tag_addr = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, (index << 7) + 96);
uint64_t core = cvmx_get_core_num();
__cvmx_l2c_tag_t tag_val;
uint64_t dbg_addr = CVMX_L2C_DBG;
unsigned long flags;
cvmx_l2c_dbg_t debug_val;
debug_val.u64 = 0;
/* For low core count parts, the core number is always small enough
** to stay in the correct field and not set any reserved bits */
debug_val.s.ppnum = core;
debug_val.s.l2t = 1;
debug_val.s.set = assoc;
CVMX_SYNC; /* Make sure core is quiet (no prefetches, etc.) before entering debug mode */
CVMX_DCACHE_INVALIDATE; /* Flush L1 to make sure debug load misses L1 */
cvmx_local_irq_save(flags);
/* The following must be done in assembly as when in debug mode all data loads from
** L2 return special debug data, not normal memory contents. Also, interrupts must be disabled,
** since if an interrupt occurs while in debug mode the ISR will get debug data from all its memory
** reads instead of the contents of memory */
asm volatile (
" .set push \n"
" .set mips64 \n"
" .set noreorder \n"
" sd %[dbg_val], 0(%[dbg_addr]) \n" /* Enter debug mode, wait for store */
" ld $0, 0(%[dbg_addr]) \n"
" ld %[tag_val], 0(%[tag_addr]) \n" /* Read L2C tag data */
" sd $0, 0(%[dbg_addr]) \n" /* Exit debug mode, wait for store */
" ld $0, 0(%[dbg_addr]) \n"
" cache 9, 0($0) \n" /* Invalidate dcache to discard debug data */
" .set pop \n"
:[tag_val] "=r" (tag_val): [dbg_addr] "r" (dbg_addr), [dbg_val] "r" (debug_val), [tag_addr] "r" (debug_tag_addr) : "memory");
cvmx_local_irq_restore(flags);
return(tag_val);
}
cvmx_l2c_tag_t cvmx_l2c_get_tag(uint32_t association, uint32_t index)
{
cvmx_l2c_tag_t tag;
tag.u64 = 0;
if ((int)association >= cvmx_l2c_get_num_assoc())
{
cvmx_dprintf("ERROR: cvmx_l2c_get_tag association out of range\n");
return(tag);
}
if ((int)index >= cvmx_l2c_get_num_sets())
{
cvmx_dprintf("ERROR: cvmx_l2c_get_tag index out of range (arg: %d, max: %d)\n", (int)index, cvmx_l2c_get_num_sets());
return(tag);
}
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
cvmx_l2c_tadx_tag_t l2c_tadx_tag;
uint64_t address = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
(association << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) |
(index << CVMX_L2C_IDX_ADDR_SHIFT));
/* Use L2 cache Index load tag cache instruction, as hardware loads
the virtual tag for the L2 cache block with the contents of
L2C_TAD0_TAG register. */
CVMX_CACHE_LTGL2I(address, 0);
CVMX_SYNC; // make sure CVMX_L2C_TADX_TAG is updated
l2c_tadx_tag.u64 = cvmx_read_csr(CVMX_L2C_TADX_TAG(0));
tag.s.V = l2c_tadx_tag.s.valid;
tag.s.D = l2c_tadx_tag.s.dirty;
tag.s.L = l2c_tadx_tag.s.lock;
tag.s.U = l2c_tadx_tag.s.use;
tag.s.addr = l2c_tadx_tag.s.tag;
}
else
{
__cvmx_l2c_tag_t tmp_tag;
/* __read_l2_tag is intended for internal use only */
tmp_tag = __read_l2_tag(association, index);
/* Convert all tag structure types to generic version, as it can represent all models */
if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))
{
tag.s.V = tmp_tag.cn58xx.V;
tag.s.D = tmp_tag.cn58xx.D;
tag.s.L = tmp_tag.cn58xx.L;
tag.s.U = tmp_tag.cn58xx.U;
tag.s.addr = tmp_tag.cn58xx.addr;
}
else if (OCTEON_IS_MODEL(OCTEON_CN38XX))
{
tag.s.V = tmp_tag.cn38xx.V;
tag.s.D = tmp_tag.cn38xx.D;
tag.s.L = tmp_tag.cn38xx.L;
tag.s.U = tmp_tag.cn38xx.U;
tag.s.addr = tmp_tag.cn38xx.addr;
}
else if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN52XX))
{
tag.s.V = tmp_tag.cn31xx.V;
tag.s.D = tmp_tag.cn31xx.D;
tag.s.L = tmp_tag.cn31xx.L;
tag.s.U = tmp_tag.cn31xx.U;
tag.s.addr = tmp_tag.cn31xx.addr;
}
else if (OCTEON_IS_MODEL(OCTEON_CN30XX))
{
tag.s.V = tmp_tag.cn30xx.V;
tag.s.D = tmp_tag.cn30xx.D;
tag.s.L = tmp_tag.cn30xx.L;
tag.s.U = tmp_tag.cn30xx.U;
tag.s.addr = tmp_tag.cn30xx.addr;
}
else if (OCTEON_IS_MODEL(OCTEON_CN50XX))
{
tag.s.V = tmp_tag.cn50xx.V;
tag.s.D = tmp_tag.cn50xx.D;
tag.s.L = tmp_tag.cn50xx.L;
tag.s.U = tmp_tag.cn50xx.U;
tag.s.addr = tmp_tag.cn50xx.addr;
}
else
{
cvmx_dprintf("Unsupported OCTEON Model in %s\n", __FUNCTION__);
}
}
return tag;
}
#endif
uint32_t cvmx_l2c_address_to_index (uint64_t addr)
{
uint64_t idx = addr >> CVMX_L2C_IDX_ADDR_SHIFT;
int indxalias = 0;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
cvmx_l2c_ctl_t l2c_ctl;
l2c_ctl.u64 = cvmx_read_csr(CVMX_L2C_CTL);
indxalias = !l2c_ctl.s.disidxalias;
}
else
{
cvmx_l2c_cfg_t l2c_cfg;
l2c_cfg.u64 = cvmx_read_csr(CVMX_L2C_CFG);
indxalias = l2c_cfg.s.idxalias;
}
if (indxalias)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
uint32_t a_14_12 = (idx / (CVMX_L2C_MEMBANK_SELECT_SIZE/(1<<CVMX_L2C_IDX_ADDR_SHIFT))) & 0x7;
idx ^= idx / cvmx_l2c_get_num_sets();
idx ^= a_14_12;
}
else
{
idx ^= ((addr & CVMX_L2C_ALIAS_MASK) >> CVMX_L2C_TAG_ADDR_ALIAS_SHIFT);
}
}
idx &= CVMX_L2C_IDX_MASK;
return(idx);
}
int cvmx_l2c_get_cache_size_bytes(void)
{
return (cvmx_l2c_get_num_sets() * cvmx_l2c_get_num_assoc() * CVMX_CACHE_LINE_SIZE);
}
/**
* Return log base 2 of the number of sets in the L2 cache
* @return
*/
int cvmx_l2c_get_set_bits(void)
{
int l2_set_bits;
if (OCTEON_IS_MODEL(OCTEON_CN56XX) ||
OCTEON_IS_MODEL(OCTEON_CN58XX))
l2_set_bits = 11; /* 2048 sets */
else if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
l2_set_bits = 10; /* 1024 sets */
else if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN52XX))
l2_set_bits = 9; /* 512 sets */
else if (OCTEON_IS_MODEL(OCTEON_CN30XX))
l2_set_bits = 8; /* 256 sets */
else if (OCTEON_IS_MODEL(OCTEON_CN50XX))
l2_set_bits = 7; /* 128 sets */
else
{
cvmx_dprintf("Unsupported OCTEON Model in %s\n", __FUNCTION__);
l2_set_bits = 11; /* 2048 sets */
}
return(l2_set_bits);
}
/* Return the number of sets in the L2 Cache */
int cvmx_l2c_get_num_sets(void)
{
return (1 << cvmx_l2c_get_set_bits());
}
/* Return the number of associations in the L2 Cache */
int cvmx_l2c_get_num_assoc(void)
{
int l2_assoc;
if (OCTEON_IS_MODEL(OCTEON_CN56XX) ||
OCTEON_IS_MODEL(OCTEON_CN52XX) ||
OCTEON_IS_MODEL(OCTEON_CN58XX) ||
OCTEON_IS_MODEL(OCTEON_CN50XX) ||
OCTEON_IS_MODEL(OCTEON_CN38XX))
l2_assoc = 8;
else if (OCTEON_IS_MODEL(OCTEON_CN63XX))
l2_assoc = 16;
else if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
OCTEON_IS_MODEL(OCTEON_CN30XX))
l2_assoc = 4;
else
{
cvmx_dprintf("Unsupported OCTEON Model in %s\n", __FUNCTION__);
l2_assoc = 8;
}
/* Check to see if part of the cache is disabled */
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
cvmx_mio_fus_dat3_t mio_fus_dat3;
mio_fus_dat3.u64 = cvmx_read_csr(CVMX_MIO_FUS_DAT3);
/* cvmx_mio_fus_dat3.s.l2c_crip fuses map as follows
<2> will be not used for 63xx
<1> disables 1/2 ways
<0> disables 1/4 ways
They are cumulative, so for 63xx:
<1> <0>
0 0 16-way 2MB cache
0 1 12-way 1.5MB cache
1 0 8-way 1MB cache
1 1 4-way 512KB cache */
if (mio_fus_dat3.s.l2c_crip == 3)
l2_assoc = 4;
else if (mio_fus_dat3.s.l2c_crip == 2)
l2_assoc = 8;
else if (mio_fus_dat3.s.l2c_crip == 1)
l2_assoc = 12;
}
else
{
cvmx_l2d_fus3_t val;
val.u64 = cvmx_read_csr(CVMX_L2D_FUS3);
/* Using shifts here, as bit position names are different for
each model but they all mean the same. */
if ((val.u64 >> 35) & 0x1)
l2_assoc = l2_assoc >> 2;
else if ((val.u64 >> 34) & 0x1)
l2_assoc = l2_assoc >> 1;
}
return(l2_assoc);
}
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/**
* Flush a line from the L2 cache
* This should only be called from one core at a time, as this routine
* sets the core to the 'debug' core in order to flush the line.
*
* @param assoc Association (or way) to flush
* @param index Index to flush
*/
void cvmx_l2c_flush_line(uint32_t assoc, uint32_t index)
{
/* Check the range of the index. */
if (index > (uint32_t)cvmx_l2c_get_num_sets())
{
cvmx_dprintf("ERROR: cvmx_l2c_flush_line index out of range.\n");
return;
}
/* Check the range of association. */
if (assoc > (uint32_t)cvmx_l2c_get_num_assoc())
{
cvmx_dprintf("ERROR: cvmx_l2c_flush_line association out of range.\n");
return;
}
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
uint64_t address;
/* Create the address based on index and association.
Bits<20:17> select the way of the cache block involved in
the operation
Bits<16:7> of the effect address select the index */
address = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
(assoc << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) |
(index << CVMX_L2C_IDX_ADDR_SHIFT));
CVMX_CACHE_WBIL2I(address, 0);
}
else
{
cvmx_l2c_dbg_t l2cdbg;
l2cdbg.u64 = 0;
if (!OCTEON_IS_MODEL(OCTEON_CN30XX))
l2cdbg.s.ppnum = cvmx_get_core_num();
l2cdbg.s.finv = 1;
l2cdbg.s.set = assoc;
cvmx_spinlock_lock(&cvmx_l2c_spinlock);
/* Enter debug mode, and make sure all other writes complete before we
** enter debug mode */
CVMX_SYNC;
cvmx_write_csr(CVMX_L2C_DBG, l2cdbg.u64);
cvmx_read_csr(CVMX_L2C_DBG);
CVMX_PREPARE_FOR_STORE (CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, index*CVMX_CACHE_LINE_SIZE), 0);
/* Exit debug mode */
CVMX_SYNC;
cvmx_write_csr(CVMX_L2C_DBG, 0);
cvmx_read_csr(CVMX_L2C_DBG);
cvmx_spinlock_unlock(&cvmx_l2c_spinlock);
}
}
#endif
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* L2C Virtualization APIs. These APIs are based on Octeon II documentation. */
/**
* @INTERNAL
* Helper function to decode VALUE to number of allowed virtualization IDS.
* Returns L2C_VRT_CTL[NUMID].
*
* @param nvid Number of virtual Ids.
* @return On success decode to NUMID, or to -1 on failure.
*/
static inline int __cvmx_l2c_vrt_decode_numid(int nvid)
{
int bits = -1;
int zero_bits = -1;
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
if (nvid < 1 || nvid > CVMX_L2C_VRT_MAX_VIRTID_ALLOWED)
{
cvmx_dprintf("WARNING: Invalid number of virtual ids(%d) requested, should be <= 64\n", nvid);
return bits;
}
while (nvid)
{
if ((nvid & 1) == 0)
zero_bits++;
bits++;
nvid >>= 1;
}
if (bits == 1 || (zero_bits && ((bits - zero_bits) == 1)))
return zero_bits;
}
return -1;
}
/**
* Set maxium number of Virtual IDs allowed in a machine.
*
* @param nvid Number of virtial ids allowed in a machine.
* @return Return 0 on success or -1 on failure.
*/
int cvmx_l2c_vrt_set_max_virtids(int nvid)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX))
{
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
if (l2c_vrt_ctl.s.enable)
{
cvmx_dprintf("WARNING: Changing number of Virtual Machine IDs is not allowed after Virtualization is enabled\n");
return -1;
}
if (nvid < 1 || nvid > CVMX_L2C_VRT_MAX_VIRTID_ALLOWED)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_max_virtids: Invalid number of Virtual Machine IDs(%d) requested, max allowed %d\n", nvid, CVMX_L2C_VRT_MAX_VIRTID_ALLOWED);
return -1;
}
/* Calculate the numid based on nvid */
l2c_vrt_ctl.s.numid = __cvmx_l2c_vrt_decode_numid(nvid);
cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64);
}
return 0;
}
/**
* Get maxium number of virtual IDs allowed in a machine.
*
* @return Return number of virtual machine IDs or -1 on failure.
*/
int cvmx_l2c_vrt_get_max_virtids(void)
{
int virtids = -1;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
virtids = 1 << (l2c_vrt_ctl.s.numid + 1);
if (virtids > CVMX_L2C_VRT_MAX_VIRTID_ALLOWED)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_get_max_virtids: Invalid number of Virtual IDs initialized (%d)\n", virtids);
return -1;
}
}
return virtids;
}
/**
* @INTERNAL
* Helper function to decode VALUE to memory space coverage of L2C_VRT_MEM.
* Returns L2C_VRT_CTL[MEMSZ].
*
* @param memsz Memory in GB.
* @return On success, decode to MEMSZ, or on failure return -1.
*/
static inline int __cvmx_l2c_vrt_decode_memsize(int memsz)
{
int bits = 0;
int zero_bits = 0;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
if (memsz == 0 || memsz > CVMX_L2C_VRT_MAX_MEMSZ_ALLOWED)
{
cvmx_dprintf("WARNING: Invalid virtual memory size(%d) requested, should be <= %d\n", memsz, CVMX_L2C_VRT_MAX_MEMSZ_ALLOWED);
return -1;
}
while (memsz)
{
if ((memsz & 1) == 0)
zero_bits++;
bits++;
memsz >>= 1;
}
if (bits == 1 || (bits - zero_bits) == 1)
return zero_bits;
}
return -1;
}
/**
* Set the maxium size of memory space to be allocated for virtualization.
*
* @param memsz Size of the virtual memory in GB
* @return Return 0 on success or -1 on failure.
*/
int cvmx_l2c_vrt_set_max_memsz(int memsz)
{
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
int decode = 0;
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
if (l2c_vrt_ctl.s.enable)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_memsz: Changing the size of the memory after Virtualization is enabled is not allowed.\n");
return -1;
}
if (memsz >= (int)(cvmx_sysinfo_get()->system_dram_size / 1000000))
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_memsz: Invalid memory size (%d GB), greater than available on the chip\n", memsz);
return -1;
}
decode = __cvmx_l2c_vrt_decode_memsize(memsz);
if (decode == -1)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_memsz: Invalid memory size (%d GB), refer to L2C_VRT_CTL[MEMSZ] for more information\n", memsz);
return -1;
}
l2c_vrt_ctl.s.memsz = decode;
cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64);
}
return 0;
}
/**
* Set a Virtual ID to a set of cores.
*
* @param virtid Assign virtid to a set of cores.
* @param coremask The group of cores to assign a unique virtual id.
* @return Return 0 on success, otherwise -1.
*/
int cvmx_l2c_vrt_assign_virtid(int virtid, uint32_t coremask)
{
uint32_t core = 0;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
int found = 0;
int max_virtid = cvmx_l2c_vrt_get_max_virtids();
if (virtid > max_virtid)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_assign_virt_id: Max %d number of virtids are allowed, passed %d.\n", max_virtid, virtid);
return -1;
}
while (core < cvmx_octeon_num_cores())
{
if ((coremask >> core) & 1)
{
cvmx_l2c_virtid_ppx_t l2c_virtid_ppx;
cvmx_l2c_virtid_iobx_t l2c_virtid_iobx;
l2c_virtid_ppx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_PPX(core));
/* Check if the core already has a virtid assigned. */
if (l2c_virtid_ppx.s.id)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_assign_virt_id: Changing virtid of core #%d to %d from %d.\n",
(unsigned int)core, virtid, l2c_virtid_ppx.s.id);
/* Flush L2 cache to avoid write errors */
cvmx_l2c_flush();
}
cvmx_write_csr(CVMX_L2C_VIRTID_PPX(core), virtid & 0x3f);
/* Set the IOB to normal mode. */
l2c_virtid_iobx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_IOBX(core));
l2c_virtid_iobx.s.id = 1;
l2c_virtid_iobx.s.dwbid = 0;
cvmx_write_csr(CVMX_L2C_VIRTID_IOBX(core), l2c_virtid_iobx.u64);
found = 1;
}
core++;
}
/* Invalid coremask passed. */
if (!found)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_assign_virt_id: Invalid coremask(0x%x) passed\n", (unsigned int)coremask);
return -1;
}
}
return 0;
}
/**
* Remove a virt id assigned to a set of cores. Update the virtid mask and
* virtid stored for each core.
*
* @param virtid Remove the specified Virtualization machine ID.
*/
void cvmx_l2c_vrt_remove_virtid(int virtid)
{
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
uint32_t core;
cvmx_l2c_virtid_ppx_t l2c_virtid_ppx;
for (core = 0; core < cvmx_octeon_num_cores(); core++)
{
l2c_virtid_ppx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_PPX(core));
if (virtid == l2c_virtid_ppx.s.id)
cvmx_write_csr(CVMX_L2C_VIRTID_PPX(core), 0);
}
}
}
/**
* Helper function to protect the memory region based on the granularity.
*/
static uint64_t __cvmx_l2c_vrt_get_granularity(void)
{
uint64_t gran = 0;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
int nvid;
uint64_t szd;
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
nvid = cvmx_l2c_vrt_get_max_virtids();
szd = (1ull << l2c_vrt_ctl.s.memsz) * 1024 * 1024 * 1024;
gran = (unsigned long long)(szd * nvid)/(32ull * 1024);
}
return gran;
}
/**
* Block a memory region to be updated for a given virtual id.
*
* @param start_addr Starting address of memory region
* @param size Size of the memory to protect
* @param virtid Virtual ID to use
* @param mode Allow/Disallow write access
* = 0, Allow write access by virtid
* = 1, Disallow write access by virtid
*/
int cvmx_l2c_vrt_memprotect(uint64_t start_addr, int size, int virtid, int mode)
{
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
/* Check the alignment of start address, should be aligned to the
granularity. */
uint64_t gran = __cvmx_l2c_vrt_get_granularity();
uint64_t end_addr = start_addr + size;
int byte_offset, virtid_offset;
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
cvmx_l2c_vrt_memx_t l2c_vrt_mem;
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
/* No need to protect if virtualization is not enabled */
if (!l2c_vrt_ctl.s.enable)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Virtualization is not enabled.\n");
return -1;
}
if (virtid > cvmx_l2c_vrt_get_max_virtids())
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Virtualization id is greater than max allowed\n");
return -1;
}
/* No need to protect if virtid is not assigned to a core */
{
cvmx_l2c_virtid_ppx_t l2c_virtid_ppx;
int found = 0;
uint32_t core;
for (core = 0; core < cvmx_octeon_num_cores(); core++)
{
l2c_virtid_ppx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_PPX(core));
if (l2c_virtid_ppx.s.id == virtid)
{
found = 1;
break;
}
}
if (found == 0)
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Virtualization id (%d) is not assigned to any core.\n", virtid);
return -1;
}
}
/* Make sure previous stores are through before protecting the memory. */
CVMX_SYNCW;
/* If the L2/DRAM physical address is >= 512 MB, subtract 256 MB
to get the address to use. This is because L2C removes the 256MB
"hole" between DR0 and DR1. */
if (start_addr >= (512 * 1024 * 1024))
start_addr -= 256 * 1024 * 1024;
if (start_addr != ((start_addr + (gran - 1)) & ~(gran - 1)))
{
cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Start address is not aligned\n");
return -1;
}
/* Check the size of the memory to protect, should be aligned to the
granularity. */
if (end_addr != ((end_addr + (gran - 1)) & ~(gran - 1)))
{
end_addr = (start_addr + (gran - 1)) & ~(gran - 1);
size = start_addr - end_addr;
}
byte_offset = l2c_vrt_ctl.s.memsz + l2c_vrt_ctl.s.numid + 16;
virtid_offset = 14 - l2c_vrt_ctl.s.numid;
cvmx_spinlock_lock(&cvmx_l2c_vrt_spinlock);
/* Enable memory protection for each virtid for the specified range. */
while (start_addr < end_addr)
{
/* When L2C virtualization is enabled and a bit is set in
L2C_VRT_MEM(0..1023), then L2C prevents the selected virtual
machine from storing to the selected L2C/DRAM region. */
int offset, position, i;
int l2c_vrt_mem_bit_index = start_addr >> byte_offset;
l2c_vrt_mem_bit_index |= (virtid << virtid_offset);
offset = l2c_vrt_mem_bit_index >> 5;
position = l2c_vrt_mem_bit_index & 0x1f;
l2c_vrt_mem.u64 = cvmx_read_csr(CVMX_L2C_VRT_MEMX(offset));
/* Allow/Disallow write access to memory. */
if (mode == 0)
l2c_vrt_mem.s.data &= ~(1 << position);
else
l2c_vrt_mem.s.data |= 1 << position;
l2c_vrt_mem.s.parity = 0;
/* PARITY<i> is the even parity of DATA<i*8+7:i*8>, which means
that each bit<i> in PARITY[0..3], is the XOR of all the bits
in the corresponding byte in DATA. */
for (i = 0; i <= 4; i++)
{
uint64_t mask = 0xffull << (i*8);
if ((cvmx_pop(l2c_vrt_mem.s.data & mask) & 0x1))
l2c_vrt_mem.s.parity |= (1ull << i);
}
cvmx_write_csr(CVMX_L2C_VRT_MEMX(offset), l2c_vrt_mem.u64);
start_addr += gran;
}
cvmx_spinlock_unlock(&cvmx_l2c_vrt_spinlock);
}
return 0;
}
#endif
/**
* Enable virtualization.
*
* @param mode Whether out of bound writes are an error.
*/
void cvmx_l2c_vrt_enable(int mode)
{
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
/* Enable global virtualization */
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
l2c_vrt_ctl.s.ooberr = mode;
l2c_vrt_ctl.s.enable = 1;
cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64);
}
}
/**
* Disable virtualization.
*/
void cvmx_l2c_vrt_disable(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN6XXX))
{
cvmx_l2c_vrt_ctl_t l2c_vrt_ctl;
/* Disable global virtualization */
l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL);
l2c_vrt_ctl.s.enable = 0;
cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64);
}
}