8775 lines
316 KiB
C++

//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
#if HAVE_CXXABI_H
#include <cxxabi.h>
#endif
using namespace llvm;
using namespace object;
static cl::opt<bool>
UseDbg("g",
cl::desc("Print line information from debug info if available"));
static cl::opt<std::string> DSYMFile("dsym",
cl::desc("Use .dSYM file for debug info"));
static cl::opt<bool> FullLeadingAddr("full-leading-addr",
cl::desc("Print full leading address"));
static cl::opt<bool> NoLeadingAddr("no-leading-addr",
cl::desc("Print no leading address"));
cl::opt<bool> llvm::UniversalHeaders("universal-headers",
cl::desc("Print Mach-O universal headers "
"(requires -macho)"));
cl::opt<bool>
llvm::ArchiveHeaders("archive-headers",
cl::desc("Print archive headers for Mach-O archives "
"(requires -macho)"));
cl::opt<bool>
ArchiveMemberOffsets("archive-member-offsets",
cl::desc("Print the offset to each archive member for "
"Mach-O archives (requires -macho and "
"-archive-headers)"));
cl::opt<bool>
llvm::IndirectSymbols("indirect-symbols",
cl::desc("Print indirect symbol table for Mach-O "
"objects (requires -macho)"));
cl::opt<bool>
llvm::DataInCode("data-in-code",
cl::desc("Print the data in code table for Mach-O objects "
"(requires -macho)"));
cl::opt<bool>
llvm::LinkOptHints("link-opt-hints",
cl::desc("Print the linker optimization hints for "
"Mach-O objects (requires -macho)"));
cl::list<std::string>
llvm::DumpSections("section",
cl::desc("Prints the specified segment,section for "
"Mach-O objects (requires -macho)"));
cl::opt<bool>
llvm::InfoPlist("info-plist",
cl::desc("Print the info plist section as strings for "
"Mach-O objects (requires -macho)"));
cl::opt<bool>
llvm::DylibsUsed("dylibs-used",
cl::desc("Print the shared libraries used for linked "
"Mach-O files (requires -macho)"));
cl::opt<bool>
llvm::DylibId("dylib-id",
cl::desc("Print the shared library's id for the dylib Mach-O "
"file (requires -macho)"));
cl::opt<bool>
llvm::NonVerbose("non-verbose",
cl::desc("Print the info for Mach-O objects in "
"non-verbose or numeric form (requires -macho)"));
cl::opt<bool>
llvm::ObjcMetaData("objc-meta-data",
cl::desc("Print the Objective-C runtime meta data for "
"Mach-O files (requires -macho)"));
cl::opt<std::string> llvm::DisSymName(
"dis-symname",
cl::desc("disassemble just this symbol's instructions (requires -macho"));
static cl::opt<bool> NoSymbolicOperands(
"no-symbolic-operands",
cl::desc("do not symbolic operands when disassembling (requires -macho)"));
static cl::list<std::string>
ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
cl::ZeroOrMore);
bool ArchAll = false;
static std::string ThumbTripleName;
static const Target *GetTarget(const MachOObjectFile *MachOObj,
const char **McpuDefault,
const Target **ThumbTarget) {
// Figure out the target triple.
if (TripleName.empty()) {
llvm::Triple TT("unknown-unknown-unknown");
llvm::Triple ThumbTriple = Triple();
TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
TripleName = TT.str();
ThumbTripleName = ThumbTriple.str();
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
if (TheTarget && ThumbTripleName.empty())
return TheTarget;
*ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
if (*ThumbTarget)
return TheTarget;
errs() << "llvm-objdump: error: unable to get target for '";
if (!TheTarget)
errs() << TripleName;
else
errs() << ThumbTripleName;
errs() << "', see --version and --triple.\n";
return nullptr;
}
struct SymbolSorter {
bool operator()(const SymbolRef &A, const SymbolRef &B) {
uint64_t AAddr = (A.getType() != SymbolRef::ST_Function) ? 0 : A.getValue();
uint64_t BAddr = (B.getType() != SymbolRef::ST_Function) ? 0 : B.getValue();
return AAddr < BAddr;
}
};
// Types for the storted data in code table that is built before disassembly
// and the predicate function to sort them.
typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
typedef std::vector<DiceTableEntry> DiceTable;
typedef DiceTable::iterator dice_table_iterator;
// This is used to search for a data in code table entry for the PC being
// disassembled. The j parameter has the PC in j.first. A single data in code
// table entry can cover many bytes for each of its Kind's. So if the offset,
// aka the i.first value, of the data in code table entry plus its Length
// covers the PC being searched for this will return true. If not it will
// return false.
static bool compareDiceTableEntries(const DiceTableEntry &i,
const DiceTableEntry &j) {
uint16_t Length;
i.second.getLength(Length);
return j.first >= i.first && j.first < i.first + Length;
}
static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
unsigned short Kind) {
uint32_t Value, Size = 1;
switch (Kind) {
default:
case MachO::DICE_KIND_DATA:
if (Length >= 4) {
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 4), outs());
Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
outs() << "\t.long " << Value;
Size = 4;
} else if (Length >= 2) {
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 2), outs());
Value = bytes[1] << 8 | bytes[0];
outs() << "\t.short " << Value;
Size = 2;
} else {
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 2), outs());
Value = bytes[0];
outs() << "\t.byte " << Value;
Size = 1;
}
if (Kind == MachO::DICE_KIND_DATA)
outs() << "\t@ KIND_DATA\n";
else
outs() << "\t@ data in code kind = " << Kind << "\n";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 1), outs());
Value = bytes[0];
outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
Size = 1;
break;
case MachO::DICE_KIND_JUMP_TABLE16:
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 2), outs());
Value = bytes[1] << 8 | bytes[0];
outs() << "\t.short " << format("%5u", Value & 0xffff)
<< "\t@ KIND_JUMP_TABLE16\n";
Size = 2;
break;
case MachO::DICE_KIND_JUMP_TABLE32:
case MachO::DICE_KIND_ABS_JUMP_TABLE32:
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 4), outs());
Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
outs() << "\t.long " << Value;
if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
outs() << "\t@ KIND_JUMP_TABLE32\n";
else
outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
Size = 4;
break;
}
return Size;
}
static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
std::vector<SectionRef> &Sections,
std::vector<SymbolRef> &Symbols,
SmallVectorImpl<uint64_t> &FoundFns,
uint64_t &BaseSegmentAddress) {
for (const SymbolRef &Symbol : MachOObj->symbols()) {
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
if (!SymName->startswith("ltmp"))
Symbols.push_back(Symbol);
}
for (const SectionRef &Section : MachOObj->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
bool BaseSegmentAddressSet = false;
for (const auto &Command : MachOObj->load_commands()) {
if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
// We found a function starts segment, parse the addresses for later
// consumption.
MachO::linkedit_data_command LLC =
MachOObj->getLinkeditDataLoadCommand(Command);
MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
} else if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
StringRef SegName = SLC.segname;
if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
BaseSegmentAddressSet = true;
BaseSegmentAddress = SLC.vmaddr;
}
}
}
}
static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
uint32_t n, uint32_t count,
uint32_t stride, uint64_t addr) {
MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
uint32_t nindirectsyms = Dysymtab.nindirectsyms;
if (n > nindirectsyms)
outs() << " (entries start past the end of the indirect symbol "
"table) (reserved1 field greater than the table size)";
else if (n + count > nindirectsyms)
outs() << " (entries extends past the end of the indirect symbol "
"table)";
outs() << "\n";
uint32_t cputype = O->getHeader().cputype;
if (cputype & MachO::CPU_ARCH_ABI64)
outs() << "address index";
else
outs() << "address index";
if (verbose)
outs() << " name\n";
else
outs() << "\n";
for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
if (cputype & MachO::CPU_ARCH_ABI64)
outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
else
outs() << format("0x%08" PRIx32, addr + j * stride) << " ";
MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
outs() << "LOCAL\n";
continue;
}
if (indirect_symbol ==
(MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
outs() << "LOCAL ABSOLUTE\n";
continue;
}
if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
outs() << "ABSOLUTE\n";
continue;
}
outs() << format("%5u ", indirect_symbol);
if (verbose) {
MachO::symtab_command Symtab = O->getSymtabLoadCommand();
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
outs() << *SymName;
} else {
outs() << "?";
}
}
outs() << "\n";
}
}
static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
for (const auto &Load : O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 8;
if (stride == 0) {
outs() << "Can't print indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") "
<< "(size of stubs in reserved2 field is zero)\n";
continue;
}
uint32_t count = Sec.size / stride;
outs() << "Indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") " << count << " entries";
uint32_t n = Sec.reserved1;
PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 4;
if (stride == 0) {
outs() << "Can't print indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") "
<< "(size of stubs in reserved2 field is zero)\n";
continue;
}
uint32_t count = Sec.size / stride;
outs() << "Indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") " << count << " entries";
uint32_t n = Sec.reserved1;
PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
}
}
}
}
}
static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
outs() << "Data in code table (" << nentries << " entries)\n";
outs() << "offset length kind\n";
for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
++DI) {
uint32_t Offset;
DI->getOffset(Offset);
outs() << format("0x%08" PRIx32, Offset) << " ";
uint16_t Length;
DI->getLength(Length);
outs() << format("%6u", Length) << " ";
uint16_t Kind;
DI->getKind(Kind);
if (verbose) {
switch (Kind) {
case MachO::DICE_KIND_DATA:
outs() << "DATA";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
outs() << "JUMP_TABLE8";
break;
case MachO::DICE_KIND_JUMP_TABLE16:
outs() << "JUMP_TABLE16";
break;
case MachO::DICE_KIND_JUMP_TABLE32:
outs() << "JUMP_TABLE32";
break;
case MachO::DICE_KIND_ABS_JUMP_TABLE32:
outs() << "ABS_JUMP_TABLE32";
break;
default:
outs() << format("0x%04" PRIx32, Kind);
break;
}
} else
outs() << format("0x%04" PRIx32, Kind);
outs() << "\n";
}
}
static void PrintLinkOptHints(MachOObjectFile *O) {
MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
uint32_t nloh = LohLC.datasize;
outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
for (uint32_t i = 0; i < nloh;) {
unsigned n;
uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << " identifier " << identifier << " ";
if (i >= nloh)
return;
switch (identifier) {
case 1:
outs() << "AdrpAdrp\n";
break;
case 2:
outs() << "AdrpLdr\n";
break;
case 3:
outs() << "AdrpAddLdr\n";
break;
case 4:
outs() << "AdrpLdrGotLdr\n";
break;
case 5:
outs() << "AdrpAddStr\n";
break;
case 6:
outs() << "AdrpLdrGotStr\n";
break;
case 7:
outs() << "AdrpAdd\n";
break;
case 8:
outs() << "AdrpLdrGot\n";
break;
default:
outs() << "Unknown identifier value\n";
break;
}
uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << " narguments " << narguments << "\n";
if (i >= nloh)
return;
for (uint32_t j = 0; j < narguments; j++) {
uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
if (i >= nloh)
return;
}
}
}
static void PrintDylibs(MachOObjectFile *O, bool JustId) {
unsigned Index = 0;
for (const auto &Load : O->load_commands()) {
if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
(!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
if (dl.dylib.name < dl.cmdsize) {
const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
if (JustId)
outs() << p << "\n";
else {
outs() << "\t" << p;
outs() << " (compatibility version "
<< ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
<< ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
<< (dl.dylib.compatibility_version & 0xff) << ",";
outs() << " current version "
<< ((dl.dylib.current_version >> 16) & 0xffff) << "."
<< ((dl.dylib.current_version >> 8) & 0xff) << "."
<< (dl.dylib.current_version & 0xff) << ")\n";
}
} else {
outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
if (Load.C.cmd == MachO::LC_ID_DYLIB)
outs() << "LC_ID_DYLIB ";
else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
outs() << "LC_LOAD_DYLIB ";
else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
outs() << "LC_LOAD_WEAK_DYLIB ";
else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
outs() << "LC_LAZY_LOAD_DYLIB ";
else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
outs() << "LC_REEXPORT_DYLIB ";
else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
outs() << "LC_LOAD_UPWARD_DYLIB ";
else
outs() << "LC_??? ";
outs() << "command " << Index++ << "\n";
}
}
}
}
typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
static void CreateSymbolAddressMap(MachOObjectFile *O,
SymbolAddressMap *AddrMap) {
// Create a map of symbol addresses to symbol names.
for (const SymbolRef &Symbol : O->symbols()) {
SymbolRef::Type ST = Symbol.getType();
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address = Symbol.getValue();
ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
if (std::error_code EC = SymNameOrErr.getError())
report_fatal_error(EC.message());
StringRef SymName = *SymNameOrErr;
if (!SymName.startswith(".objc"))
(*AddrMap)[Address] = SymName;
}
}
}
// GuessSymbolName is passed the address of what might be a symbol and a
// pointer to the SymbolAddressMap. It returns the name of a symbol
// with that address or nullptr if no symbol is found with that address.
static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
const char *SymbolName = nullptr;
// A DenseMap can't lookup up some values.
if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
StringRef name = AddrMap->lookup(value);
if (!name.empty())
SymbolName = name.data();
}
return SymbolName;
}
static void DumpCstringChar(const char c) {
char p[2];
p[0] = c;
p[1] = '\0';
outs().write_escaped(p);
}
static void DumpCstringSection(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i++) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
for (; i < sect_size && sect[i] != '\0'; i++)
DumpCstringChar(sect[i]);
if (i < sect_size && sect[i] == '\0')
outs() << "\n";
}
}
static void DumpLiteral4(uint32_t l, float f) {
outs() << format("0x%08" PRIx32, l);
if ((l & 0x7f800000) != 0x7f800000)
outs() << format(" (%.16e)\n", f);
else {
if (l == 0x7f800000)
outs() << " (+Infinity)\n";
else if (l == 0xff800000)
outs() << " (-Infinity)\n";
else if ((l & 0x00400000) == 0x00400000)
outs() << " (non-signaling Not-a-Number)\n";
else
outs() << " (signaling Not-a-Number)\n";
}
}
static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
float f;
memcpy(&f, sect + i, sizeof(float));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(f);
uint32_t l;
memcpy(&l, sect + i, sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(l);
DumpLiteral4(l, f);
}
}
static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
double d) {
outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
uint32_t Hi, Lo;
if (O->isLittleEndian()) {
Hi = l1;
Lo = l0;
} else {
Hi = l0;
Lo = l1;
}
// Hi is the high word, so this is equivalent to if(isfinite(d))
if ((Hi & 0x7ff00000) != 0x7ff00000)
outs() << format(" (%.16e)\n", d);
else {
if (Hi == 0x7ff00000 && Lo == 0)
outs() << " (+Infinity)\n";
else if (Hi == 0xfff00000 && Lo == 0)
outs() << " (-Infinity)\n";
else if ((Hi & 0x00080000) == 0x00080000)
outs() << " (non-signaling Not-a-Number)\n";
else
outs() << " (signaling Not-a-Number)\n";
}
}
static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
double d;
memcpy(&d, sect + i, sizeof(double));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(d);
uint32_t l0, l1;
memcpy(&l0, sect + i, sizeof(uint32_t));
memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
}
DumpLiteral8(O, l0, l1, d);
}
}
static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
outs() << format("0x%08" PRIx32, l0) << " ";
outs() << format("0x%08" PRIx32, l1) << " ";
outs() << format("0x%08" PRIx32, l2) << " ";
outs() << format("0x%08" PRIx32, l3) << "\n";
}
static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += 16) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
uint32_t l0, l1, l2, l3;
memcpy(&l0, sect + i, sizeof(uint32_t));
memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
sys::swapByteOrder(l2);
sys::swapByteOrder(l3);
}
DumpLiteral16(l0, l1, l2, l3);
}
}
static void DumpLiteralPointerSection(MachOObjectFile *O,
const SectionRef &Section,
const char *sect, uint32_t sect_size,
uint64_t sect_addr,
bool print_addresses) {
// Collect the literal sections in this Mach-O file.
std::vector<SectionRef> LiteralSections;
for (const SectionRef &Section : O->sections()) {
DataRefImpl Ref = Section.getRawDataRefImpl();
uint32_t section_type;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
} else {
const MachO::section Sec = O->getSection(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
}
if (section_type == MachO::S_CSTRING_LITERALS ||
section_type == MachO::S_4BYTE_LITERALS ||
section_type == MachO::S_8BYTE_LITERALS ||
section_type == MachO::S_16BYTE_LITERALS)
LiteralSections.push_back(Section);
}
// Set the size of the literal pointer.
uint32_t lp_size = O->is64Bit() ? 8 : 4;
// Collect the external relocation symbols for the literal pointers.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Section.relocations()) {
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
Rel = Reloc.getRawDataRefImpl();
RE = O->getRelocation(Rel);
isExtern = O->getPlainRelocationExternal(RE);
if (isExtern) {
uint64_t RelocOffset = Reloc.getOffset();
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Dump each literal pointer.
for (uint32_t i = 0; i < sect_size; i += lp_size) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
uint64_t lp;
if (O->is64Bit()) {
memcpy(&lp, sect + i, sizeof(uint64_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(lp);
} else {
uint32_t li;
memcpy(&li, sect + i, sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(li);
lp = li;
}
// First look for an external relocation entry for this literal pointer.
auto Reloc = std::find_if(
Relocs.begin(), Relocs.end(),
[&](const std::pair<uint64_t, SymbolRef> &P) { return P.first == i; });
if (Reloc != Relocs.end()) {
symbol_iterator RelocSym = Reloc->second;
ErrorOr<StringRef> SymName = RelocSym->getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
outs() << "external relocation entry for symbol:" << *SymName << "\n";
continue;
}
// For local references see what the section the literal pointer points to.
auto Sect = std::find_if(LiteralSections.begin(), LiteralSections.end(),
[&](const SectionRef &R) {
return lp >= R.getAddress() &&
lp < R.getAddress() + R.getSize();
});
if (Sect == LiteralSections.end()) {
outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n";
continue;
}
uint64_t SectAddress = Sect->getAddress();
uint64_t SectSize = Sect->getSize();
StringRef SectName;
Sect->getName(SectName);
DataRefImpl Ref = Sect->getRawDataRefImpl();
StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
outs() << SegmentName << ":" << SectName << ":";
uint32_t section_type;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
} else {
const MachO::section Sec = O->getSection(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
}
StringRef BytesStr;
Sect->getContents(BytesStr);
const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
switch (section_type) {
case MachO::S_CSTRING_LITERALS:
for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
i++) {
DumpCstringChar(Contents[i]);
}
outs() << "\n";
break;
case MachO::S_4BYTE_LITERALS:
float f;
memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
uint32_t l;
memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(f);
sys::swapByteOrder(l);
}
DumpLiteral4(l, f);
break;
case MachO::S_8BYTE_LITERALS: {
double d;
memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
uint32_t l0, l1;
memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(f);
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
}
DumpLiteral8(O, l0, l1, d);
break;
}
case MachO::S_16BYTE_LITERALS: {
uint32_t l0, l1, l2, l3;
memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
sizeof(uint32_t));
memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
sizeof(uint32_t));
memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
sys::swapByteOrder(l2);
sys::swapByteOrder(l3);
}
DumpLiteral16(l0, l1, l2, l3);
break;
}
}
}
}
static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
SymbolAddressMap *AddrMap,
bool verbose) {
uint32_t stride;
if (O->is64Bit())
stride = sizeof(uint64_t);
else
stride = sizeof(uint32_t);
for (uint32_t i = 0; i < sect_size; i += stride) {
const char *SymbolName = nullptr;
if (O->is64Bit()) {
outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
uint64_t pointer_value;
memcpy(&pointer_value, sect + i, stride);
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
outs() << format("0x%016" PRIx64, pointer_value);
if (verbose)
SymbolName = GuessSymbolName(pointer_value, AddrMap);
} else {
outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
uint32_t pointer_value;
memcpy(&pointer_value, sect + i, stride);
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
outs() << format("0x%08" PRIx32, pointer_value);
if (verbose)
SymbolName = GuessSymbolName(pointer_value, AddrMap);
}
if (SymbolName)
outs() << " " << SymbolName;
outs() << "\n";
}
}
static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
uint32_t size, uint64_t addr) {
uint32_t cputype = O->getHeader().cputype;
if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
uint32_t j;
for (uint32_t i = 0; i < size; i += j, addr += j) {
if (O->is64Bit())
outs() << format("%016" PRIx64, addr) << "\t";
else
outs() << format("%08" PRIx64, addr) << "\t";
for (j = 0; j < 16 && i + j < size; j++) {
uint8_t byte_word = *(sect + i + j);
outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
}
outs() << "\n";
}
} else {
uint32_t j;
for (uint32_t i = 0; i < size; i += j, addr += j) {
if (O->is64Bit())
outs() << format("%016" PRIx64, addr) << "\t";
else
outs() << format("%08" PRIx64, sect) << "\t";
for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
j += sizeof(int32_t)) {
if (i + j + sizeof(int32_t) < size) {
uint32_t long_word;
memcpy(&long_word, sect + i + j, sizeof(int32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(long_word);
outs() << format("%08" PRIx32, long_word) << " ";
} else {
for (uint32_t k = 0; i + j + k < size; k++) {
uint8_t byte_word = *(sect + i + j);
outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
}
}
}
outs() << "\n";
}
}
}
static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef DisSegName, StringRef DisSectName);
static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
uint32_t size, uint32_t addr);
static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
for (unsigned i = 0; i < DumpSections.size(); ++i) {
StringRef DumpSection = DumpSections[i];
std::pair<StringRef, StringRef> DumpSegSectName;
DumpSegSectName = DumpSection.split(',');
StringRef DumpSegName, DumpSectName;
if (DumpSegSectName.second.size()) {
DumpSegName = DumpSegSectName.first;
DumpSectName = DumpSegSectName.second;
} else {
DumpSegName = "";
DumpSectName = DumpSegSectName.first;
}
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if ((DumpSegName.empty() || SegName == DumpSegName) &&
(SectName == DumpSectName)) {
uint32_t section_flags;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_flags = Sec.flags;
} else {
const MachO::section Sec = O->getSection(Ref);
section_flags = Sec.flags;
}
uint32_t section_type = section_flags & MachO::SECTION_TYPE;
StringRef BytesStr;
Section.getContents(BytesStr);
const char *sect = reinterpret_cast<const char *>(BytesStr.data());
uint32_t sect_size = BytesStr.size();
uint64_t sect_addr = Section.getAddress();
outs() << "Contents of (" << SegName << "," << SectName
<< ") section\n";
if (verbose) {
if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
(section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
DisassembleMachO(Filename, O, SegName, SectName);
continue;
}
if (SegName == "__TEXT" && SectName == "__info_plist") {
outs() << sect;
continue;
}
if (SegName == "__OBJC" && SectName == "__protocol") {
DumpProtocolSection(O, sect, sect_size, sect_addr);
continue;
}
switch (section_type) {
case MachO::S_REGULAR:
DumpRawSectionContents(O, sect, sect_size, sect_addr);
break;
case MachO::S_ZEROFILL:
outs() << "zerofill section and has no contents in the file\n";
break;
case MachO::S_CSTRING_LITERALS:
DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_4BYTE_LITERALS:
DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_8BYTE_LITERALS:
DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_16BYTE_LITERALS:
DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_LITERAL_POINTERS:
DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
!NoLeadingAddr);
break;
case MachO::S_MOD_INIT_FUNC_POINTERS:
case MachO::S_MOD_TERM_FUNC_POINTERS:
DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
verbose);
break;
default:
outs() << "Unknown section type ("
<< format("0x%08" PRIx32, section_type) << ")\n";
DumpRawSectionContents(O, sect, sect_size, sect_addr);
break;
}
} else {
if (section_type == MachO::S_ZEROFILL)
outs() << "zerofill section and has no contents in the file\n";
else
DumpRawSectionContents(O, sect, sect_size, sect_addr);
}
}
}
}
}
static void DumpInfoPlistSectionContents(StringRef Filename,
MachOObjectFile *O) {
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if (SegName == "__TEXT" && SectName == "__info_plist") {
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
StringRef BytesStr;
Section.getContents(BytesStr);
const char *sect = reinterpret_cast<const char *>(BytesStr.data());
outs() << sect;
return;
}
}
}
// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
// and if it is and there is a list of architecture flags is specified then
// check to make sure this Mach-O file is one of those architectures or all
// architectures were specified. If not then an error is generated and this
// routine returns false. Else it returns true.
static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
bool ArchFound = false;
MachO::mach_header H;
MachO::mach_header_64 H_64;
Triple T;
if (MachO->is64Bit()) {
H_64 = MachO->MachOObjectFile::getHeader64();
T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
} else {
H = MachO->MachOObjectFile::getHeader();
T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
}
unsigned i;
for (i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == T.getArchName())
ArchFound = true;
break;
}
if (!ArchFound) {
errs() << "llvm-objdump: file: " + Filename + " does not contain "
<< "architecture: " + ArchFlags[i] + "\n";
return false;
}
}
return true;
}
static void printObjcMetaData(MachOObjectFile *O, bool verbose);
// ProcessMachO() is passed a single opened Mach-O file, which may be an
// archive member and or in a slice of a universal file. It prints the
// the file name and header info and then processes it according to the
// command line options.
static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef ArchiveMemberName = StringRef(),
StringRef ArchitectureName = StringRef()) {
// If we are doing some processing here on the Mach-O file print the header
// info. And don't print it otherwise like in the case of printing the
// UniversalHeaders or ArchiveHeaders.
if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind ||
LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
DylibsUsed || DylibId || ObjcMetaData || (DumpSections.size() != 0)) {
outs() << Filename;
if (!ArchiveMemberName.empty())
outs() << '(' << ArchiveMemberName << ')';
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << ":\n";
}
if (Disassemble)
DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
if (IndirectSymbols)
PrintIndirectSymbols(MachOOF, !NonVerbose);
if (DataInCode)
PrintDataInCodeTable(MachOOF, !NonVerbose);
if (LinkOptHints)
PrintLinkOptHints(MachOOF);
if (Relocations)
PrintRelocations(MachOOF);
if (SectionHeaders)
PrintSectionHeaders(MachOOF);
if (SectionContents)
PrintSectionContents(MachOOF);
if (DumpSections.size() != 0)
DumpSectionContents(Filename, MachOOF, !NonVerbose);
if (InfoPlist)
DumpInfoPlistSectionContents(Filename, MachOOF);
if (DylibsUsed)
PrintDylibs(MachOOF, false);
if (DylibId)
PrintDylibs(MachOOF, true);
if (SymbolTable)
PrintSymbolTable(MachOOF);
if (UnwindInfo)
printMachOUnwindInfo(MachOOF);
if (PrivateHeaders)
printMachOFileHeader(MachOOF);
if (ObjcMetaData)
printObjcMetaData(MachOOF, !NonVerbose);
if (ExportsTrie)
printExportsTrie(MachOOF);
if (Rebase)
printRebaseTable(MachOOF);
if (Bind)
printBindTable(MachOOF);
if (LazyBind)
printLazyBindTable(MachOOF);
if (WeakBind)
printWeakBindTable(MachOOF);
}
// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
outs() << " cputype (" << cputype << ")\n";
outs() << " cpusubtype (" << cpusubtype << ")\n";
}
// printCPUType() helps print_fat_headers by printing the cputype and
// pusubtype (symbolically for the one's it knows about).
static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
switch (cputype) {
case MachO::CPU_TYPE_I386:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " cputype CPU_TYPE_I386\n";
outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " cputype CPU_TYPE_X86_64\n";
outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " cputype CPU_TYPE_X86_64\n";
outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_ARM:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " cputype CPU_TYPE_ARM64\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
}
static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
bool verbose) {
outs() << "Fat headers\n";
if (verbose)
outs() << "fat_magic FAT_MAGIC\n";
else
outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";
uint32_t nfat_arch = UB->getNumberOfObjects();
StringRef Buf = UB->getData();
uint64_t size = Buf.size();
uint64_t big_size = sizeof(struct MachO::fat_header) +
nfat_arch * sizeof(struct MachO::fat_arch);
outs() << "nfat_arch " << UB->getNumberOfObjects();
if (nfat_arch == 0)
outs() << " (malformed, contains zero architecture types)\n";
else if (big_size > size)
outs() << " (malformed, architectures past end of file)\n";
else
outs() << "\n";
for (uint32_t i = 0; i < nfat_arch; ++i) {
MachOUniversalBinary::ObjectForArch OFA(UB, i);
uint32_t cputype = OFA.getCPUType();
uint32_t cpusubtype = OFA.getCPUSubType();
outs() << "architecture ";
for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
uint32_t other_cputype = other_OFA.getCPUType();
uint32_t other_cpusubtype = other_OFA.getCPUSubType();
if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
(cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
(other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
outs() << "(illegal duplicate architecture) ";
break;
}
}
if (verbose) {
outs() << OFA.getArchTypeName() << "\n";
printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
} else {
outs() << i << "\n";
outs() << " cputype " << cputype << "\n";
outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
<< "\n";
}
if (verbose &&
(cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
outs() << " capabilities CPU_SUBTYPE_LIB64\n";
else
outs() << " capabilities "
<< format("0x%" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
outs() << " offset " << OFA.getOffset();
if (OFA.getOffset() > size)
outs() << " (past end of file)";
if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
outs() << "\n";
outs() << " size " << OFA.getSize();
big_size = OFA.getOffset() + OFA.getSize();
if (big_size > size)
outs() << " (past end of file)";
outs() << "\n";
outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
<< ")\n";
}
}
static void printArchiveChild(Archive::Child &C, bool verbose,
bool print_offset) {
if (print_offset)
outs() << C.getChildOffset() << "\t";
sys::fs::perms Mode = C.getAccessMode();
if (verbose) {
// FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
// But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
outs() << "-";
if (Mode & sys::fs::owner_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::owner_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::owner_exe)
outs() << "x";
else
outs() << "-";
if (Mode & sys::fs::group_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::group_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::group_exe)
outs() << "x";
else
outs() << "-";
if (Mode & sys::fs::others_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::others_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::others_exe)
outs() << "x";
else
outs() << "-";
} else {
outs() << format("0%o ", Mode);
}
unsigned UID = C.getUID();
outs() << format("%3d/", UID);
unsigned GID = C.getGID();
outs() << format("%-3d ", GID);
uint64_t Size = C.getRawSize();
outs() << format("%5" PRId64, Size) << " ";
StringRef RawLastModified = C.getRawLastModified();
if (verbose) {
unsigned Seconds;
if (RawLastModified.getAsInteger(10, Seconds))
outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified;
else {
// Since cime(3) returns a 26 character string of the form:
// "Sun Sep 16 01:03:52 1973\n\0"
// just print 24 characters.
time_t t = Seconds;
outs() << format("%.24s ", ctime(&t));
}
} else {
outs() << RawLastModified << " ";
}
if (verbose) {
ErrorOr<StringRef> NameOrErr = C.getName();
if (NameOrErr.getError()) {
StringRef RawName = C.getRawName();
outs() << RawName << "\n";
} else {
StringRef Name = NameOrErr.get();
outs() << Name << "\n";
}
} else {
StringRef RawName = C.getRawName();
outs() << RawName << "\n";
}
}
static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) {
if (A->hasSymbolTable()) {
Archive::child_iterator S = A->getSymbolTableChild();
Archive::Child C = *S;
printArchiveChild(C, verbose, print_offset);
}
for (Archive::child_iterator I = A->child_begin(), E = A->child_end(); I != E;
++I) {
Archive::Child C = *I;
printArchiveChild(C, verbose, print_offset);
}
}
// ParseInputMachO() parses the named Mach-O file in Filename and handles the
// -arch flags selecting just those slices as specified by them and also parses
// archive files. Then for each individual Mach-O file ProcessMachO() is
// called to process the file based on the command line options.
void llvm::ParseInputMachO(StringRef Filename) {
// Check for -arch all and verifiy the -arch flags are valid.
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == "all") {
ArchAll = true;
} else {
if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
"'for the -arch option\n";
return;
}
}
}
// Attempt to open the binary.
ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
if (std::error_code EC = BinaryOrErr.getError()) {
errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n";
return;
}
Binary &Bin = *BinaryOrErr.get().getBinary();
if (Archive *A = dyn_cast<Archive>(&Bin)) {
outs() << "Archive : " << Filename << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A, !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator I = A->child_begin(), E = A->child_end();
I != E; ++I) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = I->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
if (!checkMachOAndArchFlags(O, Filename))
return;
ProcessMachO(Filename, O, O->getFileName());
}
}
return;
}
if (UniversalHeaders) {
if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
printMachOUniversalHeaders(UB, !NonVerbose);
}
if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
// If we have a list of architecture flags specified dump only those.
if (!ArchAll && ArchFlags.size() != 0) {
// Look for a slice in the universal binary that matches each ArchFlag.
bool ArchFound;
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
ArchFound = false;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (ArchFlags[i] == I->getArchTypeName()) {
ArchFound = true;
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
I->getAsObjectFile();
std::string ArchitectureName = "";
if (ArchFlags.size() > 1)
ArchitectureName = I->getArchTypeName();
if (ObjOrErr) {
ObjectFile &O = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
ProcessMachO(Filename, MachOOF, "", ArchitectureName);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename;
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator AI = A->child_begin(),
AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
}
}
}
}
if (!ArchFound) {
errs() << "llvm-objdump: file: " + Filename + " does not contain "
<< "architecture: " + ArchFlags[i] + "\n";
return;
}
}
return;
}
// No architecture flags were specified so if this contains a slice that
// matches the host architecture dump only that.
if (!ArchAll) {
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (MachOObjectFile::getHostArch().getArchName() ==
I->getArchTypeName()) {
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
std::string ArchiveName;
ArchiveName.clear();
if (ObjOrErr) {
ObjectFile &O = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
ProcessMachO(Filename, MachOOF);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator AI = A->child_begin(),
AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
ProcessMachO(Filename, O, O->getFileName());
}
}
return;
}
}
}
// Either all architectures have been specified or none have been specified
// and this does not contain the host architecture so dump all the slices.
bool moreThanOneArch = UB->getNumberOfObjects() > 1;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
std::string ArchitectureName = "";
if (moreThanOneArch)
ArchitectureName = I->getArchTypeName();
if (ObjOrErr) {
ObjectFile &Obj = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
ProcessMachO(Filename, MachOOF, "", ArchitectureName);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename;
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
ArchitectureName);
}
}
}
}
return;
}
if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
if (!checkMachOAndArchFlags(O, Filename))
return;
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
ProcessMachO(Filename, MachOOF);
} else
errs() << "llvm-objdump: '" << Filename << "': "
<< "Object is not a Mach-O file type.\n";
} else
errs() << "llvm-objdump: '" << Filename << "': "
<< "Unrecognized file type.\n";
}
typedef std::pair<uint64_t, const char *> BindInfoEntry;
typedef std::vector<BindInfoEntry> BindTable;
typedef BindTable::iterator bind_table_iterator;
// The block of info used by the Symbolizer call backs.
struct DisassembleInfo {
bool verbose;
MachOObjectFile *O;
SectionRef S;
SymbolAddressMap *AddrMap;
std::vector<SectionRef> *Sections;
const char *class_name;
const char *selector_name;
char *method;
char *demangled_name;
uint64_t adrp_addr;
uint32_t adrp_inst;
BindTable *bindtable;
};
// SymbolizerGetOpInfo() is the operand information call back function.
// This is called to get the symbolic information for operand(s) of an
// instruction when it is being done. This routine does this from
// the relocation information, symbol table, etc. That block of information
// is a pointer to the struct DisassembleInfo that was passed when the
// disassembler context was created and passed to back to here when
// called back by the disassembler for instruction operands that could have
// relocation information. The address of the instruction containing operand is
// at the Pc parameter. The immediate value the operand has is passed in
// op_info->Value and is at Offset past the start of the instruction and has a
// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
// names and addends of the symbolic expression to add for the operand. The
// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
// information is returned then this function returns 1 else it returns 0.
static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
uint64_t Size, int TagType, void *TagBuf) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
uint64_t value = op_info->Value;
// Make sure all fields returned are zero if we don't set them.
memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
op_info->Value = value;
// If the TagType is not the value 1 which it code knows about or if no
// verbose symbolic information is wanted then just return 0, indicating no
// information is being returned.
if (TagType != 1 || !info->verbose)
return 0;
unsigned int Arch = info->O->getArch();
if (Arch == Triple::x86) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint32_t sect_addr = info->S.getAddress();
uint32_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
bool r_scattered = false;
uint32_t r_value, pair_r_value, r_type;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_type = info->O->getAnyRelocationType(RE);
r_scattered = info->O->isRelocationScattered(RE);
if (r_scattered) {
r_value = info->O->getScatteredRelocationValue(RE);
if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext;
RENext = info->O->getRelocation(RelNext);
if (info->O->isRelocationScattered(RENext))
pair_r_value = info->O->getScatteredRelocationValue(RENext);
else
return 0;
}
} else {
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
// For i386 extern relocation entries the value in the instruction is
// the offset from the symbol, and value is already set in op_info->Value.
return 1;
}
if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
const char *add = GuessSymbolName(r_value, info->AddrMap);
const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
uint32_t offset = value - (r_value - pair_r_value);
op_info->AddSymbol.Present = 1;
if (add != nullptr)
op_info->AddSymbol.Name = add;
else
op_info->AddSymbol.Value = r_value;
op_info->SubtractSymbol.Present = 1;
if (sub != nullptr)
op_info->SubtractSymbol.Name = sub;
else
op_info->SubtractSymbol.Value = pair_r_value;
op_info->Value = offset;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
// uint32_t seg_offset = (Pc + Offset);
return 0;
}
if (Arch == Triple::x86_64) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
// NOTE: Scattered relocations don't exist on x86_64.
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
// The Value passed in will be adjusted by the Pc if the instruction
// adds the Pc. But for x86_64 external relocation entries the Value
// is the offset from the external symbol.
if (info->O->getAnyRelocationPCRel(RE))
op_info->Value -= Pc + Offset + Size;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
unsigned TypeNext = info->O->getAnyRelocationType(RENext);
bool isExternNext = info->O->getPlainRelocationExternal(RENext);
unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
op_info->SubtractSymbol.Present = 1;
op_info->SubtractSymbol.Name = name;
symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
Symbol = *RelocSymNext;
ErrorOr<StringRef> SymNameNext = Symbol.getName();
if (std::error_code EC = SymNameNext.getError())
report_fatal_error(EC.message());
name = SymNameNext->data();
}
}
// TODO: add the VariantKinds to op_info->VariantKind for relocation types
// like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
// uint64_t seg_offset = (Pc + Offset);
return 0;
}
if (Arch == Triple::arm) {
if (Offset != 0 || (Size != 4 && Size != 2))
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint32_t sect_addr = info->S.getAddress();
uint32_t sect_offset = (Pc + Offset) - sect_addr;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
bool r_scattered = false;
uint32_t r_value, pair_r_value, r_type, r_length, other_half;
auto Reloc =
std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
[&](const RelocationRef &Reloc) {
uint64_t RelocOffset = Reloc.getOffset();
return RelocOffset == sect_offset;
});
if (Reloc == info->S.relocations().end())
return 0;
Rel = Reloc->getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_length = info->O->getAnyRelocationLength(RE);
r_scattered = info->O->isRelocationScattered(RE);
if (r_scattered) {
r_value = info->O->getScatteredRelocationValue(RE);
r_type = info->O->getScatteredRelocationType(RE);
} else {
r_type = info->O->getAnyRelocationType(RE);
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc->getSymbol();
Symbol = *RelocSym;
}
}
if (r_type == MachO::ARM_RELOC_HALF ||
r_type == MachO::ARM_RELOC_SECTDIFF ||
r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext;
RENext = info->O->getRelocation(RelNext);
other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
if (info->O->isRelocationScattered(RENext))
pair_r_value = info->O->getScatteredRelocationValue(RENext);
}
if (isExtern) {
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
switch (r_type) {
case MachO::ARM_RELOC_HALF:
if ((r_length & 0x1) == 1) {
op_info->Value = value << 16 | other_half;
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
} else {
op_info->Value = other_half << 16 | value;
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
}
break;
default:
break;
}
return 1;
}
// If we have a branch that is not an external relocation entry then
// return 0 so the code in tryAddingSymbolicOperand() can use the
// SymbolLookUp call back with the branch target address to look up the
// symbol and possiblity add an annotation for a symbol stub.
if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
r_type == MachO::ARM_THUMB_RELOC_BR22))
return 0;
uint32_t offset = 0;
if (r_type == MachO::ARM_RELOC_HALF ||
r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
if ((r_length & 0x1) == 1)
value = value << 16 | other_half;
else
value = other_half << 16 | value;
}
if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
offset = value - r_value;
value = r_value;
}
if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
if ((r_length & 0x1) == 1)
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
else
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
const char *add = GuessSymbolName(r_value, info->AddrMap);
const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
int32_t offset = value - (r_value - pair_r_value);
op_info->AddSymbol.Present = 1;
if (add != nullptr)
op_info->AddSymbol.Name = add;
else
op_info->AddSymbol.Value = r_value;
op_info->SubtractSymbol.Present = 1;
if (sub != nullptr)
op_info->SubtractSymbol.Name = sub;
else
op_info->SubtractSymbol.Value = pair_r_value;
op_info->Value = offset;
return 1;
}
op_info->AddSymbol.Present = 1;
op_info->Value = offset;
if (r_type == MachO::ARM_RELOC_HALF) {
if ((r_length & 0x1) == 1)
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
else
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
}
const char *add = GuessSymbolName(value, info->AddrMap);
if (add != nullptr) {
op_info->AddSymbol.Name = add;
return 1;
}
op_info->AddSymbol.Value = value;
return 1;
}
if (Arch == Triple::aarch64) {
if (Offset != 0 || Size != 4)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = (Pc + Offset) - sect_addr;
auto Reloc =
std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
[&](const RelocationRef &Reloc) {
uint64_t RelocOffset = Reloc.getOffset();
return RelocOffset == sect_offset;
});
if (Reloc == info->S.relocations().end())
return 0;
DataRefImpl Rel = Reloc->getRawDataRefImpl();
MachO::any_relocation_info RE = info->O->getRelocation(Rel);
uint32_t r_type = info->O->getAnyRelocationType(RE);
if (r_type == MachO::ARM64_RELOC_ADDEND) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
if (value == 0) {
value = info->O->getPlainRelocationSymbolNum(RENext);
op_info->Value = value;
}
}
// NOTE: Scattered relocations don't exist on arm64.
if (!info->O->getPlainRelocationExternal(RE))
return 0;
ErrorOr<StringRef> SymName = Reloc->getSymbol()->getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
switch (r_type) {
case MachO::ARM64_RELOC_PAGE21:
/* @page */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
break;
case MachO::ARM64_RELOC_PAGEOFF12:
/* @pageoff */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
break;
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
/* @gotpage */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
break;
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
/* @gotpageoff */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
break;
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
/* @tvlppage is not implemented in llvm-mc */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
break;
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
/* @tvlppageoff is not implemented in llvm-mc */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
break;
default:
case MachO::ARM64_RELOC_BRANCH26:
op_info->VariantKind = LLVMDisassembler_VariantKind_None;
break;
}
return 1;
}
return 0;
}
// GuessCstringPointer is passed the address of what might be a pointer to a
// literal string in a cstring section. If that address is in a cstring section
// it returns a pointer to that string. Else it returns nullptr.
static const char *GuessCstringPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
for (const auto &Load : info->O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
}
}
return nullptr;
}
// GuessIndirectSymbol returns the name of the indirect symbol for the
// ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe
// an address of a symbol stub or a lazy or non-lazy pointer to associate the
// symbol name being referenced by the stub or pointer.
static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
for (const auto &Load : info->O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 8;
if (stride == 0)
return nullptr;
uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
if (index < Dysymtab.nindirectsyms) {
uint32_t indirect_symbol =
info->O->getIndirectSymbolTableEntry(Dysymtab, index);
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
return name;
}
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 4;
if (stride == 0)
return nullptr;
uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
if (index < Dysymtab.nindirectsyms) {
uint32_t indirect_symbol =
info->O->getIndirectSymbolTableEntry(Dysymtab, index);
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
return name;
}
}
}
}
}
}
return nullptr;
}
// method_reference() is called passing it the ReferenceName that might be
// a reference it to an Objective-C method call. If so then it allocates and
// assembles a method call string with the values last seen and saved in
// the DisassembleInfo's class_name and selector_name fields. This is saved
// into the method field of the info and any previous string is free'ed.
// Then the class_name field in the info is set to nullptr. The method call
// string is set into ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call
// then both ReferenceType and ReferenceName are left unchanged.
static void method_reference(struct DisassembleInfo *info,
uint64_t *ReferenceType,
const char **ReferenceName) {
unsigned int Arch = info->O->getArch();
if (*ReferenceName != nullptr) {
if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
if (info->selector_name != nullptr) {
if (info->method != nullptr)
free(info->method);
if (info->class_name != nullptr) {
info->method = (char *)malloc(5 + strlen(info->class_name) +
strlen(info->selector_name));
if (info->method != nullptr) {
strcpy(info->method, "+[");
strcat(info->method, info->class_name);
strcat(info->method, " ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
} else {
info->method = (char *)malloc(9 + strlen(info->selector_name));
if (info->method != nullptr) {
if (Arch == Triple::x86_64)
strcpy(info->method, "-[%rdi ");
else if (Arch == Triple::aarch64)
strcpy(info->method, "-[x0 ");
else
strcpy(info->method, "-[r? ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
}
info->class_name = nullptr;
}
} else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
if (info->selector_name != nullptr) {
if (info->method != nullptr)
free(info->method);
info->method = (char *)malloc(17 + strlen(info->selector_name));
if (info->method != nullptr) {
if (Arch == Triple::x86_64)
strcpy(info->method, "-[[%rdi super] ");
else if (Arch == Triple::aarch64)
strcpy(info->method, "-[[x0 super] ");
else
strcpy(info->method, "-[[r? super] ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
info->class_name = nullptr;
}
}
}
}
// GuessPointerPointer() is passed the address of what might be a pointer to
// a reference to an Objective-C class, selector, message ref or cfstring.
// If so the value of the pointer is returned and one of the booleans are set
// to true. If not zero is returned and all the booleans are set to false.
static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info,
bool &classref, bool &selref, bool &msgref,
bool &cfstring) {
classref = false;
selref = false;
msgref = false;
cfstring = false;
for (const auto &Load : info->O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
uint64_t pointer_value;
memcpy(&pointer_value, object_addr + object_offset,
sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
selref = true;
else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
classref = true;
else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
ReferenceValue + 8 < Sec.addr + Sec.size) {
msgref = true;
memcpy(&pointer_value, object_addr + object_offset + 8,
sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
} else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
cfstring = true;
return pointer_value;
} else {
return 0;
}
}
}
}
// TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
}
return 0;
}
// get_pointer_64 returns a pointer to the bytes in the object file at the
// Address from a section in the Mach-O file. And indirectly returns the
// offset into the section, number of bytes left in the section past the offset
// and which section is was being referenced. If the Address is not in a
// section nullptr is returned.
static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
uint32_t &left, SectionRef &S,
DisassembleInfo *info,
bool objc_only = false) {
offset = 0;
left = 0;
S = SectionRef();
for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
if (objc_only) {
StringRef SectName;
((*(info->Sections))[SectIdx]).getName(SectName);
DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
if (SegName != "__OBJC" && SectName != "__cstring")
continue;
}
if (Address >= SectAddress && Address < SectAddress + SectSize) {
S = (*(info->Sections))[SectIdx];
offset = Address - SectAddress;
left = SectSize - offset;
StringRef SectContents;
((*(info->Sections))[SectIdx]).getContents(SectContents);
return SectContents.data() + offset;
}
}
return nullptr;
}
static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
uint32_t &left, SectionRef &S,
DisassembleInfo *info,
bool objc_only = false) {
return get_pointer_64(Address, offset, left, S, info, objc_only);
}
// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
// the symbol indirectly through n_value. Based on the relocation information
// for the specified section offset in the specified section reference.
// If no relocation information is found and a non-zero ReferenceValue for the
// symbol is passed, look up that address in the info's AddrMap.
static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
DisassembleInfo *info, uint64_t &n_value,
uint64_t ReferenceValue = 0) {
n_value = 0;
if (!info->verbose)
return nullptr;
// See if there is an external relocation entry at the sect_offset.
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in this section
// at this section_offset then use that symbol's value for the n_value
// and return its name.
const char *SymbolName = nullptr;
if (reloc_found && isExtern) {
n_value = Symbol.getValue();
ErrorOr<StringRef> NameOrError = Symbol.getName();
if (std::error_code EC = NameOrError.getError())
report_fatal_error(EC.message());
StringRef Name = *NameOrError;
if (!Name.empty()) {
SymbolName = Name.data();
return SymbolName;
}
}
// TODO: For fully linked images, look through the external relocation
// entries off the dynamic symtab command. For these the r_offset is from the
// start of the first writeable segment in the Mach-O file. So the offset
// to this section from that segment is passed to this routine by the caller,
// as the database_offset. Which is the difference of the section's starting
// address and the first writable segment.
//
// NOTE: need add passing the database_offset to this routine.
// We did not find an external relocation entry so look up the ReferenceValue
// as an address of a symbol and if found return that symbol's name.
SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
return SymbolName;
}
static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
DisassembleInfo *info,
uint32_t ReferenceValue) {
uint64_t n_value64;
return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
}
// These are structs in the Objective-C meta data and read to produce the
// comments for disassembly. While these are part of the ABI they are no
// public defintions. So the are here not in include/llvm/Support/MachO.h .
// The cfstring object in a 64-bit Mach-O file.
struct cfstring64_t {
uint64_t isa; // class64_t * (64-bit pointer)
uint64_t flags; // flag bits
uint64_t characters; // char * (64-bit pointer)
uint64_t length; // number of non-NULL characters in above
};
// The class object in a 64-bit Mach-O file.
struct class64_t {
uint64_t isa; // class64_t * (64-bit pointer)
uint64_t superclass; // class64_t * (64-bit pointer)
uint64_t cache; // Cache (64-bit pointer)
uint64_t vtable; // IMP * (64-bit pointer)
uint64_t data; // class_ro64_t * (64-bit pointer)
};
struct class32_t {
uint32_t isa; /* class32_t * (32-bit pointer) */
uint32_t superclass; /* class32_t * (32-bit pointer) */
uint32_t cache; /* Cache (32-bit pointer) */
uint32_t vtable; /* IMP * (32-bit pointer) */
uint32_t data; /* class_ro32_t * (32-bit pointer) */
};
struct class_ro64_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize;
uint32_t reserved;
uint64_t ivarLayout; // const uint8_t * (64-bit pointer)
uint64_t name; // const char * (64-bit pointer)
uint64_t baseMethods; // const method_list_t * (64-bit pointer)
uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer)
uint64_t ivars; // const ivar_list_t * (64-bit pointer)
uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
};
struct class_ro32_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize;
uint32_t ivarLayout; /* const uint8_t * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
uint32_t baseMethods; /* const method_list_t * (32-bit pointer) */
uint32_t baseProtocols; /* const protocol_list_t * (32-bit pointer) */
uint32_t ivars; /* const ivar_list_t * (32-bit pointer) */
uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
uint32_t baseProperties; /* const struct objc_property_list *
(32-bit pointer) */
};
/* Values for class_ro{64,32}_t->flags */
#define RO_META (1 << 0)
#define RO_ROOT (1 << 1)
#define RO_HAS_CXX_STRUCTORS (1 << 2)
struct method_list64_t {
uint32_t entsize;
uint32_t count;
/* struct method64_t first; These structures follow inline */
};
struct method_list32_t {
uint32_t entsize;
uint32_t count;
/* struct method32_t first; These structures follow inline */
};
struct method64_t {
uint64_t name; /* SEL (64-bit pointer) */
uint64_t types; /* const char * (64-bit pointer) */
uint64_t imp; /* IMP (64-bit pointer) */
};
struct method32_t {
uint32_t name; /* SEL (32-bit pointer) */
uint32_t types; /* const char * (32-bit pointer) */
uint32_t imp; /* IMP (32-bit pointer) */
};
struct protocol_list64_t {
uint64_t count; /* uintptr_t (a 64-bit value) */
/* struct protocol64_t * list[0]; These pointers follow inline */
};
struct protocol_list32_t {
uint32_t count; /* uintptr_t (a 32-bit value) */
/* struct protocol32_t * list[0]; These pointers follow inline */
};
struct protocol64_t {
uint64_t isa; /* id * (64-bit pointer) */
uint64_t name; /* const char * (64-bit pointer) */
uint64_t protocols; /* struct protocol_list64_t *
(64-bit pointer) */
uint64_t instanceMethods; /* method_list_t * (64-bit pointer) */
uint64_t classMethods; /* method_list_t * (64-bit pointer) */
uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
uint64_t optionalClassMethods; /* method_list_t * (64-bit pointer) */
uint64_t instanceProperties; /* struct objc_property_list *
(64-bit pointer) */
};
struct protocol32_t {
uint32_t isa; /* id * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
uint32_t protocols; /* struct protocol_list_t *
(32-bit pointer) */
uint32_t instanceMethods; /* method_list_t * (32-bit pointer) */
uint32_t classMethods; /* method_list_t * (32-bit pointer) */
uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
uint32_t optionalClassMethods; /* method_list_t * (32-bit pointer) */
uint32_t instanceProperties; /* struct objc_property_list *
(32-bit pointer) */
};
struct ivar_list64_t {
uint32_t entsize;
uint32_t count;
/* struct ivar64_t first; These structures follow inline */
};
struct ivar_list32_t {
uint32_t entsize;
uint32_t count;
/* struct ivar32_t first; These structures follow inline */
};
struct ivar64_t {
uint64_t offset; /* uintptr_t * (64-bit pointer) */
uint64_t name; /* const char * (64-bit pointer) */
uint64_t type; /* const char * (64-bit pointer) */
uint32_t alignment;
uint32_t size;
};
struct ivar32_t {
uint32_t offset; /* uintptr_t * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
uint32_t type; /* const char * (32-bit pointer) */
uint32_t alignment;
uint32_t size;
};
struct objc_property_list64 {
uint32_t entsize;
uint32_t count;
/* struct objc_property64 first; These structures follow inline */
};
struct objc_property_list32 {
uint32_t entsize;
uint32_t count;
/* struct objc_property32 first; These structures follow inline */
};
struct objc_property64 {
uint64_t name; /* const char * (64-bit pointer) */
uint64_t attributes; /* const char * (64-bit pointer) */
};
struct objc_property32 {
uint32_t name; /* const char * (32-bit pointer) */
uint32_t attributes; /* const char * (32-bit pointer) */
};
struct category64_t {
uint64_t name; /* const char * (64-bit pointer) */
uint64_t cls; /* struct class_t * (64-bit pointer) */
uint64_t instanceMethods; /* struct method_list_t * (64-bit pointer) */
uint64_t classMethods; /* struct method_list_t * (64-bit pointer) */
uint64_t protocols; /* struct protocol_list_t * (64-bit pointer) */
uint64_t instanceProperties; /* struct objc_property_list *
(64-bit pointer) */
};
struct category32_t {
uint32_t name; /* const char * (32-bit pointer) */
uint32_t cls; /* struct class_t * (32-bit pointer) */
uint32_t instanceMethods; /* struct method_list_t * (32-bit pointer) */
uint32_t classMethods; /* struct method_list_t * (32-bit pointer) */
uint32_t protocols; /* struct protocol_list_t * (32-bit pointer) */
uint32_t instanceProperties; /* struct objc_property_list *
(32-bit pointer) */
};
struct objc_image_info64 {
uint32_t version;
uint32_t flags;
};
struct objc_image_info32 {
uint32_t version;
uint32_t flags;
};
struct imageInfo_t {
uint32_t version;
uint32_t flags;
};
/* masks for objc_image_info.flags */
#define OBJC_IMAGE_IS_REPLACEMENT (1 << 0)
#define OBJC_IMAGE_SUPPORTS_GC (1 << 1)
struct message_ref64 {
uint64_t imp; /* IMP (64-bit pointer) */
uint64_t sel; /* SEL (64-bit pointer) */
};
struct message_ref32 {
uint32_t imp; /* IMP (32-bit pointer) */
uint32_t sel; /* SEL (32-bit pointer) */
};
// Objective-C 1 (32-bit only) meta data structs.
struct objc_module_t {
uint32_t version;
uint32_t size;
uint32_t name; /* char * (32-bit pointer) */
uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
};
struct objc_symtab_t {
uint32_t sel_ref_cnt;
uint32_t refs; /* SEL * (32-bit pointer) */
uint16_t cls_def_cnt;
uint16_t cat_def_cnt;
// uint32_t defs[1]; /* void * (32-bit pointer) variable size */
};
struct objc_class_t {
uint32_t isa; /* struct objc_class * (32-bit pointer) */
uint32_t super_class; /* struct objc_class * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
int32_t version;
int32_t info;
int32_t instance_size;
uint32_t ivars; /* struct objc_ivar_list * (32-bit pointer) */
uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
uint32_t cache; /* struct objc_cache * (32-bit pointer) */
uint32_t protocols; /* struct objc_protocol_list * (32-bit pointer) */
};
#define CLS_GETINFO(cls, infomask) ((cls)->info & (infomask))
// class is not a metaclass
#define CLS_CLASS 0x1
// class is a metaclass
#define CLS_META 0x2
struct objc_category_t {
uint32_t category_name; /* char * (32-bit pointer) */
uint32_t class_name; /* char * (32-bit pointer) */
uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
uint32_t class_methods; /* struct objc_method_list * (32-bit pointer) */
uint32_t protocols; /* struct objc_protocol_list * (32-bit ptr) */
};
struct objc_ivar_t {
uint32_t ivar_name; /* char * (32-bit pointer) */
uint32_t ivar_type; /* char * (32-bit pointer) */
int32_t ivar_offset;
};
struct objc_ivar_list_t {
int32_t ivar_count;
// struct objc_ivar_t ivar_list[1]; /* variable length structure */
};
struct objc_method_list_t {
uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
int32_t method_count;
// struct objc_method_t method_list[1]; /* variable length structure */
};
struct objc_method_t {
uint32_t method_name; /* SEL, aka struct objc_selector * (32-bit pointer) */
uint32_t method_types; /* char * (32-bit pointer) */
uint32_t method_imp; /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
(32-bit pointer) */
};
struct objc_protocol_list_t {
uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
int32_t count;
// uint32_t list[1]; /* Protocol *, aka struct objc_protocol_t *
// (32-bit pointer) */
};
struct objc_protocol_t {
uint32_t isa; /* struct objc_class * (32-bit pointer) */
uint32_t protocol_name; /* char * (32-bit pointer) */
uint32_t protocol_list; /* struct objc_protocol_list * (32-bit pointer) */
uint32_t instance_methods; /* struct objc_method_description_list *
(32-bit pointer) */
uint32_t class_methods; /* struct objc_method_description_list *
(32-bit pointer) */
};
struct objc_method_description_list_t {
int32_t count;
// struct objc_method_description_t list[1];
};
struct objc_method_description_t {
uint32_t name; /* SEL, aka struct objc_selector * (32-bit pointer) */
uint32_t types; /* char * (32-bit pointer) */
};
inline void swapStruct(struct cfstring64_t &cfs) {
sys::swapByteOrder(cfs.isa);
sys::swapByteOrder(cfs.flags);
sys::swapByteOrder(cfs.characters);
sys::swapByteOrder(cfs.length);
}
inline void swapStruct(struct class64_t &c) {
sys::swapByteOrder(c.isa);
sys::swapByteOrder(c.superclass);
sys::swapByteOrder(c.cache);
sys::swapByteOrder(c.vtable);
sys::swapByteOrder(c.data);
}
inline void swapStruct(struct class32_t &c) {
sys::swapByteOrder(c.isa);
sys::swapByteOrder(c.superclass);
sys::swapByteOrder(c.cache);
sys::swapByteOrder(c.vtable);
sys::swapByteOrder(c.data);
}
inline void swapStruct(struct class_ro64_t &cro) {
sys::swapByteOrder(cro.flags);
sys::swapByteOrder(cro.instanceStart);
sys::swapByteOrder(cro.instanceSize);
sys::swapByteOrder(cro.reserved);
sys::swapByteOrder(cro.ivarLayout);
sys::swapByteOrder(cro.name);
sys::swapByteOrder(cro.baseMethods);
sys::swapByteOrder(cro.baseProtocols);
sys::swapByteOrder(cro.ivars);
sys::swapByteOrder(cro.weakIvarLayout);
sys::swapByteOrder(cro.baseProperties);
}
inline void swapStruct(struct class_ro32_t &cro) {
sys::swapByteOrder(cro.flags);
sys::swapByteOrder(cro.instanceStart);
sys::swapByteOrder(cro.instanceSize);
sys::swapByteOrder(cro.ivarLayout);
sys::swapByteOrder(cro.name);
sys::swapByteOrder(cro.baseMethods);
sys::swapByteOrder(cro.baseProtocols);
sys::swapByteOrder(cro.ivars);
sys::swapByteOrder(cro.weakIvarLayout);
sys::swapByteOrder(cro.baseProperties);
}
inline void swapStruct(struct method_list64_t &ml) {
sys::swapByteOrder(ml.entsize);
sys::swapByteOrder(ml.count);
}
inline void swapStruct(struct method_list32_t &ml) {
sys::swapByteOrder(ml.entsize);
sys::swapByteOrder(ml.count);
}
inline void swapStruct(struct method64_t &m) {
sys::swapByteOrder(m.name);
sys::swapByteOrder(m.types);
sys::swapByteOrder(m.imp);
}
inline void swapStruct(struct method32_t &m) {
sys::swapByteOrder(m.name);
sys::swapByteOrder(m.types);
sys::swapByteOrder(m.imp);
}
inline void swapStruct(struct protocol_list64_t &pl) {
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct protocol_list32_t &pl) {
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct protocol64_t &p) {
sys::swapByteOrder(p.isa);
sys::swapByteOrder(p.name);
sys::swapByteOrder(p.protocols);
sys::swapByteOrder(p.instanceMethods);
sys::swapByteOrder(p.classMethods);
sys::swapByteOrder(p.optionalInstanceMethods);
sys::swapByteOrder(p.optionalClassMethods);
sys::swapByteOrder(p.instanceProperties);
}
inline void swapStruct(struct protocol32_t &p) {
sys::swapByteOrder(p.isa);
sys::swapByteOrder(p.name);
sys::swapByteOrder(p.protocols);
sys::swapByteOrder(p.instanceMethods);
sys::swapByteOrder(p.classMethods);
sys::swapByteOrder(p.optionalInstanceMethods);
sys::swapByteOrder(p.optionalClassMethods);
sys::swapByteOrder(p.instanceProperties);
}
inline void swapStruct(struct ivar_list64_t &il) {
sys::swapByteOrder(il.entsize);
sys::swapByteOrder(il.count);
}
inline void swapStruct(struct ivar_list32_t &il) {
sys::swapByteOrder(il.entsize);
sys::swapByteOrder(il.count);
}
inline void swapStruct(struct ivar64_t &i) {
sys::swapByteOrder(i.offset);
sys::swapByteOrder(i.name);
sys::swapByteOrder(i.type);
sys::swapByteOrder(i.alignment);
sys::swapByteOrder(i.size);
}
inline void swapStruct(struct ivar32_t &i) {
sys::swapByteOrder(i.offset);
sys::swapByteOrder(i.name);
sys::swapByteOrder(i.type);
sys::swapByteOrder(i.alignment);
sys::swapByteOrder(i.size);
}
inline void swapStruct(struct objc_property_list64 &pl) {
sys::swapByteOrder(pl.entsize);
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct objc_property_list32 &pl) {
sys::swapByteOrder(pl.entsize);
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct objc_property64 &op) {
sys::swapByteOrder(op.name);
sys::swapByteOrder(op.attributes);
}
inline void swapStruct(struct objc_property32 &op) {
sys::swapByteOrder(op.name);
sys::swapByteOrder(op.attributes);
}
inline void swapStruct(struct category64_t &c) {
sys::swapByteOrder(c.name);
sys::swapByteOrder(c.cls);
sys::swapByteOrder(c.instanceMethods);
sys::swapByteOrder(c.classMethods);
sys::swapByteOrder(c.protocols);
sys::swapByteOrder(c.instanceProperties);
}
inline void swapStruct(struct category32_t &c) {
sys::swapByteOrder(c.name);
sys::swapByteOrder(c.cls);
sys::swapByteOrder(c.instanceMethods);
sys::swapByteOrder(c.classMethods);
sys::swapByteOrder(c.protocols);
sys::swapByteOrder(c.instanceProperties);
}
inline void swapStruct(struct objc_image_info64 &o) {
sys::swapByteOrder(o.version);
sys::swapByteOrder(o.flags);
}
inline void swapStruct(struct objc_image_info32 &o) {
sys::swapByteOrder(o.version);
sys::swapByteOrder(o.flags);
}
inline void swapStruct(struct imageInfo_t &o) {
sys::swapByteOrder(o.version);
sys::swapByteOrder(o.flags);
}
inline void swapStruct(struct message_ref64 &mr) {
sys::swapByteOrder(mr.imp);
sys::swapByteOrder(mr.sel);
}
inline void swapStruct(struct message_ref32 &mr) {
sys::swapByteOrder(mr.imp);
sys::swapByteOrder(mr.sel);
}
inline void swapStruct(struct objc_module_t &module) {
sys::swapByteOrder(module.version);
sys::swapByteOrder(module.size);
sys::swapByteOrder(module.name);
sys::swapByteOrder(module.symtab);
}
inline void swapStruct(struct objc_symtab_t &symtab) {
sys::swapByteOrder(symtab.sel_ref_cnt);
sys::swapByteOrder(symtab.refs);
sys::swapByteOrder(symtab.cls_def_cnt);
sys::swapByteOrder(symtab.cat_def_cnt);
}
inline void swapStruct(struct objc_class_t &objc_class) {
sys::swapByteOrder(objc_class.isa);
sys::swapByteOrder(objc_class.super_class);
sys::swapByteOrder(objc_class.name);
sys::swapByteOrder(objc_class.version);
sys::swapByteOrder(objc_class.info);
sys::swapByteOrder(objc_class.instance_size);
sys::swapByteOrder(objc_class.ivars);
sys::swapByteOrder(objc_class.methodLists);
sys::swapByteOrder(objc_class.cache);
sys::swapByteOrder(objc_class.protocols);
}
inline void swapStruct(struct objc_category_t &objc_category) {
sys::swapByteOrder(objc_category.category_name);
sys::swapByteOrder(objc_category.class_name);
sys::swapByteOrder(objc_category.instance_methods);
sys::swapByteOrder(objc_category.class_methods);
sys::swapByteOrder(objc_category.protocols);
}
inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
sys::swapByteOrder(objc_ivar_list.ivar_count);
}
inline void swapStruct(struct objc_ivar_t &objc_ivar) {
sys::swapByteOrder(objc_ivar.ivar_name);
sys::swapByteOrder(objc_ivar.ivar_type);
sys::swapByteOrder(objc_ivar.ivar_offset);
}
inline void swapStruct(struct objc_method_list_t &method_list) {
sys::swapByteOrder(method_list.obsolete);
sys::swapByteOrder(method_list.method_count);
}
inline void swapStruct(struct objc_method_t &method) {
sys::swapByteOrder(method.method_name);
sys::swapByteOrder(method.method_types);
sys::swapByteOrder(method.method_imp);
}
inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
sys::swapByteOrder(protocol_list.next);
sys::swapByteOrder(protocol_list.count);
}
inline void swapStruct(struct objc_protocol_t &protocol) {
sys::swapByteOrder(protocol.isa);
sys::swapByteOrder(protocol.protocol_name);
sys::swapByteOrder(protocol.protocol_list);
sys::swapByteOrder(protocol.instance_methods);
sys::swapByteOrder(protocol.class_methods);
}
inline void swapStruct(struct objc_method_description_list_t &mdl) {
sys::swapByteOrder(mdl.count);
}
inline void swapStruct(struct objc_method_description_t &md) {
sys::swapByteOrder(md.name);
sys::swapByteOrder(md.types);
}
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
struct DisassembleInfo *info);
// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
// to an Objective-C class and returns the class name. It is also passed the
// address of the pointer, so when the pointer is zero as it can be in an .o
// file, that is used to look for an external relocation entry with a symbol
// name.
static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
uint64_t ReferenceValue,
struct DisassembleInfo *info) {
const char *r;
uint32_t offset, left;
SectionRef S;
// The pointer_value can be 0 in an object file and have a relocation
// entry for the class symbol at the ReferenceValue (the address of the
// pointer).
if (pointer_value == 0) {
r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(uint64_t))
return nullptr;
uint64_t n_value;
const char *symbol_name = get_symbol_64(offset, S, info, n_value);
if (symbol_name == nullptr)
return nullptr;
const char *class_name = strrchr(symbol_name, '$');
if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
return class_name + 2;
else
return nullptr;
}
// The case were the pointer_value is non-zero and points to a class defined
// in this Mach-O file.
r = get_pointer_64(pointer_value, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class64_t))
return nullptr;
struct class64_t c;
memcpy(&c, r, sizeof(struct class64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
if (c.data == 0)
return nullptr;
r = get_pointer_64(c.data, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class_ro64_t))
return nullptr;
struct class_ro64_t cro;
memcpy(&cro, r, sizeof(struct class_ro64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
if (cro.name == 0)
return nullptr;
const char *name = get_pointer_64(cro.name, offset, left, S, info);
return name;
}
// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
// pointer to a cfstring and returns its name or nullptr.
static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
const char *r, *name;
uint32_t offset, left;
SectionRef S;
struct cfstring64_t cfs;
uint64_t cfs_characters;
r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(struct cfstring64_t))
return nullptr;
memcpy(&cfs, r, sizeof(struct cfstring64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cfs);
if (cfs.characters == 0) {
uint64_t n_value;
const char *symbol_name = get_symbol_64(
offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
if (symbol_name == nullptr)
return nullptr;
cfs_characters = n_value;
} else
cfs_characters = cfs.characters;
name = get_pointer_64(cfs_characters, offset, left, S, info);
return name;
}
// get_objc2_64bit_selref() is used for disassembly and is passed a the address
// of a pointer to an Objective-C selector reference when the pointer value is
// zero as in a .o file and is likely to have a external relocation entry with
// who's symbol's n_value is the real pointer to the selector name. If that is
// the case the real pointer to the selector name is returned else 0 is
// returned
static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(uint64_t))
return 0;
uint64_t n_value;
const char *symbol_name = get_symbol_64(offset, S, info, n_value);
if (symbol_name == nullptr)
return 0;
return n_value;
}
static const SectionRef get_section(MachOObjectFile *O, const char *segname,
const char *sectname) {
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if (SegName == segname && SectName == sectname)
return Section;
}
return SectionRef();
}
static void
walk_pointer_list_64(const char *listname, const SectionRef S,
MachOObjectFile *O, struct DisassembleInfo *info,
void (*func)(uint64_t, struct DisassembleInfo *info)) {
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
StringRef BytesStr;
S.getContents(BytesStr);
const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
uint32_t left = S.getSize() - i;
uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
uint64_t p = 0;
memcpy(&p, Contents + i, size);
if (i + sizeof(uint64_t) > S.getSize())
outs() << listname << " list pointer extends past end of (" << SegName
<< "," << SectName << ") section\n";
outs() << format("%016" PRIx64, S.getAddress() + i) << " ";
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(p);
uint64_t n_value = 0;
const char *name = get_symbol_64(i, S, info, n_value, p);
if (name == nullptr)
name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
if (n_value != 0) {
outs() << format("0x%" PRIx64, n_value);
if (p != 0)
outs() << " + " << format("0x%" PRIx64, p);
} else
outs() << format("0x%" PRIx64, p);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
p += n_value;
if (func)
func(p, info);
}
}
static void
walk_pointer_list_32(const char *listname, const SectionRef S,
MachOObjectFile *O, struct DisassembleInfo *info,
void (*func)(uint32_t, struct DisassembleInfo *info)) {
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
StringRef BytesStr;
S.getContents(BytesStr);
const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
uint32_t left = S.getSize() - i;
uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
uint32_t p = 0;
memcpy(&p, Contents + i, size);
if (i + sizeof(uint32_t) > S.getSize())
outs() << listname << " list pointer extends past end of (" << SegName
<< "," << SectName << ") section\n";
uint32_t Address = S.getAddress() + i;
outs() << format("%08" PRIx32, Address) << " ";
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(p);
outs() << format("0x%" PRIx32, p);
const char *name = get_symbol_32(i, S, info, p);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
if (func)
func(p, info);
}
}
static void print_layout_map(const char *layout_map, uint32_t left) {
outs() << " layout map: ";
do {
outs() << format("0x%02" PRIx32, (*layout_map) & 0xff) << " ";
left--;
layout_map++;
} while (*layout_map != '\0' && left != 0);
outs() << "\n";
}
static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *layout_map;
if (p == 0)
return;
layout_map = get_pointer_64(p, offset, left, S, info);
print_layout_map(layout_map, left);
}
static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *layout_map;
if (p == 0)
return;
layout_map = get_pointer_32(p, offset, left, S, info);
print_layout_map(layout_map, left);
}
static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
const char *indent) {
struct method_list64_t ml;
struct method64_t m;
const char *r;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&ml, '\0', sizeof(struct method_list64_t));
if (left < sizeof(struct method_list64_t)) {
memcpy(&ml, r, left);
outs() << " (method_list_t entends past the end of the section)\n";
} else
memcpy(&ml, r, sizeof(struct method_list64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(ml);
outs() << indent << "\t\t entsize " << ml.entsize << "\n";
outs() << indent << "\t\t count " << ml.count << "\n";
p += sizeof(struct method_list64_t);
offset += sizeof(struct method_list64_t);
for (i = 0; i < ml.count; i++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&m, '\0', sizeof(struct method64_t));
if (left < sizeof(struct method64_t)) {
memcpy(&ml, r, left);
outs() << indent << " (method_t entends past the end of the section)\n";
} else
memcpy(&m, r, sizeof(struct method64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(m);
outs() << indent << "\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct method64_t, name), S,
info, n_value, m.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (m.name != 0)
outs() << " + " << format("0x%" PRIx64, m.name);
} else
outs() << format("0x%" PRIx64, m.name);
name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t types ";
sym_name = get_symbol_64(offset + offsetof(struct method64_t, types), S,
info, n_value, m.types);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (m.types != 0)
outs() << " + " << format("0x%" PRIx64, m.types);
} else
outs() << format("0x%" PRIx64, m.types);
name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t imp ";
name = get_symbol_64(offset + offsetof(struct method64_t, imp), S, info,
n_value, m.imp);
if (info->verbose && name == nullptr) {
if (n_value != 0) {
outs() << format("0x%" PRIx64, n_value) << " ";
if (m.imp != 0)
outs() << "+ " << format("0x%" PRIx64, m.imp) << " ";
} else
outs() << format("0x%" PRIx64, m.imp) << " ";
}
if (name != nullptr)
outs() << name;
outs() << "\n";
p += sizeof(struct method64_t);
offset += sizeof(struct method64_t);
}
}
static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
const char *indent) {
struct method_list32_t ml;
struct method32_t m;
const char *r, *name;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&ml, '\0', sizeof(struct method_list32_t));
if (left < sizeof(struct method_list32_t)) {
memcpy(&ml, r, left);
outs() << " (method_list_t entends past the end of the section)\n";
} else
memcpy(&ml, r, sizeof(struct method_list32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(ml);
outs() << indent << "\t\t entsize " << ml.entsize << "\n";
outs() << indent << "\t\t count " << ml.count << "\n";
p += sizeof(struct method_list32_t);
offset += sizeof(struct method_list32_t);
for (i = 0; i < ml.count; i++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&m, '\0', sizeof(struct method32_t));
if (left < sizeof(struct method32_t)) {
memcpy(&ml, r, left);
outs() << indent << " (method_t entends past the end of the section)\n";
} else
memcpy(&m, r, sizeof(struct method32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(m);
outs() << indent << "\t\t name " << format("0x%" PRIx32, m.name);
name = get_pointer_32(m.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t types " << format("0x%" PRIx32, m.types);
name = get_pointer_32(m.types, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t imp " << format("0x%" PRIx32, m.imp);
name = get_symbol_32(offset + offsetof(struct method32_t, imp), S, info,
m.imp);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
p += sizeof(struct method32_t);
offset += sizeof(struct method32_t);
}
}
static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
uint32_t offset, left, xleft;
SectionRef S;
struct objc_method_list_t method_list;
struct objc_method_t method;
const char *r, *methods, *name, *SymbolName;
int32_t i;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left > sizeof(struct objc_method_list_t)) {
memcpy(&method_list, r, sizeof(struct objc_method_list_t));
} else {
outs() << "\t\t objc_method_list extends past end of the section\n";
memset(&method_list, '\0', sizeof(struct objc_method_list_t));
memcpy(&method_list, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(method_list);
outs() << "\t\t obsolete "
<< format("0x%08" PRIx32, method_list.obsolete) << "\n";
outs() << "\t\t method_count " << method_list.method_count << "\n";
methods = r + sizeof(struct objc_method_list_t);
for (i = 0; i < method_list.method_count; i++) {
if ((i + 1) * sizeof(struct objc_method_t) > left) {
outs() << "\t\t remaining method's extend past the of the section\n";
break;
}
memcpy(&method, methods + i * sizeof(struct objc_method_t),
sizeof(struct objc_method_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(method);
outs() << "\t\t method_name "
<< format("0x%08" PRIx32, method.method_name);
if (info->verbose) {
name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t method_types "
<< format("0x%08" PRIx32, method.method_types);
if (info->verbose) {
name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t method_imp "
<< format("0x%08" PRIx32, method.method_imp) << " ";
if (info->verbose) {
SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
if (SymbolName != nullptr)
outs() << SymbolName;
}
outs() << "\n";
}
return false;
}
static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
struct protocol_list64_t pl;
uint64_t q, n_value;
struct protocol64_t pc;
const char *r;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
const char *name, *sym_name;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&pl, '\0', sizeof(struct protocol_list64_t));
if (left < sizeof(struct protocol_list64_t)) {
memcpy(&pl, r, left);
outs() << " (protocol_list_t entends past the end of the section)\n";
} else
memcpy(&pl, r, sizeof(struct protocol_list64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pl);
outs() << " count " << pl.count << "\n";
p += sizeof(struct protocol_list64_t);
offset += sizeof(struct protocol_list64_t);
for (i = 0; i < pl.count; i++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
q = 0;
if (left < sizeof(uint64_t)) {
memcpy(&q, r, left);
outs() << " (protocol_t * entends past the end of the section)\n";
} else
memcpy(&q, r, sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(q);
outs() << "\t\t list[" << i << "] ";
sym_name = get_symbol_64(offset, S, info, n_value, q);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (q != 0)
outs() << " + " << format("0x%" PRIx64, q);
} else
outs() << format("0x%" PRIx64, q);
outs() << " (struct protocol_t *)\n";
r = get_pointer_64(q + n_value, offset, left, S, info);
if (r == nullptr)
return;
memset(&pc, '\0', sizeof(struct protocol64_t));
if (left < sizeof(struct protocol64_t)) {
memcpy(&pc, r, left);
outs() << " (protocol_t entends past the end of the section)\n";
} else
memcpy(&pc, r, sizeof(struct protocol64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pc);
outs() << "\t\t\t isa " << format("0x%" PRIx64, pc.isa) << "\n";
outs() << "\t\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name), S,
info, n_value, pc.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (pc.name != 0)
outs() << " + " << format("0x%" PRIx64, pc.name);
} else
outs() << format("0x%" PRIx64, pc.name);
name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tprotocols " << format("0x%" PRIx64, pc.protocols) << "\n";
outs() << "\t\t instanceMethods ";
sym_name =
get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods),
S, info, n_value, pc.instanceMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (pc.instanceMethods != 0)
outs() << " + " << format("0x%" PRIx64, pc.instanceMethods);
} else
outs() << format("0x%" PRIx64, pc.instanceMethods);
outs() << " (struct method_list_t *)\n";
if (pc.instanceMethods + n_value != 0)
print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
outs() << "\t\t classMethods ";
sym_name =
get_symbol_64(offset + offsetof(struct protocol64_t, classMethods), S,
info, n_value, pc.classMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (pc.classMethods != 0)
outs() << " + " << format("0x%" PRIx64, pc.classMethods);
} else
outs() << format("0x%" PRIx64, pc.classMethods);
outs() << " (struct method_list_t *)\n";
if (pc.classMethods + n_value != 0)
print_method_list64_t(pc.classMethods + n_value, info, "\t");
outs() << "\t optionalInstanceMethods "
<< format("0x%" PRIx64, pc.optionalInstanceMethods) << "\n";
outs() << "\t optionalClassMethods "
<< format("0x%" PRIx64, pc.optionalClassMethods) << "\n";
outs() << "\t instanceProperties "
<< format("0x%" PRIx64, pc.instanceProperties) << "\n";
p += sizeof(uint64_t);
offset += sizeof(uint64_t);
}
}
static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
struct protocol_list32_t pl;
uint32_t q;
struct protocol32_t pc;
const char *r;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&pl, '\0', sizeof(struct protocol_list32_t));
if (left < sizeof(struct protocol_list32_t)) {
memcpy(&pl, r, left);
outs() << " (protocol_list_t entends past the end of the section)\n";
} else
memcpy(&pl, r, sizeof(struct protocol_list32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pl);
outs() << " count " << pl.count << "\n";
p += sizeof(struct protocol_list32_t);
offset += sizeof(struct protocol_list32_t);
for (i = 0; i < pl.count; i++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
q = 0;
if (left < sizeof(uint32_t)) {
memcpy(&q, r, left);
outs() << " (protocol_t * entends past the end of the section)\n";
} else
memcpy(&q, r, sizeof(uint32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(q);
outs() << "\t\t list[" << i << "] " << format("0x%" PRIx32, q)
<< " (struct protocol_t *)\n";
r = get_pointer_32(q, offset, left, S, info);
if (r == nullptr)
return;
memset(&pc, '\0', sizeof(struct protocol32_t));
if (left < sizeof(struct protocol32_t)) {
memcpy(&pc, r, left);
outs() << " (protocol_t entends past the end of the section)\n";
} else
memcpy(&pc, r, sizeof(struct protocol32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pc);
outs() << "\t\t\t isa " << format("0x%" PRIx32, pc.isa) << "\n";
outs() << "\t\t\t name " << format("0x%" PRIx32, pc.name);
name = get_pointer_32(pc.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tprotocols " << format("0x%" PRIx32, pc.protocols) << "\n";
outs() << "\t\t instanceMethods "
<< format("0x%" PRIx32, pc.instanceMethods)
<< " (struct method_list_t *)\n";
if (pc.instanceMethods != 0)
print_method_list32_t(pc.instanceMethods, info, "\t");
outs() << "\t\t classMethods " << format("0x%" PRIx32, pc.classMethods)
<< " (struct method_list_t *)\n";
if (pc.classMethods != 0)
print_method_list32_t(pc.classMethods, info, "\t");
outs() << "\t optionalInstanceMethods "
<< format("0x%" PRIx32, pc.optionalInstanceMethods) << "\n";
outs() << "\t optionalClassMethods "
<< format("0x%" PRIx32, pc.optionalClassMethods) << "\n";
outs() << "\t instanceProperties "
<< format("0x%" PRIx32, pc.instanceProperties) << "\n";
p += sizeof(uint32_t);
offset += sizeof(uint32_t);
}
}
static void print_indent(uint32_t indent) {
for (uint32_t i = 0; i < indent;) {
if (indent - i >= 8) {
outs() << "\t";
i += 8;
} else {
for (uint32_t j = i; j < indent; j++)
outs() << " ";
return;
}
}
}
static bool print_method_description_list(uint32_t p, uint32_t indent,
struct DisassembleInfo *info) {
uint32_t offset, left, xleft;
SectionRef S;
struct objc_method_description_list_t mdl;
struct objc_method_description_t md;
const char *r, *list, *name;
int32_t i;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left > sizeof(struct objc_method_description_list_t)) {
memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
} else {
print_indent(indent);
outs() << " objc_method_description_list extends past end of the section\n";
memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
memcpy(&mdl, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mdl);
print_indent(indent);
outs() << " count " << mdl.count << "\n";
list = r + sizeof(struct objc_method_description_list_t);
for (i = 0; i < mdl.count; i++) {
if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
print_indent(indent);
outs() << " remaining list entries extend past the of the section\n";
break;
}
print_indent(indent);
outs() << " list[" << i << "]\n";
memcpy(&md, list + i * sizeof(struct objc_method_description_t),
sizeof(struct objc_method_description_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(md);
print_indent(indent);
outs() << " name " << format("0x%08" PRIx32, md.name);
if (info->verbose) {
name = get_pointer_32(md.name, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
print_indent(indent);
outs() << " types " << format("0x%08" PRIx32, md.types);
if (info->verbose) {
name = get_pointer_32(md.types, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
}
return false;
}
static bool print_protocol_list(uint32_t p, uint32_t indent,
struct DisassembleInfo *info);
static bool print_protocol(uint32_t p, uint32_t indent,
struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
struct objc_protocol_t protocol;
const char *r, *name;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left >= sizeof(struct objc_protocol_t)) {
memcpy(&protocol, r, sizeof(struct objc_protocol_t));
} else {
print_indent(indent);
outs() << " Protocol extends past end of the section\n";
memset(&protocol, '\0', sizeof(struct objc_protocol_t));
memcpy(&protocol, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(protocol);
print_indent(indent);
outs() << " isa " << format("0x%08" PRIx32, protocol.isa)
<< "\n";
print_indent(indent);
outs() << " protocol_name "
<< format("0x%08" PRIx32, protocol.protocol_name);
if (info->verbose) {
name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
print_indent(indent);
outs() << " protocol_list "
<< format("0x%08" PRIx32, protocol.protocol_list);
if (print_protocol_list(protocol.protocol_list, indent + 4, info))
outs() << " (not in an __OBJC section)\n";
print_indent(indent);
outs() << " instance_methods "
<< format("0x%08" PRIx32, protocol.instance_methods);
if (print_method_description_list(protocol.instance_methods, indent, info))
outs() << " (not in an __OBJC section)\n";
print_indent(indent);
outs() << " class_methods "
<< format("0x%08" PRIx32, protocol.class_methods);
if (print_method_description_list(protocol.class_methods, indent, info))
outs() << " (not in an __OBJC section)\n";
return false;
}
static bool print_protocol_list(uint32_t p, uint32_t indent,
struct DisassembleInfo *info) {
uint32_t offset, left, l;
SectionRef S;
struct objc_protocol_list_t protocol_list;
const char *r, *list;
int32_t i;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left > sizeof(struct objc_protocol_list_t)) {
memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
} else {
outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
memcpy(&protocol_list, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(protocol_list);
print_indent(indent);
outs() << " next " << format("0x%08" PRIx32, protocol_list.next)
<< "\n";
print_indent(indent);
outs() << " count " << protocol_list.count << "\n";
list = r + sizeof(struct objc_protocol_list_t);
for (i = 0; i < protocol_list.count; i++) {
if ((i + 1) * sizeof(uint32_t) > left) {
outs() << "\t\t remaining list entries extend past the of the section\n";
break;
}
memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(l);
print_indent(indent);
outs() << " list[" << i << "] " << format("0x%08" PRIx32, l);
if (print_protocol(l, indent, info))
outs() << "(not in an __OBJC section)\n";
}
return false;
}
static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
struct ivar_list64_t il;
struct ivar64_t i;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name, *sym_name, *ivar_offset_p;
uint64_t ivar_offset, n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&il, '\0', sizeof(struct ivar_list64_t));
if (left < sizeof(struct ivar_list64_t)) {
memcpy(&il, r, left);
outs() << " (ivar_list_t entends past the end of the section)\n";
} else
memcpy(&il, r, sizeof(struct ivar_list64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(il);
outs() << " entsize " << il.entsize << "\n";
outs() << " count " << il.count << "\n";
p += sizeof(struct ivar_list64_t);
offset += sizeof(struct ivar_list64_t);
for (j = 0; j < il.count; j++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&i, '\0', sizeof(struct ivar64_t));
if (left < sizeof(struct ivar64_t)) {
memcpy(&i, r, left);
outs() << " (ivar_t entends past the end of the section)\n";
} else
memcpy(&i, r, sizeof(struct ivar64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(i);
outs() << "\t\t\t offset ";
sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset), S,
info, n_value, i.offset);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (i.offset != 0)
outs() << " + " << format("0x%" PRIx64, i.offset);
} else
outs() << format("0x%" PRIx64, i.offset);
ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(ivar_offset);
outs() << " " << ivar_offset << "\n";
} else
outs() << "\n";
outs() << "\t\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name), S, info,
n_value, i.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (i.name != 0)
outs() << " + " << format("0x%" PRIx64, i.name);
} else
outs() << format("0x%" PRIx64, i.name);
name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\t type ";
sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type), S, info,
n_value, i.name);
name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (i.type != 0)
outs() << " + " << format("0x%" PRIx64, i.type);
} else
outs() << format("0x%" PRIx64, i.type);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\talignment " << i.alignment << "\n";
outs() << "\t\t\t size " << i.size << "\n";
p += sizeof(struct ivar64_t);
offset += sizeof(struct ivar64_t);
}
}
static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
struct ivar_list32_t il;
struct ivar32_t i;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name, *ivar_offset_p;
uint32_t ivar_offset;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&il, '\0', sizeof(struct ivar_list32_t));
if (left < sizeof(struct ivar_list32_t)) {
memcpy(&il, r, left);
outs() << " (ivar_list_t entends past the end of the section)\n";
} else
memcpy(&il, r, sizeof(struct ivar_list32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(il);
outs() << " entsize " << il.entsize << "\n";
outs() << " count " << il.count << "\n";
p += sizeof(struct ivar_list32_t);
offset += sizeof(struct ivar_list32_t);
for (j = 0; j < il.count; j++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&i, '\0', sizeof(struct ivar32_t));
if (left < sizeof(struct ivar32_t)) {
memcpy(&i, r, left);
outs() << " (ivar_t entends past the end of the section)\n";
} else
memcpy(&i, r, sizeof(struct ivar32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(i);
outs() << "\t\t\t offset " << format("0x%" PRIx32, i.offset);
ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(ivar_offset);
outs() << " " << ivar_offset << "\n";
} else
outs() << "\n";
outs() << "\t\t\t name " << format("0x%" PRIx32, i.name);
name = get_pointer_32(i.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\t type " << format("0x%" PRIx32, i.type);
name = get_pointer_32(i.type, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\talignment " << i.alignment << "\n";
outs() << "\t\t\t size " << i.size << "\n";
p += sizeof(struct ivar32_t);
offset += sizeof(struct ivar32_t);
}
}
static void print_objc_property_list64(uint64_t p,
struct DisassembleInfo *info) {
struct objc_property_list64 opl;
struct objc_property64 op;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&opl, '\0', sizeof(struct objc_property_list64));
if (left < sizeof(struct objc_property_list64)) {
memcpy(&opl, r, left);
outs() << " (objc_property_list entends past the end of the section)\n";
} else
memcpy(&opl, r, sizeof(struct objc_property_list64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(opl);
outs() << " entsize " << opl.entsize << "\n";
outs() << " count " << opl.count << "\n";
p += sizeof(struct objc_property_list64);
offset += sizeof(struct objc_property_list64);
for (j = 0; j < opl.count; j++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&op, '\0', sizeof(struct objc_property64));
if (left < sizeof(struct objc_property64)) {
memcpy(&op, r, left);
outs() << " (objc_property entends past the end of the section)\n";
} else
memcpy(&op, r, sizeof(struct objc_property64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(op);
outs() << "\t\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name), S,
info, n_value, op.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (op.name != 0)
outs() << " + " << format("0x%" PRIx64, op.name);
} else
outs() << format("0x%" PRIx64, op.name);
name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tattributes ";
sym_name =
get_symbol_64(offset + offsetof(struct objc_property64, attributes), S,
info, n_value, op.attributes);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (op.attributes != 0)
outs() << " + " << format("0x%" PRIx64, op.attributes);
} else
outs() << format("0x%" PRIx64, op.attributes);
name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
p += sizeof(struct objc_property64);
offset += sizeof(struct objc_property64);
}
}
static void print_objc_property_list32(uint32_t p,
struct DisassembleInfo *info) {
struct objc_property_list32 opl;
struct objc_property32 op;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&opl, '\0', sizeof(struct objc_property_list32));
if (left < sizeof(struct objc_property_list32)) {
memcpy(&opl, r, left);
outs() << " (objc_property_list entends past the end of the section)\n";
} else
memcpy(&opl, r, sizeof(struct objc_property_list32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(opl);
outs() << " entsize " << opl.entsize << "\n";
outs() << " count " << opl.count << "\n";
p += sizeof(struct objc_property_list32);
offset += sizeof(struct objc_property_list32);
for (j = 0; j < opl.count; j++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&op, '\0', sizeof(struct objc_property32));
if (left < sizeof(struct objc_property32)) {
memcpy(&op, r, left);
outs() << " (objc_property entends past the end of the section)\n";
} else
memcpy(&op, r, sizeof(struct objc_property32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(op);
outs() << "\t\t\t name " << format("0x%" PRIx32, op.name);
name = get_pointer_32(op.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tattributes " << format("0x%" PRIx32, op.attributes);
name = get_pointer_32(op.attributes, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
p += sizeof(struct objc_property32);
offset += sizeof(struct objc_property32);
}
}
static void print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
bool &is_meta_class) {
struct class_ro64_t cro;
const char *r;
uint32_t offset, xoffset, left;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class_ro64_t))
return;
memset(&cro, '\0', sizeof(struct class_ro64_t));
if (left < sizeof(struct class_ro64_t)) {
memcpy(&cro, r, left);
outs() << " (class_ro_t entends past the end of the section)\n";
} else
memcpy(&cro, r, sizeof(struct class_ro64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
outs() << " flags " << format("0x%" PRIx32, cro.flags);
if (cro.flags & RO_META)
outs() << " RO_META";
if (cro.flags & RO_ROOT)
outs() << " RO_ROOT";
if (cro.flags & RO_HAS_CXX_STRUCTORS)
outs() << " RO_HAS_CXX_STRUCTORS";
outs() << "\n";
outs() << " instanceStart " << cro.instanceStart << "\n";
outs() << " instanceSize " << cro.instanceSize << "\n";
outs() << " reserved " << format("0x%" PRIx32, cro.reserved)
<< "\n";
outs() << " ivarLayout " << format("0x%" PRIx64, cro.ivarLayout)
<< "\n";
print_layout_map64(cro.ivarLayout, info);
outs() << " name ";
sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name), S,
info, n_value, cro.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.name != 0)
outs() << " + " << format("0x%" PRIx64, cro.name);
} else
outs() << format("0x%" PRIx64, cro.name);
name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << " baseMethods ";
sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods),
S, info, n_value, cro.baseMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.baseMethods != 0)
outs() << " + " << format("0x%" PRIx64, cro.baseMethods);
} else
outs() << format("0x%" PRIx64, cro.baseMethods);
outs() << " (struct method_list_t *)\n";
if (cro.baseMethods + n_value != 0)
print_method_list64_t(cro.baseMethods + n_value, info, "");
outs() << " baseProtocols ";
sym_name =
get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols), S,
info, n_value, cro.baseProtocols);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.baseProtocols != 0)
outs() << " + " << format("0x%" PRIx64, cro.baseProtocols);
} else
outs() << format("0x%" PRIx64, cro.baseProtocols);
outs() << "\n";
if (cro.baseProtocols + n_value != 0)
print_protocol_list64_t(cro.baseProtocols + n_value, info);
outs() << " ivars ";
sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars), S,
info, n_value, cro.ivars);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.ivars != 0)
outs() << " + " << format("0x%" PRIx64, cro.ivars);
} else
outs() << format("0x%" PRIx64, cro.ivars);
outs() << "\n";
if (cro.ivars + n_value != 0)
print_ivar_list64_t(cro.ivars + n_value, info);
outs() << " weakIvarLayout ";
sym_name =
get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout), S,
info, n_value, cro.weakIvarLayout);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.weakIvarLayout != 0)
outs() << " + " << format("0x%" PRIx64, cro.weakIvarLayout);
} else
outs() << format("0x%" PRIx64, cro.weakIvarLayout);
outs() << "\n";
print_layout_map64(cro.weakIvarLayout + n_value, info);
outs() << " baseProperties ";
sym_name =
get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties), S,
info, n_value, cro.baseProperties);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.baseProperties != 0)
outs() << " + " << format("0x%" PRIx64, cro.baseProperties);
} else
outs() << format("0x%" PRIx64, cro.baseProperties);
outs() << "\n";
if (cro.baseProperties + n_value != 0)
print_objc_property_list64(cro.baseProperties + n_value, info);
is_meta_class = (cro.flags & RO_META) ? true : false;
}
static void print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
bool &is_meta_class) {
struct class_ro32_t cro;
const char *r;
uint32_t offset, xoffset, left;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&cro, '\0', sizeof(struct class_ro32_t));
if (left < sizeof(struct class_ro32_t)) {
memcpy(&cro, r, left);
outs() << " (class_ro_t entends past the end of the section)\n";
} else
memcpy(&cro, r, sizeof(struct class_ro32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
outs() << " flags " << format("0x%" PRIx32, cro.flags);
if (cro.flags & RO_META)
outs() << " RO_META";
if (cro.flags & RO_ROOT)
outs() << " RO_ROOT";
if (cro.flags & RO_HAS_CXX_STRUCTORS)
outs() << " RO_HAS_CXX_STRUCTORS";
outs() << "\n";
outs() << " instanceStart " << cro.instanceStart << "\n";
outs() << " instanceSize " << cro.instanceSize << "\n";
outs() << " ivarLayout " << format("0x%" PRIx32, cro.ivarLayout)
<< "\n";
print_layout_map32(cro.ivarLayout, info);
outs() << " name " << format("0x%" PRIx32, cro.name);
name = get_pointer_32(cro.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << " baseMethods "
<< format("0x%" PRIx32, cro.baseMethods)
<< " (struct method_list_t *)\n";
if (cro.baseMethods != 0)
print_method_list32_t(cro.baseMethods, info, "");
outs() << " baseProtocols "
<< format("0x%" PRIx32, cro.baseProtocols) << "\n";
if (cro.baseProtocols != 0)
print_protocol_list32_t(cro.baseProtocols, info);
outs() << " ivars " << format("0x%" PRIx32, cro.ivars)
<< "\n";
if (cro.ivars != 0)
print_ivar_list32_t(cro.ivars, info);
outs() << " weakIvarLayout "
<< format("0x%" PRIx32, cro.weakIvarLayout) << "\n";
print_layout_map32(cro.weakIvarLayout, info);
outs() << " baseProperties "
<< format("0x%" PRIx32, cro.baseProperties) << "\n";
if (cro.baseProperties != 0)
print_objc_property_list32(cro.baseProperties, info);
is_meta_class = (cro.flags & RO_META) ? true : false;
}
static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
struct class64_t c;
const char *r;
uint32_t offset, left;
SectionRef S;
const char *name;
uint64_t isa_n_value, n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class64_t))
return;
memset(&c, '\0', sizeof(struct class64_t));
if (left < sizeof(struct class64_t)) {
memcpy(&c, r, left);
outs() << " (class_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct class64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " isa " << format("0x%" PRIx64, c.isa);
name = get_symbol_64(offset + offsetof(struct class64_t, isa), S, info,
isa_n_value, c.isa);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " superclass " << format("0x%" PRIx64, c.superclass);
name = get_symbol_64(offset + offsetof(struct class64_t, superclass), S, info,
n_value, c.superclass);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " cache " << format("0x%" PRIx64, c.cache);
name = get_symbol_64(offset + offsetof(struct class64_t, cache), S, info,
n_value, c.cache);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " vtable " << format("0x%" PRIx64, c.vtable);
name = get_symbol_64(offset + offsetof(struct class64_t, vtable), S, info,
n_value, c.vtable);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
name = get_symbol_64(offset + offsetof(struct class64_t, data), S, info,
n_value, c.data);
outs() << " data ";
if (n_value != 0) {
if (info->verbose && name != nullptr)
outs() << name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.data != 0)
outs() << " + " << format("0x%" PRIx64, c.data);
} else
outs() << format("0x%" PRIx64, c.data);
outs() << " (struct class_ro_t *)";
// This is a Swift class if some of the low bits of the pointer are set.
if ((c.data + n_value) & 0x7)
outs() << " Swift class";
outs() << "\n";
bool is_meta_class;
print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class);
if (is_meta_class == false) {
outs() << "Meta Class\n";
print_class64_t(c.isa + isa_n_value, info);
}
}
static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
struct class32_t c;
const char *r;
uint32_t offset, left;
SectionRef S;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&c, '\0', sizeof(struct class32_t));
if (left < sizeof(struct class32_t)) {
memcpy(&c, r, left);
outs() << " (class_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct class32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " isa " << format("0x%" PRIx32, c.isa);
name =
get_symbol_32(offset + offsetof(struct class32_t, isa), S, info, c.isa);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " superclass " << format("0x%" PRIx32, c.superclass);
name = get_symbol_32(offset + offsetof(struct class32_t, superclass), S, info,
c.superclass);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " cache " << format("0x%" PRIx32, c.cache);
name = get_symbol_32(offset + offsetof(struct class32_t, cache), S, info,
c.cache);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " vtable " << format("0x%" PRIx32, c.vtable);
name = get_symbol_32(offset + offsetof(struct class32_t, vtable), S, info,
c.vtable);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
name =
get_symbol_32(offset + offsetof(struct class32_t, data), S, info, c.data);
outs() << " data " << format("0x%" PRIx32, c.data)
<< " (struct class_ro_t *)";
// This is a Swift class if some of the low bits of the pointer are set.
if (c.data & 0x3)
outs() << " Swift class";
outs() << "\n";
bool is_meta_class;
print_class_ro32_t(c.data & ~0x3, info, is_meta_class);
if (is_meta_class == false) {
outs() << "Meta Class\n";
print_class32_t(c.isa, info);
}
}
static void print_objc_class_t(struct objc_class_t *objc_class,
struct DisassembleInfo *info) {
uint32_t offset, left, xleft;
const char *name, *p, *ivar_list;
SectionRef S;
int32_t i;
struct objc_ivar_list_t objc_ivar_list;
struct objc_ivar_t ivar;
outs() << "\t\t isa " << format("0x%08" PRIx32, objc_class->isa);
if (info->verbose && CLS_GETINFO(objc_class, CLS_META)) {
name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t super_class "
<< format("0x%08" PRIx32, objc_class->super_class);
if (info->verbose) {
name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t name " << format("0x%08" PRIx32, objc_class->name);
if (info->verbose) {
name = get_pointer_32(objc_class->name, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t version " << format("0x%08" PRIx32, objc_class->version)
<< "\n";
outs() << "\t\t info " << format("0x%08" PRIx32, objc_class->info);
if (info->verbose) {
if (CLS_GETINFO(objc_class, CLS_CLASS))
outs() << " CLS_CLASS";
else if (CLS_GETINFO(objc_class, CLS_META))
outs() << " CLS_META";
}
outs() << "\n";
outs() << "\t instance_size "
<< format("0x%08" PRIx32, objc_class->instance_size) << "\n";
p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
outs() << "\t\t ivars " << format("0x%08" PRIx32, objc_class->ivars);
if (p != nullptr) {
if (left > sizeof(struct objc_ivar_list_t)) {
outs() << "\n";
memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
memcpy(&objc_ivar_list, p, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_ivar_list);
outs() << "\t\t ivar_count " << objc_ivar_list.ivar_count << "\n";
ivar_list = p + sizeof(struct objc_ivar_list_t);
for (i = 0; i < objc_ivar_list.ivar_count; i++) {
if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
outs() << "\t\t remaining ivar's extend past the of the section\n";
break;
}
memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
sizeof(struct objc_ivar_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(ivar);
outs() << "\t\t\tivar_name " << format("0x%08" PRIx32, ivar.ivar_name);
if (info->verbose) {
name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t\tivar_type " << format("0x%08" PRIx32, ivar.ivar_type);
if (info->verbose) {
name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t ivar_offset "
<< format("0x%08" PRIx32, ivar.ivar_offset) << "\n";
}
} else {
outs() << " (not in an __OBJC section)\n";
}
outs() << "\t\t methods " << format("0x%08" PRIx32, objc_class->methodLists);
if (print_method_list(objc_class->methodLists, info))
outs() << " (not in an __OBJC section)\n";
outs() << "\t\t cache " << format("0x%08" PRIx32, objc_class->cache)
<< "\n";
outs() << "\t\tprotocols " << format("0x%08" PRIx32, objc_class->protocols);
if (print_protocol_list(objc_class->protocols, 16, info))
outs() << " (not in an __OBJC section)\n";
}
static void print_objc_objc_category_t(struct objc_category_t *objc_category,
struct DisassembleInfo *info) {
uint32_t offset, left;
const char *name;
SectionRef S;
outs() << "\t category name "
<< format("0x%08" PRIx32, objc_category->category_name);
if (info->verbose) {
name = get_pointer_32(objc_category->category_name, offset, left, S, info,
true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t class name "
<< format("0x%08" PRIx32, objc_category->class_name);
if (info->verbose) {
name =
get_pointer_32(objc_category->class_name, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t instance methods "
<< format("0x%08" PRIx32, objc_category->instance_methods);
if (print_method_list(objc_category->instance_methods, info))
outs() << " (not in an __OBJC section)\n";
outs() << "\t class methods "
<< format("0x%08" PRIx32, objc_category->class_methods);
if (print_method_list(objc_category->class_methods, info))
outs() << " (not in an __OBJC section)\n";
}
static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
struct category64_t c;
const char *r;
uint32_t offset, xoffset, left;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&c, '\0', sizeof(struct category64_t));
if (left < sizeof(struct category64_t)) {
memcpy(&c, r, left);
outs() << " (category_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct category64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " name ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, name), S,
info, n_value, c.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.name != 0)
outs() << " + " << format("0x%" PRIx64, c.name);
} else
outs() << format("0x%" PRIx64, c.name);
name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << " cls ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls), S, info,
n_value, c.cls);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.cls != 0)
outs() << " + " << format("0x%" PRIx64, c.cls);
} else
outs() << format("0x%" PRIx64, c.cls);
outs() << "\n";
if (c.cls + n_value != 0)
print_class64_t(c.cls + n_value, info);
outs() << " instanceMethods ";
sym_name =
get_symbol_64(offset + offsetof(struct category64_t, instanceMethods), S,
info, n_value, c.instanceMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.instanceMethods != 0)
outs() << " + " << format("0x%" PRIx64, c.instanceMethods);
} else
outs() << format("0x%" PRIx64, c.instanceMethods);
outs() << "\n";
if (c.instanceMethods + n_value != 0)
print_method_list64_t(c.instanceMethods + n_value, info, "");
outs() << " classMethods ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods),
S, info, n_value, c.classMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.classMethods != 0)
outs() << " + " << format("0x%" PRIx64, c.classMethods);
} else
outs() << format("0x%" PRIx64, c.classMethods);
outs() << "\n";
if (c.classMethods + n_value != 0)
print_method_list64_t(c.classMethods + n_value, info, "");
outs() << " protocols ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols), S,
info, n_value, c.protocols);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.protocols != 0)
outs() << " + " << format("0x%" PRIx64, c.protocols);
} else
outs() << format("0x%" PRIx64, c.protocols);
outs() << "\n";
if (c.protocols + n_value != 0)
print_protocol_list64_t(c.protocols + n_value, info);
outs() << "instanceProperties ";
sym_name =
get_symbol_64(offset + offsetof(struct category64_t, instanceProperties),
S, info, n_value, c.instanceProperties);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.instanceProperties != 0)
outs() << " + " << format("0x%" PRIx64, c.instanceProperties);
} else
outs() << format("0x%" PRIx64, c.instanceProperties);
outs() << "\n";
if (c.instanceProperties + n_value != 0)
print_objc_property_list64(c.instanceProperties + n_value, info);
}
static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
struct category32_t c;
const char *r;
uint32_t offset, left;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&c, '\0', sizeof(struct category32_t));
if (left < sizeof(struct category32_t)) {
memcpy(&c, r, left);
outs() << " (category_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct category32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " name " << format("0x%" PRIx32, c.name);
name = get_symbol_32(offset + offsetof(struct category32_t, name), S, info,
c.name);
if (name != NULL)
outs() << " " << name;
outs() << "\n";
outs() << " cls " << format("0x%" PRIx32, c.cls) << "\n";
if (c.cls != 0)
print_class32_t(c.cls, info);
outs() << " instanceMethods " << format("0x%" PRIx32, c.instanceMethods)
<< "\n";
if (c.instanceMethods != 0)
print_method_list32_t(c.instanceMethods, info, "");
outs() << " classMethods " << format("0x%" PRIx32, c.classMethods)
<< "\n";
if (c.classMethods != 0)
print_method_list32_t(c.classMethods, info, "");
outs() << " protocols " << format("0x%" PRIx32, c.protocols) << "\n";
if (c.protocols != 0)
print_protocol_list32_t(c.protocols, info);
outs() << "instanceProperties " << format("0x%" PRIx32, c.instanceProperties)
<< "\n";
if (c.instanceProperties != 0)
print_objc_property_list32(c.instanceProperties, info);
}
static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
uint32_t i, left, offset, xoffset;
uint64_t p, n_value;
struct message_ref64 mr;
const char *name, *sym_name;
const char *r;
SectionRef xS;
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
offset = 0;
for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
p = S.getAddress() + i;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&mr, '\0', sizeof(struct message_ref64));
if (left < sizeof(struct message_ref64)) {
memcpy(&mr, r, left);
outs() << " (message_ref entends past the end of the section)\n";
} else
memcpy(&mr, r, sizeof(struct message_ref64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mr);
outs() << " imp ";
name = get_symbol_64(offset + offsetof(struct message_ref64, imp), S, info,
n_value, mr.imp);
if (n_value != 0) {
outs() << format("0x%" PRIx64, n_value) << " ";
if (mr.imp != 0)
outs() << "+ " << format("0x%" PRIx64, mr.imp) << " ";
} else
outs() << format("0x%" PRIx64, mr.imp) << " ";
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " sel ";
sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel), S,
info, n_value, mr.sel);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (mr.sel != 0)
outs() << " + " << format("0x%" PRIx64, mr.sel);
} else
outs() << format("0x%" PRIx64, mr.sel);
name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
offset += sizeof(struct message_ref64);
}
}
static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
uint32_t i, left, offset, xoffset, p;
struct message_ref32 mr;
const char *name, *r;
SectionRef xS;
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
offset = 0;
for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
p = S.getAddress() + i;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&mr, '\0', sizeof(struct message_ref32));
if (left < sizeof(struct message_ref32)) {
memcpy(&mr, r, left);
outs() << " (message_ref entends past the end of the section)\n";
} else
memcpy(&mr, r, sizeof(struct message_ref32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mr);
outs() << " imp " << format("0x%" PRIx32, mr.imp);
name = get_symbol_32(offset + offsetof(struct message_ref32, imp), S, info,
mr.imp);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " sel " << format("0x%" PRIx32, mr.sel);
name = get_pointer_32(mr.sel, xoffset, left, xS, info);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
offset += sizeof(struct message_ref32);
}
}
static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
uint32_t left, offset, swift_version;
uint64_t p;
struct objc_image_info64 o;
const char *r;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
p = S.getAddress();
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&o, '\0', sizeof(struct objc_image_info64));
if (left < sizeof(struct objc_image_info64)) {
memcpy(&o, r, left);
outs() << " (objc_image_info entends past the end of the section)\n";
} else
memcpy(&o, r, sizeof(struct objc_image_info64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(o);
outs() << " version " << o.version << "\n";
outs() << " flags " << format("0x%" PRIx32, o.flags);
if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
outs() << " OBJC_IMAGE_IS_REPLACEMENT";
if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
outs() << " OBJC_IMAGE_SUPPORTS_GC";
swift_version = (o.flags >> 8) & 0xff;
if (swift_version != 0) {
if (swift_version == 1)
outs() << " Swift 1.0";
else if (swift_version == 2)
outs() << " Swift 1.1";
else
outs() << " unknown future Swift version (" << swift_version << ")";
}
outs() << "\n";
}
static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
uint32_t left, offset, swift_version, p;
struct objc_image_info32 o;
const char *r;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
p = S.getAddress();
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&o, '\0', sizeof(struct objc_image_info32));
if (left < sizeof(struct objc_image_info32)) {
memcpy(&o, r, left);
outs() << " (objc_image_info entends past the end of the section)\n";
} else
memcpy(&o, r, sizeof(struct objc_image_info32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(o);
outs() << " version " << o.version << "\n";
outs() << " flags " << format("0x%" PRIx32, o.flags);
if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
outs() << " OBJC_IMAGE_IS_REPLACEMENT";
if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
outs() << " OBJC_IMAGE_SUPPORTS_GC";
swift_version = (o.flags >> 8) & 0xff;
if (swift_version != 0) {
if (swift_version == 1)
outs() << " Swift 1.0";
else if (swift_version == 2)
outs() << " Swift 1.1";
else
outs() << " unknown future Swift version (" << swift_version << ")";
}
outs() << "\n";
}
static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
uint32_t left, offset, p;
struct imageInfo_t o;
const char *r;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
p = S.getAddress();
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&o, '\0', sizeof(struct imageInfo_t));
if (left < sizeof(struct imageInfo_t)) {
memcpy(&o, r, left);
outs() << " (imageInfo entends past the end of the section)\n";
} else
memcpy(&o, r, sizeof(struct imageInfo_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(o);
outs() << " version " << o.version << "\n";
outs() << " flags " << format("0x%" PRIx32, o.flags);
if (o.flags & 0x1)
outs() << " F&C";
if (o.flags & 0x2)
outs() << " GC";
if (o.flags & 0x4)
outs() << " GC-only";
else
outs() << " RR";
outs() << "\n";
}
static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = verbose;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
if (CL != SectionRef()) {
info.S = CL;
walk_pointer_list_64("class", CL, O, &info, print_class64_t);
} else {
const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
info.S = CL;
walk_pointer_list_64("class", CL, O, &info, print_class64_t);
}
const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
if (CR != SectionRef()) {
info.S = CR;
walk_pointer_list_64("class refs", CR, O, &info, nullptr);
} else {
const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
info.S = CR;
walk_pointer_list_64("class refs", CR, O, &info, nullptr);
}
const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
if (SR != SectionRef()) {
info.S = SR;
walk_pointer_list_64("super refs", SR, O, &info, nullptr);
} else {
const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
info.S = SR;
walk_pointer_list_64("super refs", SR, O, &info, nullptr);
}
const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
if (CA != SectionRef()) {
info.S = CA;
walk_pointer_list_64("category", CA, O, &info, print_category64_t);
} else {
const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
info.S = CA;
walk_pointer_list_64("category", CA, O, &info, print_category64_t);
}
const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
if (PL != SectionRef()) {
info.S = PL;
walk_pointer_list_64("protocol", PL, O, &info, nullptr);
} else {
const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
info.S = PL;
walk_pointer_list_64("protocol", PL, O, &info, nullptr);
}
const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
if (MR != SectionRef()) {
info.S = MR;
print_message_refs64(MR, &info);
} else {
const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
info.S = MR;
print_message_refs64(MR, &info);
}
const SectionRef II = get_section(O, "__OBJC2", "__image_info");
if (II != SectionRef()) {
info.S = II;
print_image_info64(II, &info);
} else {
const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
info.S = II;
print_image_info64(II, &info);
}
if (info.bindtable != nullptr)
delete info.bindtable;
}
static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = verbose;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
if (CL != SectionRef()) {
info.S = CL;
walk_pointer_list_32("class", CL, O, &info, print_class32_t);
} else {
const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
info.S = CL;
walk_pointer_list_32("class", CL, O, &info, print_class32_t);
}
const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
if (CR != SectionRef()) {
info.S = CR;
walk_pointer_list_32("class refs", CR, O, &info, nullptr);
} else {
const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
info.S = CR;
walk_pointer_list_32("class refs", CR, O, &info, nullptr);
}
const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
if (SR != SectionRef()) {
info.S = SR;
walk_pointer_list_32("super refs", SR, O, &info, nullptr);
} else {
const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
info.S = SR;
walk_pointer_list_32("super refs", SR, O, &info, nullptr);
}
const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
if (CA != SectionRef()) {
info.S = CA;
walk_pointer_list_32("category", CA, O, &info, print_category32_t);
} else {
const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
info.S = CA;
walk_pointer_list_32("category", CA, O, &info, print_category32_t);
}
const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
if (PL != SectionRef()) {
info.S = PL;
walk_pointer_list_32("protocol", PL, O, &info, nullptr);
} else {
const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
info.S = PL;
walk_pointer_list_32("protocol", PL, O, &info, nullptr);
}
const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
if (MR != SectionRef()) {
info.S = MR;
print_message_refs32(MR, &info);
} else {
const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
info.S = MR;
print_message_refs32(MR, &info);
}
const SectionRef II = get_section(O, "__OBJC2", "__image_info");
if (II != SectionRef()) {
info.S = II;
print_image_info32(II, &info);
} else {
const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
info.S = II;
print_image_info32(II, &info);
}
}
static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
uint32_t i, j, p, offset, xoffset, left, defs_left, def;
const char *r, *name, *defs;
struct objc_module_t module;
SectionRef S, xS;
struct objc_symtab_t symtab;
struct objc_class_t objc_class;
struct objc_category_t objc_category;
outs() << "Objective-C segment\n";
S = get_section(O, "__OBJC", "__module_info");
if (S == SectionRef())
return false;
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = verbose;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
p = S.getAddress() + i;
r = get_pointer_32(p, offset, left, S, &info, true);
if (r == nullptr)
return true;
memset(&module, '\0', sizeof(struct objc_module_t));
if (left < sizeof(struct objc_module_t)) {
memcpy(&module, r, left);
outs() << " (module extends past end of __module_info section)\n";
} else
memcpy(&module, r, sizeof(struct objc_module_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(module);
outs() << "Module " << format("0x%" PRIx32, p) << "\n";
outs() << " version " << module.version << "\n";
outs() << " size " << module.size << "\n";
outs() << " name ";
name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
if (name != nullptr)
outs() << format("%.*s", left, name);
else
outs() << format("0x%08" PRIx32, module.name)
<< "(not in an __OBJC section)";
outs() << "\n";
r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
if (module.symtab == 0 || r == nullptr) {
outs() << " symtab " << format("0x%08" PRIx32, module.symtab)
<< " (not in an __OBJC section)\n";
continue;
}
outs() << " symtab " << format("0x%08" PRIx32, module.symtab) << "\n";
memset(&symtab, '\0', sizeof(struct objc_symtab_t));
defs_left = 0;
defs = nullptr;
if (left < sizeof(struct objc_symtab_t)) {
memcpy(&symtab, r, left);
outs() << "\tsymtab extends past end of an __OBJC section)\n";
} else {
memcpy(&symtab, r, sizeof(struct objc_symtab_t));
if (left > sizeof(struct objc_symtab_t)) {
defs_left = left - sizeof(struct objc_symtab_t);
defs = r + sizeof(struct objc_symtab_t);
}
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(symtab);
outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
outs() << "\trefs " << format("0x%08" PRIx32, symtab.refs);
if (r == nullptr)
outs() << " (not in an __OBJC section)";
outs() << "\n";
outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
if (symtab.cls_def_cnt > 0)
outs() << "\tClass Definitions\n";
for (j = 0; j < symtab.cls_def_cnt; j++) {
if ((j + 1) * sizeof(uint32_t) > defs_left) {
outs() << "\t(remaining class defs entries entends past the end of the "
<< "section)\n";
break;
}
memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(def);
r = get_pointer_32(def, xoffset, left, xS, &info, true);
outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32, def);
if (r != nullptr) {
if (left > sizeof(struct objc_class_t)) {
outs() << "\n";
memcpy(&objc_class, r, sizeof(struct objc_class_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_class, '\0', sizeof(struct objc_class_t));
memcpy(&objc_class, r, left);
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_class);
print_objc_class_t(&objc_class, &info);
} else {
outs() << "(not in an __OBJC section)\n";
}
if (CLS_GETINFO(&objc_class, CLS_CLASS)) {
outs() << "\tMeta Class";
r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
if (r != nullptr) {
if (left > sizeof(struct objc_class_t)) {
outs() << "\n";
memcpy(&objc_class, r, sizeof(struct objc_class_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_class, '\0', sizeof(struct objc_class_t));
memcpy(&objc_class, r, left);
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_class);
print_objc_class_t(&objc_class, &info);
} else {
outs() << "(not in an __OBJC section)\n";
}
}
}
if (symtab.cat_def_cnt > 0)
outs() << "\tCategory Definitions\n";
for (j = 0; j < symtab.cat_def_cnt; j++) {
if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
outs() << "\t(remaining category defs entries entends past the end of "
<< "the section)\n";
break;
}
memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(def);
r = get_pointer_32(def, xoffset, left, xS, &info, true);
outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
<< format("0x%08" PRIx32, def);
if (r != nullptr) {
if (left > sizeof(struct objc_category_t)) {
outs() << "\n";
memcpy(&objc_category, r, sizeof(struct objc_category_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_category, '\0', sizeof(struct objc_category_t));
memcpy(&objc_category, r, left);
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_category);
print_objc_objc_category_t(&objc_category, &info);
} else {
outs() << "(not in an __OBJC section)\n";
}
}
}
const SectionRef II = get_section(O, "__OBJC", "__image_info");
if (II != SectionRef())
print_image_info(II, &info);
return true;
}
static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
uint32_t size, uint32_t addr) {
SymbolAddressMap AddrMap;
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = true;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
const char *p;
struct objc_protocol_t protocol;
uint32_t left, paddr;
for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
memset(&protocol, '\0', sizeof(struct objc_protocol_t));
left = size - (p - sect);
if (left < sizeof(struct objc_protocol_t)) {
outs() << "Protocol extends past end of __protocol section\n";
memcpy(&protocol, p, left);
} else
memcpy(&protocol, p, sizeof(struct objc_protocol_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(protocol);
paddr = addr + (p - sect);
outs() << "Protocol " << format("0x%" PRIx32, paddr);
if (print_protocol(paddr, 0, &info))
outs() << "(not in an __OBJC section)\n";
}
}
static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
if (O->is64Bit())
printObjc2_64bit_MetaData(O, verbose);
else {
MachO::mach_header H;
H = O->getHeader();
if (H.cputype == MachO::CPU_TYPE_ARM)
printObjc2_32bit_MetaData(O, verbose);
else {
// This is the 32-bit non-arm cputype case. Which is normally
// the first Objective-C ABI. But it may be the case of a
// binary for the iOS simulator which is the second Objective-C
// ABI. In that case printObjc1_32bit_MetaData() will determine that
// and return false.
if (printObjc1_32bit_MetaData(O, verbose) == false)
printObjc2_32bit_MetaData(O, verbose);
}
}
}
// GuessLiteralPointer returns a string which for the item in the Mach-O file
// for the address passed in as ReferenceValue for printing as a comment with
// the instruction and also returns the corresponding type of that item
// indirectly through ReferenceType.
//
// If ReferenceValue is an address of literal cstring then a pointer to the
// cstring is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
//
// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
// Class ref that name is returned and the ReferenceType is set accordingly.
//
// Lastly, literals which are Symbol address in a literal pool are looked for
// and if found the symbol name is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
//
// If there is no item in the Mach-O file for the address passed in as
// ReferenceValue nullptr is returned and ReferenceType is unchanged.
static const char *GuessLiteralPointer(uint64_t ReferenceValue,
uint64_t ReferencePC,
uint64_t *ReferenceType,
struct DisassembleInfo *info) {
// First see if there is an external relocation entry at the ReferencePC.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = ReferencePC - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in a section
// then used that symbol's value for the value of the reference.
if (reloc_found && isExtern) {
if (info->O->getAnyRelocationPCRel(RE)) {
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SIGNED) {
ReferenceValue = Symbol.getValue();
}
}
}
// Look for literals such as Objective-C CFStrings refs, Selector refs,
// Message refs and Class refs.
bool classref, selref, msgref, cfstring;
uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
selref, msgref, cfstring);
if (classref && pointer_value == 0) {
// Note the ReferenceValue is a pointer into the __objc_classrefs section.
// And the pointer_value in that section is typically zero as it will be
// set by dyld as part of the "bind information".
const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
if (name != nullptr) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
const char *class_name = strrchr(name, '$');
if (class_name != nullptr && class_name[1] == '_' &&
class_name[2] != '\0') {
info->class_name = class_name + 2;
return name;
}
}
}
if (classref) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
const char *name =
get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
if (name != nullptr)
info->class_name = name;
else
name = "bad class ref";
return name;
}
if (cfstring) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
return name;
}
if (selref && pointer_value == 0)
pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
if (pointer_value != 0)
ReferenceValue = pointer_value;
const char *name = GuessCstringPointer(ReferenceValue, info);
if (name) {
if (pointer_value != 0 && selref) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
info->selector_name = name;
} else if (pointer_value != 0 && msgref) {
info->class_name = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
info->selector_name = name;
} else
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
return name;
}
// Lastly look for an indirect symbol with this ReferenceValue which is in
// a literal pool. If found return that symbol name.
name = GuessIndirectSymbol(ReferenceValue, info);
if (name) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
return name;
}
return nullptr;
}
// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
// the Symbolizer. It looks up the ReferenceValue using the info passed via the
// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
// is created and returns the symbol name that matches the ReferenceValue or
// nullptr if none. The ReferenceType is passed in for the IN type of
// reference the instruction is making from the values in defined in the header
// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
// Out type and the ReferenceName will also be set which is added as a comment
// to the disassembled instruction.
//
#if HAVE_CXXABI_H
// If the symbol name is a C++ mangled name then the demangled name is
// returned through ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_DeMangled_Name .
#endif
//
// When this is called to get a symbol name for a branch target then the
// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
// SymbolValue will be looked for in the indirect symbol table to determine if
// it is an address for a symbol stub. If so then the symbol name for that
// stub is returned indirectly through ReferenceName and then ReferenceType is
// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
//
// When this is called with an value loaded via a PC relative load then
// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
// SymbolValue is checked to be an address of literal pointer, symbol pointer,
// or an Objective-C meta data reference. If so the output ReferenceType is
// set to correspond to that as well as setting the ReferenceName.
static const char *SymbolizerSymbolLookUp(void *DisInfo,
uint64_t ReferenceValue,
uint64_t *ReferenceType,
uint64_t ReferencePC,
const char **ReferenceName) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
// If no verbose symbolic information is wanted then just return nullptr.
if (!info->verbose) {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
return nullptr;
}
const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
*ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
if (*ReferenceName != nullptr) {
method_reference(info, ReferenceType, ReferenceName);
if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
*ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
} else
#if HAVE_CXXABI_H
if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
if (info->demangled_name != nullptr)
free(info->demangled_name);
int status;
info->demangled_name =
abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
if (info->demangled_name != nullptr) {
*ReferenceName = info->demangled_name;
*ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
} else
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
} else
#endif
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
} else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName)
method_reference(info, ReferenceType, ReferenceName);
else
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and the reference is an adrp instruction save the
// instruction, passed in ReferenceValue and the address of the instruction
// for use later if we see and add immediate instruction.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
info->adrp_inst = ReferenceValue;
info->adrp_addr = ReferencePC;
SymbolName = nullptr;
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and reference is an add immediate instruction and we
// have
// seen an adrp instruction just before it and the adrp's Xd register
// matches
// this add's Xn register reconstruct the value being referenced and look to
// see if it is a literal pointer. Note the add immediate instruction is
// passed in ReferenceValue.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
ReferencePC - 4 == info->adrp_addr &&
(info->adrp_inst & 0x9f000000) == 0x90000000 &&
(info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
uint32_t addxri_inst;
uint64_t adrp_imm, addxri_imm;
adrp_imm =
((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
if (info->adrp_inst & 0x0200000)
adrp_imm |= 0xfffffffffc000000LL;
addxri_inst = ReferenceValue;
addxri_imm = (addxri_inst >> 10) & 0xfff;
if (((addxri_inst >> 22) & 0x3) == 1)
addxri_imm <<= 12;
ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
(adrp_imm << 12) + addxri_imm;
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and the reference is a load register instruction and we
// have seen an adrp instruction just before it and the adrp's Xd register
// matches this add's Xn register reconstruct the value being referenced and
// look to see if it is a literal pointer. Note the load register
// instruction is passed in ReferenceValue.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
ReferencePC - 4 == info->adrp_addr &&
(info->adrp_inst & 0x9f000000) == 0x90000000 &&
(info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
uint32_t ldrxui_inst;
uint64_t adrp_imm, ldrxui_imm;
adrp_imm =
((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
if (info->adrp_inst & 0x0200000)
adrp_imm |= 0xfffffffffc000000LL;
ldrxui_inst = ReferenceValue;
ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
(adrp_imm << 12) + (ldrxui_imm << 3);
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
// If this arm64 and is an load register (PC-relative) instruction the
// ReferenceValue is the PC plus the immediate value.
else if (info->O->getArch() == Triple::aarch64 &&
(*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
#if HAVE_CXXABI_H
else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
if (info->demangled_name != nullptr)
free(info->demangled_name);
int status;
info->demangled_name =
abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
if (info->demangled_name != nullptr) {
*ReferenceName = info->demangled_name;
*ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
}
}
#endif
else {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
return SymbolName;
}
/// \brief Emits the comments that are stored in the CommentStream.
/// Each comment in the CommentStream must end with a newline.
static void emitComments(raw_svector_ostream &CommentStream,
SmallString<128> &CommentsToEmit,
formatted_raw_ostream &FormattedOS,
const MCAsmInfo &MAI) {
// Flush the stream before taking its content.
CommentStream.flush();
StringRef Comments = CommentsToEmit.str();
// Get the default information for printing a comment.
const char *CommentBegin = MAI.getCommentString();
unsigned CommentColumn = MAI.getCommentColumn();
bool IsFirst = true;
while (!Comments.empty()) {
if (!IsFirst)
FormattedOS << '\n';
// Emit a line of comments.
FormattedOS.PadToColumn(CommentColumn);
size_t Position = Comments.find('\n');
FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
// Move after the newline character.
Comments = Comments.substr(Position + 1);
IsFirst = false;
}
FormattedOS.flush();
// Tell the comment stream that the vector changed underneath it.
CommentsToEmit.clear();
CommentStream.resync();
}
static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef DisSegName, StringRef DisSectName) {
const char *McpuDefault = nullptr;
const Target *ThumbTarget = nullptr;
const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
if (!TheTarget) {
// GetTarget prints out stuff.
return;
}
if (MCPU.empty() && McpuDefault)
MCPU = McpuDefault;
std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
if (ThumbTarget)
ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
// Set up disassembler.
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
std::unique_ptr<MCSymbolizer> Symbolizer;
struct DisassembleInfo SymbolizerInfo;
std::unique_ptr<MCRelocationInfo> RelInfo(
TheTarget->createMCRelocationInfo(TripleName, Ctx));
if (RelInfo) {
Symbolizer.reset(TheTarget->createMCSymbolizer(
TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&SymbolizerInfo, &Ctx, std::move(RelInfo)));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
// Set the display preference for hex vs. decimal immediates.
IP->setPrintImmHex(PrintImmHex);
// Comment stream and backing vector.
SmallString<128> CommentsToEmit;
raw_svector_ostream CommentStream(CommentsToEmit);
// FIXME: Setting the CommentStream in the InstPrinter is problematic in that
// if it is done then arm64 comments for string literals don't get printed
// and some constant get printed instead and not setting it causes intel
// (32-bit and 64-bit) comments printed with different spacing before the
// comment causing different diffs with the 'C' disassembler library API.
// IP->setCommentStream(CommentStream);
if (!AsmInfo || !STI || !DisAsm || !IP) {
errs() << "error: couldn't initialize disassembler for target "
<< TripleName << '\n';
return;
}
// Set up thumb disassembler.
std::unique_ptr<const MCRegisterInfo> ThumbMRI;
std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
std::unique_ptr<MCDisassembler> ThumbDisAsm;
std::unique_ptr<MCInstPrinter> ThumbIP;
std::unique_ptr<MCContext> ThumbCtx;
std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
struct DisassembleInfo ThumbSymbolizerInfo;
std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
if (ThumbTarget) {
ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
ThumbAsmInfo.reset(
ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
ThumbSTI.reset(
ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
MCContext *PtrThumbCtx = ThumbCtx.get();
ThumbRelInfo.reset(
ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
if (ThumbRelInfo) {
ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
}
int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
ThumbIP.reset(ThumbTarget->createMCInstPrinter(
Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
*ThumbInstrInfo, *ThumbMRI));
// Set the display preference for hex vs. decimal immediates.
ThumbIP->setPrintImmHex(PrintImmHex);
}
if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
errs() << "error: couldn't initialize disassembler for target "
<< ThumbTripleName << '\n';
return;
}
MachO::mach_header Header = MachOOF->getHeader();
// FIXME: Using the -cfg command line option, this code used to be able to
// annotate relocations with the referenced symbol's name, and if this was
// inside a __[cf]string section, the data it points to. This is now replaced
// by the upcoming MCSymbolizer, which needs the appropriate setup done above.
std::vector<SectionRef> Sections;
std::vector<SymbolRef> Symbols;
SmallVector<uint64_t, 8> FoundFns;
uint64_t BaseSegmentAddress;
getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
BaseSegmentAddress);
// Sort the symbols by address, just in case they didn't come in that way.
std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
// Build a data in code table that is sorted on by the address of each entry.
uint64_t BaseAddress = 0;
if (Header.filetype == MachO::MH_OBJECT)
BaseAddress = Sections[0].getAddress();
else
BaseAddress = BaseSegmentAddress;
DiceTable Dices;
for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
DI != DE; ++DI) {
uint32_t Offset;
DI->getOffset(Offset);
Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
}
array_pod_sort(Dices.begin(), Dices.end());
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
std::unique_ptr<DIContext> diContext;
ObjectFile *DbgObj = MachOOF;
// Try to find debug info and set up the DIContext for it.
if (UseDbg) {
// A separate DSym file path was specified, parse it as a macho file,
// get the sections and supply it to the section name parsing machinery.
if (!DSYMFile.empty()) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFileOrSTDIN(DSYMFile);
if (std::error_code EC = BufOrErr.getError()) {
errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
return;
}
DbgObj =
ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
.get()
.release();
}
// Setup the DIContext
diContext.reset(new DWARFContextInMemory(*DbgObj));
}
if (DumpSections.size() == 0)
outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
StringRef SectName;
if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
continue;
DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
if (SegmentName != DisSegName)
continue;
StringRef BytesStr;
Sections[SectIdx].getContents(BytesStr);
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
BytesStr.size());
uint64_t SectAddress = Sections[SectIdx].getAddress();
bool symbolTableWorked = false;
// Parse relocations.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
uint64_t SectionAddress = Sections[SectIdx].getAddress();
RelocOffset -= SectionAddress;
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Create a map of symbol addresses to symbol names for use by
// the SymbolizerSymbolLookUp() routine.
SymbolAddressMap AddrMap;
bool DisSymNameFound = false;
for (const SymbolRef &Symbol : MachOOF->symbols()) {
SymbolRef::Type ST = Symbol.getType();
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address = Symbol.getValue();
ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
if (std::error_code EC = SymNameOrErr.getError())
report_fatal_error(EC.message());
StringRef SymName = *SymNameOrErr;
AddrMap[Address] = SymName;
if (!DisSymName.empty() && DisSymName == SymName)
DisSymNameFound = true;
}
}
if (!DisSymName.empty() && !DisSymNameFound) {
outs() << "Can't find -dis-symname: " << DisSymName << "\n";
return;
}
// Set up the block of info used by the Symbolizer call backs.
SymbolizerInfo.verbose = !NoSymbolicOperands;
SymbolizerInfo.O = MachOOF;
SymbolizerInfo.S = Sections[SectIdx];
SymbolizerInfo.AddrMap = &AddrMap;
SymbolizerInfo.Sections = &Sections;
SymbolizerInfo.class_name = nullptr;
SymbolizerInfo.selector_name = nullptr;
SymbolizerInfo.method = nullptr;
SymbolizerInfo.demangled_name = nullptr;
SymbolizerInfo.bindtable = nullptr;
SymbolizerInfo.adrp_addr = 0;
SymbolizerInfo.adrp_inst = 0;
// Same for the ThumbSymbolizer
ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
ThumbSymbolizerInfo.O = MachOOF;
ThumbSymbolizerInfo.S = Sections[SectIdx];
ThumbSymbolizerInfo.AddrMap = &AddrMap;
ThumbSymbolizerInfo.Sections = &Sections;
ThumbSymbolizerInfo.class_name = nullptr;
ThumbSymbolizerInfo.selector_name = nullptr;
ThumbSymbolizerInfo.method = nullptr;
ThumbSymbolizerInfo.demangled_name = nullptr;
ThumbSymbolizerInfo.bindtable = nullptr;
ThumbSymbolizerInfo.adrp_addr = 0;
ThumbSymbolizerInfo.adrp_inst = 0;
// Disassemble symbol by symbol.
for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
ErrorOr<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
if (std::error_code EC = SymNameOrErr.getError())
report_fatal_error(EC.message());
StringRef SymName = *SymNameOrErr;
SymbolRef::Type ST = Symbols[SymIdx].getType();
if (ST != SymbolRef::ST_Function)
continue;
// Make sure the symbol is defined in this section.
bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
if (!containsSym)
continue;
// If we are only disassembling one symbol see if this is that symbol.
if (!DisSymName.empty() && DisSymName != SymName)
continue;
// Start at the address of the symbol relative to the section's address.
uint64_t Start = Symbols[SymIdx].getValue();
uint64_t SectionAddress = Sections[SectIdx].getAddress();
Start -= SectionAddress;
// Stop disassembling either at the beginning of the next symbol or at
// the end of the section.
bool containsNextSym = false;
uint64_t NextSym = 0;
uint64_t NextSymIdx = SymIdx + 1;
while (Symbols.size() > NextSymIdx) {
SymbolRef::Type NextSymType = Symbols[NextSymIdx].getType();
if (NextSymType == SymbolRef::ST_Function) {
containsNextSym =
Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
NextSym = Symbols[NextSymIdx].getValue();
NextSym -= SectionAddress;
break;
}
++NextSymIdx;
}
uint64_t SectSize = Sections[SectIdx].getSize();
uint64_t End = containsNextSym ? NextSym : SectSize;
uint64_t Size;
symbolTableWorked = true;
DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
bool isThumb =
(MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;
outs() << SymName << ":\n";
DILineInfo lastLine;
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (!NoLeadingAddr) {
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
}
if (!NoShowRawInsn)
outs() << "\t";
// Check the data in code table here to see if this is data not an
// instruction to be disassembled.
DiceTable Dice;
Dice.push_back(std::make_pair(PC, DiceRef()));
dice_table_iterator DTI =
std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
compareDiceTableEntries);
if (DTI != Dices.end()) {
uint16_t Length;
DTI->second.getLength(Length);
uint16_t Kind;
DTI->second.getKind(Kind);
Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
(PC == (DTI->first + Length - 1)) && (Length & 1))
Size++;
continue;
}
SmallVector<char, 64> AnnotationsBytes;
raw_svector_ostream Annotations(AnnotationsBytes);
bool gotInst;
if (isThumb)
gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
PC, DebugOut, Annotations);
else
gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
DebugOut, Annotations);
if (gotInst) {
if (!NoShowRawInsn) {
dumpBytes(ArrayRef<uint8_t>(Bytes.data() + Index, Size), outs());
}
formatted_raw_ostream FormattedOS(outs());
Annotations.flush();
StringRef AnnotationsStr = Annotations.str();
if (isThumb)
ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
else
IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
// Print debug info.
if (diContext) {
DILineInfo dli = diContext->getLineInfoForAddress(PC);
// Print valid line info if it changed.
if (dli != lastLine && dli.Line != 0)
outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
<< dli.Column;
lastLine = dli;
}
outs() << "\n";
} else {
unsigned int Arch = MachOOF->getArch();
if (Arch == Triple::x86_64 || Arch == Triple::x86) {
outs() << format("\t.byte 0x%02x #bad opcode\n",
*(Bytes.data() + Index) & 0xff);
Size = 1; // skip exactly one illegible byte and move on.
} else if (Arch == Triple::aarch64) {
uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
(*(Bytes.data() + Index + 1) & 0xff) << 8 |
(*(Bytes.data() + Index + 2) & 0xff) << 16 |
(*(Bytes.data() + Index + 3) & 0xff) << 24;
outs() << format("\t.long\t0x%08x\n", opcode);
Size = 4;
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
}
if (!symbolTableWorked) {
// Reading the symbol table didn't work, disassemble the whole section.
uint64_t SectAddress = Sections[SectIdx].getAddress();
uint64_t SectSize = Sections[SectIdx].getSize();
uint64_t InstSize;
for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
DebugOut, nulls())) {
if (!NoLeadingAddr) {
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
}
if (!NoShowRawInsn) {
outs() << "\t";
dumpBytes(ArrayRef<uint8_t>(Bytes.data() + Index, InstSize), outs());
}
IP->printInst(&Inst, outs(), "", *STI);
outs() << "\n";
} else {
unsigned int Arch = MachOOF->getArch();
if (Arch == Triple::x86_64 || Arch == Triple::x86) {
outs() << format("\t.byte 0x%02x #bad opcode\n",
*(Bytes.data() + Index) & 0xff);
InstSize = 1; // skip exactly one illegible byte and move on.
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (InstSize == 0)
InstSize = 1; // skip illegible bytes
}
}
}
}
// The TripleName's need to be reset if we are called again for a different
// archtecture.
TripleName = "";
ThumbTripleName = "";
if (SymbolizerInfo.method != nullptr)
free(SymbolizerInfo.method);
if (SymbolizerInfo.demangled_name != nullptr)
free(SymbolizerInfo.demangled_name);
if (SymbolizerInfo.bindtable != nullptr)
delete SymbolizerInfo.bindtable;
if (ThumbSymbolizerInfo.method != nullptr)
free(ThumbSymbolizerInfo.method);
if (ThumbSymbolizerInfo.demangled_name != nullptr)
free(ThumbSymbolizerInfo.demangled_name);
if (ThumbSymbolizerInfo.bindtable != nullptr)
delete ThumbSymbolizerInfo.bindtable;
}
}
//===----------------------------------------------------------------------===//
// __compact_unwind section dumping
//===----------------------------------------------------------------------===//
namespace {
template <typename T> static uint64_t readNext(const char *&Buf) {
using llvm::support::little;
using llvm::support::unaligned;
uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
Buf += sizeof(T);
return Val;
}
struct CompactUnwindEntry {
uint32_t OffsetInSection;
uint64_t FunctionAddr;
uint32_t Length;
uint32_t CompactEncoding;
uint64_t PersonalityAddr;
uint64_t LSDAAddr;
RelocationRef FunctionReloc;
RelocationRef PersonalityReloc;
RelocationRef LSDAReloc;
CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
: OffsetInSection(Offset) {
if (Is64)
read<uint64_t>(Contents.data() + Offset);
else
read<uint32_t>(Contents.data() + Offset);
}
private:
template <typename UIntPtr> void read(const char *Buf) {
FunctionAddr = readNext<UIntPtr>(Buf);
Length = readNext<uint32_t>(Buf);
CompactEncoding = readNext<uint32_t>(Buf);
PersonalityAddr = readNext<UIntPtr>(Buf);
LSDAAddr = readNext<UIntPtr>(Buf);
}
};
}
/// Given a relocation from __compact_unwind, consisting of the RelocationRef
/// and data being relocated, determine the best base Name and Addend to use for
/// display purposes.
///
/// 1. An Extern relocation will directly reference a symbol (and the data is
/// then already an addend), so use that.
/// 2. Otherwise the data is an offset in the object file's layout; try to find
// a symbol before it in the same section, and use the offset from there.
/// 3. Finally, if all that fails, fall back to an offset from the start of the
/// referenced section.
static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc, uint64_t Addr,
StringRef &Name, uint64_t &Addend) {
if (Reloc.getSymbol() != Obj->symbol_end()) {
ErrorOr<StringRef> NameOrErr = Reloc.getSymbol()->getName();
if (std::error_code EC = NameOrErr.getError())
report_fatal_error(EC.message());
Name = *NameOrErr;
Addend = Addr;
return;
}
auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
uint64_t SectionAddr = RelocSection.getAddress();
auto Sym = Symbols.upper_bound(Addr);
if (Sym == Symbols.begin()) {
// The first symbol in the object is after this reference, the best we can
// do is section-relative notation.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
return;
}
// Go back one so that SymbolAddress <= Addr.
--Sym;
section_iterator SymSection = Obj->section_end();
Sym->second.getSection(SymSection);
if (RelocSection == *SymSection) {
// There's a valid symbol in the same section before this reference.
ErrorOr<StringRef> NameOrErr = Sym->second.getName();
if (std::error_code EC = NameOrErr.getError())
report_fatal_error(EC.message());
Name = *NameOrErr;
Addend = Addr - Sym->first;
return;
}
// There is a symbol before this reference, but it's in a different
// section. Probably not helpful to mention it, so use the section name.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
}
static void printUnwindRelocDest(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc, uint64_t Addr) {
StringRef Name;
uint64_t Addend;
if (!Reloc.getObject())
return;
findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
outs() << Name;
if (Addend)
outs() << " + " << format("0x%" PRIx64, Addend);
}
static void
printMachOCompactUnwindSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &CompactUnwind) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __compact_unwind");
bool Is64 = Obj->is64Bit();
uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
StringRef Contents;
CompactUnwind.getContents(Contents);
SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
// First populate the initial raw offsets, encodings and so on from the entry.
for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
CompactUnwinds.push_back(Entry);
}
// Next we need to look at the relocations to find out what objects are
// actually being referred to.
for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
uint64_t RelocAddress = Reloc.getOffset();
uint32_t EntryIdx = RelocAddress / EntrySize;
uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
if (OffsetInEntry == 0)
Entry.FunctionReloc = Reloc;
else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
Entry.PersonalityReloc = Reloc;
else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
Entry.LSDAReloc = Reloc;
else
llvm_unreachable("Unexpected relocation in __compact_unwind section");
}
// Finally, we're ready to print the data we've gathered.
outs() << "Contents of __compact_unwind section:\n";
for (auto &Entry : CompactUnwinds) {
outs() << " Entry at offset "
<< format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
// 1. Start of the region this entry applies to.
outs() << " start: " << format("0x%" PRIx64,
Entry.FunctionAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
outs() << '\n';
// 2. Length of the region this entry applies to.
outs() << " length: " << format("0x%" PRIx32, Entry.Length)
<< '\n';
// 3. The 32-bit compact encoding.
outs() << " compact encoding: "
<< format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
// 4. The personality function, if present.
if (Entry.PersonalityReloc.getObject()) {
outs() << " personality function: "
<< format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
Entry.PersonalityAddr);
outs() << '\n';
}
// 5. This entry's language-specific data area.
if (Entry.LSDAReloc.getObject()) {
outs() << " LSDA: " << format("0x%" PRIx64,
Entry.LSDAAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
outs() << '\n';
}
}
}
//===----------------------------------------------------------------------===//
// __unwind_info section dumping
//===----------------------------------------------------------------------===//
static void printRegularSecondLevelUnwindPage(const char *PageStart) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t Encoding = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
}
}
static void printCompressedSecondLevelUnwindPage(
const char *PageStart, uint32_t FunctionBase,
const SmallVectorImpl<uint32_t> &CommonEncodings) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
uint16_t EncodingsStart = readNext<uint16_t>(Pos);
readNext<uint16_t>(Pos);
const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
PageStart + EncodingsStart);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t Entry = readNext<uint32_t>(Pos);
uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
uint32_t EncodingIdx = Entry >> 24;
uint32_t Encoding;
if (EncodingIdx < CommonEncodings.size())
Encoding = CommonEncodings[EncodingIdx];
else
Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "encoding[" << EncodingIdx
<< "]=" << format("0x%08" PRIx32, Encoding) << '\n';
}
}
static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &UnwindInfo) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __unwind_info");
outs() << "Contents of __unwind_info section:\n";
StringRef Contents;
UnwindInfo.getContents(Contents);
const char *Pos = Contents.data();
//===----------------------------------
// Section header
//===----------------------------------
uint32_t Version = readNext<uint32_t>(Pos);
outs() << " Version: "
<< format("0x%" PRIx32, Version) << '\n';
assert(Version == 1 && "only understand version 1");
uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
outs() << " Common encodings array section offset: "
<< format("0x%" PRIx32, CommonEncodingsStart) << '\n';
uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
outs() << " Number of common encodings in array: "
<< format("0x%" PRIx32, NumCommonEncodings) << '\n';
uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
outs() << " Personality function array section offset: "
<< format("0x%" PRIx32, PersonalitiesStart) << '\n';
uint32_t NumPersonalities = readNext<uint32_t>(Pos);
outs() << " Number of personality functions in array: "
<< format("0x%" PRIx32, NumPersonalities) << '\n';
uint32_t IndicesStart = readNext<uint32_t>(Pos);
outs() << " Index array section offset: "
<< format("0x%" PRIx32, IndicesStart) << '\n';
uint32_t NumIndices = readNext<uint32_t>(Pos);
outs() << " Number of indices in array: "
<< format("0x%" PRIx32, NumIndices) << '\n';
//===----------------------------------
// A shared list of common encodings
//===----------------------------------
// These occupy indices in the range [0, N] whenever an encoding is referenced
// from a compressed 2nd level index table. In practice the linker only
// creates ~128 of these, so that indices are available to embed encodings in
// the 2nd level index.
SmallVector<uint32_t, 64> CommonEncodings;
outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
Pos = Contents.data() + CommonEncodingsStart;
for (unsigned i = 0; i < NumCommonEncodings; ++i) {
uint32_t Encoding = readNext<uint32_t>(Pos);
CommonEncodings.push_back(Encoding);
outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
<< '\n';
}
//===----------------------------------
// Personality functions used in this executable
//===----------------------------------
// There should be only a handful of these (one per source language,
// roughly). Particularly since they only get 2 bits in the compact encoding.
outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
Pos = Contents.data() + PersonalitiesStart;
for (unsigned i = 0; i < NumPersonalities; ++i) {
uint32_t PersonalityFn = readNext<uint32_t>(Pos);
outs() << " personality[" << i + 1
<< "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
}
//===----------------------------------
// The level 1 index entries
//===----------------------------------
// These specify an approximate place to start searching for the more detailed
// information, sorted by PC.
struct IndexEntry {
uint32_t FunctionOffset;
uint32_t SecondLevelPageStart;
uint32_t LSDAStart;
};
SmallVector<IndexEntry, 4> IndexEntries;
outs() << " Top level indices: (count = " << NumIndices << ")\n";
Pos = Contents.data() + IndicesStart;
for (unsigned i = 0; i < NumIndices; ++i) {
IndexEntry Entry;
Entry.FunctionOffset = readNext<uint32_t>(Pos);
Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
Entry.LSDAStart = readNext<uint32_t>(Pos);
IndexEntries.push_back(Entry);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
<< ", "
<< "2nd level page offset="
<< format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
<< "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
}
//===----------------------------------
// Next come the LSDA tables
//===----------------------------------
// The LSDA layout is rather implicit: it's a contiguous array of entries from
// the first top-level index's LSDAOffset to the last (sentinel).
outs() << " LSDA descriptors:\n";
Pos = Contents.data() + IndexEntries[0].LSDAStart;
int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
(2 * sizeof(uint32_t));
for (int i = 0; i < NumLSDAs; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t LSDAOffset = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
}
//===----------------------------------
// Finally, the 2nd level indices
//===----------------------------------
// Generally these are 4K in size, and have 2 possible forms:
// + Regular stores up to 511 entries with disparate encodings
// + Compressed stores up to 1021 entries if few enough compact encoding
// values are used.
outs() << " Second level indices:\n";
for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
// The final sentinel top-level index has no associated 2nd level page
if (IndexEntries[i].SecondLevelPageStart == 0)
break;
outs() << " Second level index[" << i << "]: "
<< "offset in section="
<< format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
<< ", "
<< "base function offset="
<< format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
if (Kind == 2)
printRegularSecondLevelUnwindPage(Pos);
else if (Kind == 3)
printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
CommonEncodings);
else
llvm_unreachable("Do not know how to print this kind of 2nd level page");
}
}
void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
std::map<uint64_t, SymbolRef> Symbols;
for (const SymbolRef &SymRef : Obj->symbols()) {
// Discard any undefined or absolute symbols. They're not going to take part
// in the convenience lookup for unwind info and just take up resources.
section_iterator Section = Obj->section_end();
SymRef.getSection(Section);
if (Section == Obj->section_end())
continue;
uint64_t Addr = SymRef.getValue();
Symbols.insert(std::make_pair(Addr, SymRef));
}
for (const SectionRef &Section : Obj->sections()) {
StringRef SectName;
Section.getName(SectName);
if (SectName == "__compact_unwind")
printMachOCompactUnwindSection(Obj, Symbols, Section);
else if (SectName == "__unwind_info")
printMachOUnwindInfoSection(Obj, Symbols, Section);
else if (SectName == "__eh_frame")
outs() << "llvm-objdump: warning: unhandled __eh_frame section\n";
}
}
static void PrintMachHeader(uint32_t magic, uint32_t cputype,
uint32_t cpusubtype, uint32_t filetype,
uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
bool verbose) {
outs() << "Mach header\n";
outs() << " magic cputype cpusubtype caps filetype ncmds "
"sizeofcmds flags\n";
if (verbose) {
if (magic == MachO::MH_MAGIC)
outs() << " MH_MAGIC";
else if (magic == MachO::MH_MAGIC_64)
outs() << "MH_MAGIC_64";
else
outs() << format(" 0x%08" PRIx32, magic);
switch (cputype) {
case MachO::CPU_TYPE_I386:
outs() << " I386";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
outs() << " X86_64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " Haswell";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM:
outs() << " ARM";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " V4T";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " V5TEJ";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " XSCALE";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " V6";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " V6M";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " V7";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " V7EM";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " V7K";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " V7M";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " V7S";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
outs() << " ARM64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC:
outs() << " PPC";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC64:
outs() << " PPC64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
}
if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
outs() << " LIB64";
} else {
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
}
switch (filetype) {
case MachO::MH_OBJECT:
outs() << " OBJECT";
break;
case MachO::MH_EXECUTE:
outs() << " EXECUTE";
break;
case MachO::MH_FVMLIB:
outs() << " FVMLIB";
break;
case MachO::MH_CORE:
outs() << " CORE";
break;
case MachO::MH_PRELOAD:
outs() << " PRELOAD";
break;
case MachO::MH_DYLIB:
outs() << " DYLIB";
break;
case MachO::MH_DYLIB_STUB:
outs() << " DYLIB_STUB";
break;
case MachO::MH_DYLINKER:
outs() << " DYLINKER";
break;
case MachO::MH_BUNDLE:
outs() << " BUNDLE";
break;
case MachO::MH_DSYM:
outs() << " DSYM";
break;
case MachO::MH_KEXT_BUNDLE:
outs() << " KEXTBUNDLE";
break;
default:
outs() << format(" %10u", filetype);
break;
}
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
uint32_t f = flags;
if (f & MachO::MH_NOUNDEFS) {
outs() << " NOUNDEFS";
f &= ~MachO::MH_NOUNDEFS;
}
if (f & MachO::MH_INCRLINK) {
outs() << " INCRLINK";
f &= ~MachO::MH_INCRLINK;
}
if (f & MachO::MH_DYLDLINK) {
outs() << " DYLDLINK";
f &= ~MachO::MH_DYLDLINK;
}
if (f & MachO::MH_BINDATLOAD) {
outs() << " BINDATLOAD";
f &= ~MachO::MH_BINDATLOAD;
}
if (f & MachO::MH_PREBOUND) {
outs() << " PREBOUND";
f &= ~MachO::MH_PREBOUND;
}
if (f & MachO::MH_SPLIT_SEGS) {
outs() << " SPLIT_SEGS";
f &= ~MachO::MH_SPLIT_SEGS;
}
if (f & MachO::MH_LAZY_INIT) {
outs() << " LAZY_INIT";
f &= ~MachO::MH_LAZY_INIT;
}
if (f & MachO::MH_TWOLEVEL) {
outs() << " TWOLEVEL";
f &= ~MachO::MH_TWOLEVEL;
}
if (f & MachO::MH_FORCE_FLAT) {
outs() << " FORCE_FLAT";
f &= ~MachO::MH_FORCE_FLAT;
}
if (f & MachO::MH_NOMULTIDEFS) {
outs() << " NOMULTIDEFS";
f &= ~MachO::MH_NOMULTIDEFS;
}
if (f & MachO::MH_NOFIXPREBINDING) {
outs() << " NOFIXPREBINDING";
f &= ~MachO::MH_NOFIXPREBINDING;
}
if (f & MachO::MH_PREBINDABLE) {
outs() << " PREBINDABLE";
f &= ~MachO::MH_PREBINDABLE;
}
if (f & MachO::MH_ALLMODSBOUND) {
outs() << " ALLMODSBOUND";
f &= ~MachO::MH_ALLMODSBOUND;
}
if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
outs() << " SUBSECTIONS_VIA_SYMBOLS";
f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
}
if (f & MachO::MH_CANONICAL) {
outs() << " CANONICAL";
f &= ~MachO::MH_CANONICAL;
}
if (f & MachO::MH_WEAK_DEFINES) {
outs() << " WEAK_DEFINES";
f &= ~MachO::MH_WEAK_DEFINES;
}
if (f & MachO::MH_BINDS_TO_WEAK) {
outs() << " BINDS_TO_WEAK";
f &= ~MachO::MH_BINDS_TO_WEAK;
}
if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
outs() << " ALLOW_STACK_EXECUTION";
f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
}
if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
outs() << " DEAD_STRIPPABLE_DYLIB";
f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
}
if (f & MachO::MH_PIE) {
outs() << " PIE";
f &= ~MachO::MH_PIE;
}
if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
outs() << " NO_REEXPORTED_DYLIBS";
f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
}
if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
outs() << " MH_HAS_TLV_DESCRIPTORS";
f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
}
if (f & MachO::MH_NO_HEAP_EXECUTION) {
outs() << " MH_NO_HEAP_EXECUTION";
f &= ~MachO::MH_NO_HEAP_EXECUTION;
}
if (f & MachO::MH_APP_EXTENSION_SAFE) {
outs() << " APP_EXTENSION_SAFE";
f &= ~MachO::MH_APP_EXTENSION_SAFE;
}
if (f != 0 || flags == 0)
outs() << format(" 0x%08" PRIx32, f);
} else {
outs() << format(" 0x%08" PRIx32, magic);
outs() << format(" %7d", cputype);
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
outs() << format(" %10u", filetype);
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
outs() << format(" 0x%08" PRIx32, flags);
}
outs() << "\n";
}
static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
StringRef SegName, uint64_t vmaddr,
uint64_t vmsize, uint64_t fileoff,
uint64_t filesize, uint32_t maxprot,
uint32_t initprot, uint32_t nsects,
uint32_t flags, uint32_t object_size,
bool verbose) {
uint64_t expected_cmdsize;
if (cmd == MachO::LC_SEGMENT) {
outs() << " cmd LC_SEGMENT\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section);
expected_cmdsize += sizeof(struct MachO::segment_command);
} else {
outs() << " cmd LC_SEGMENT_64\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section_64);
expected_cmdsize += sizeof(struct MachO::segment_command_64);
}
outs() << " cmdsize " << cmdsize;
if (cmdsize != expected_cmdsize)
outs() << " Inconsistent size\n";
else
outs() << "\n";
outs() << " segname " << SegName << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
} else {
outs() << " vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
}
outs() << " fileoff " << fileoff;
if (fileoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " filesize " << filesize;
if (fileoff + filesize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
if (verbose) {
if ((maxprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
else {
if (maxprot & MachO::VM_PROT_READ)
outs() << " maxprot r";
else
outs() << " maxprot -";
if (maxprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (maxprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
if ((initprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
else {
if (initprot & MachO::VM_PROT_READ)
outs() << " initprot r";
else
outs() << " initprot -";
if (initprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (initprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
} else {
outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
}
outs() << " nsects " << nsects << "\n";
if (verbose) {
outs() << " flags";
if (flags == 0)
outs() << " (none)\n";
else {
if (flags & MachO::SG_HIGHVM) {
outs() << " HIGHVM";
flags &= ~MachO::SG_HIGHVM;
}
if (flags & MachO::SG_FVMLIB) {
outs() << " FVMLIB";
flags &= ~MachO::SG_FVMLIB;
}
if (flags & MachO::SG_NORELOC) {
outs() << " NORELOC";
flags &= ~MachO::SG_NORELOC;
}
if (flags & MachO::SG_PROTECTED_VERSION_1) {
outs() << " PROTECTED_VERSION_1";
flags &= ~MachO::SG_PROTECTED_VERSION_1;
}
if (flags)
outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
else
outs() << "\n";
}
} else {
outs() << " flags " << format("0x%" PRIx32, flags) << "\n";
}
}
static void PrintSection(const char *sectname, const char *segname,
uint64_t addr, uint64_t size, uint32_t offset,
uint32_t align, uint32_t reloff, uint32_t nreloc,
uint32_t flags, uint32_t reserved1, uint32_t reserved2,
uint32_t cmd, const char *sg_segname,
uint32_t filetype, uint32_t object_size,
bool verbose) {
outs() << "Section\n";
outs() << " sectname " << format("%.16s\n", sectname);
outs() << " segname " << format("%.16s", segname);
if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
outs() << " (does not match segment)\n";
else
outs() << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " addr " << format("0x%016" PRIx64, addr) << "\n";
outs() << " size " << format("0x%016" PRIx64, size);
} else {
outs() << " addr " << format("0x%08" PRIx64, addr) << "\n";
outs() << " size " << format("0x%08" PRIx64, size);
}
if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " offset " << offset;
if (offset > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t align_shifted = 1 << align;
outs() << " align 2^" << align << " (" << align_shifted << ")\n";
outs() << " reloff " << reloff;
if (reloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nreloc " << nreloc;
if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t section_type = flags & MachO::SECTION_TYPE;
if (verbose) {
outs() << " type";
if (section_type == MachO::S_REGULAR)
outs() << " S_REGULAR\n";
else if (section_type == MachO::S_ZEROFILL)
outs() << " S_ZEROFILL\n";
else if (section_type == MachO::S_CSTRING_LITERALS)
outs() << " S_CSTRING_LITERALS\n";
else if (section_type == MachO::S_4BYTE_LITERALS)
outs() << " S_4BYTE_LITERALS\n";
else if (section_type == MachO::S_8BYTE_LITERALS)
outs() << " S_8BYTE_LITERALS\n";
else if (section_type == MachO::S_16BYTE_LITERALS)
outs() << " S_16BYTE_LITERALS\n";
else if (section_type == MachO::S_LITERAL_POINTERS)
outs() << " S_LITERAL_POINTERS\n";
else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
outs() << " S_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " S_SYMBOL_STUBS\n";
else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
outs() << " S_MOD_INIT_FUNC_POINTERS\n";
else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
outs() << " S_MOD_TERM_FUNC_POINTERS\n";
else if (section_type == MachO::S_COALESCED)
outs() << " S_COALESCED\n";
else if (section_type == MachO::S_INTERPOSING)
outs() << " S_INTERPOSING\n";
else if (section_type == MachO::S_DTRACE_DOF)
outs() << " S_DTRACE_DOF\n";
else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
outs() << " S_THREAD_LOCAL_REGULAR\n";
else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
outs() << " S_THREAD_LOCAL_ZEROFILL\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
outs() << " S_THREAD_LOCAL_VARIABLES\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
else
outs() << format("0x%08" PRIx32, section_type) << "\n";
outs() << "attributes";
uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
outs() << " PURE_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_NO_TOC)
outs() << " NO_TOC";
if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
outs() << " STRIP_STATIC_SYMS";
if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
outs() << " NO_DEAD_STRIP";
if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
outs() << " LIVE_SUPPORT";
if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
outs() << " SELF_MODIFYING_CODE";
if (section_attributes & MachO::S_ATTR_DEBUG)
outs() << " DEBUG";
if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
outs() << " SOME_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_EXT_RELOC)
outs() << " EXT_RELOC";
if (section_attributes & MachO::S_ATTR_LOC_RELOC)
outs() << " LOC_RELOC";
if (section_attributes == 0)
outs() << " (none)";
outs() << "\n";
} else
outs() << " flags " << format("0x%08" PRIx32, flags) << "\n";
outs() << " reserved1 " << reserved1;
if (section_type == MachO::S_SYMBOL_STUBS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " (index into indirect symbol table)\n";
else
outs() << "\n";
outs() << " reserved2 " << reserved2;
if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " (size of stubs)\n";
else
outs() << "\n";
}
static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
uint32_t object_size) {
outs() << " cmd LC_SYMTAB\n";
outs() << " cmdsize " << st.cmdsize;
if (st.cmdsize != sizeof(struct MachO::symtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " symoff " << st.symoff;
if (st.symoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nsyms " << st.nsyms;
uint64_t big_size;
if (Is64Bit) {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist_64);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
} else {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
outs() << " stroff " << st.stroff;
if (st.stroff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " strsize " << st.strsize;
big_size = st.stroff;
big_size += st.strsize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
uint32_t nsyms, uint32_t object_size,
bool Is64Bit) {
outs() << " cmd LC_DYSYMTAB\n";
outs() << " cmdsize " << dyst.cmdsize;
if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " ilocalsym " << dyst.ilocalsym;
if (dyst.ilocalsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nlocalsym " << dyst.nlocalsym;
uint64_t big_size;
big_size = dyst.ilocalsym;
big_size += dyst.nlocalsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iextdefsym " << dyst.iextdefsym;
if (dyst.iextdefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nextdefsym " << dyst.nextdefsym;
big_size = dyst.iextdefsym;
big_size += dyst.nextdefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iundefsym " << dyst.iundefsym;
if (dyst.iundefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nundefsym " << dyst.nundefsym;
big_size = dyst.iundefsym;
big_size += dyst.nundefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " tocoff " << dyst.tocoff;
if (dyst.tocoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " ntoc " << dyst.ntoc;
big_size = dyst.ntoc;
big_size *= sizeof(struct MachO::dylib_table_of_contents);
big_size += dyst.tocoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " modtaboff " << dyst.modtaboff;
if (dyst.modtaboff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nmodtab " << dyst.nmodtab;
uint64_t modtabend;
if (Is64Bit) {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module_64);
modtabend += dyst.modtaboff;
} else {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module);
modtabend += dyst.modtaboff;
}
if (modtabend > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extrefsymoff " << dyst.extrefsymoff;
if (dyst.extrefsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrefsyms " << dyst.nextrefsyms;
big_size = dyst.nextrefsyms;
big_size *= sizeof(struct MachO::dylib_reference);
big_size += dyst.extrefsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " indirectsymoff " << dyst.indirectsymoff;
if (dyst.indirectsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nindirectsyms " << dyst.nindirectsyms;
big_size = dyst.nindirectsyms;
big_size *= sizeof(uint32_t);
big_size += dyst.indirectsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extreloff " << dyst.extreloff;
if (dyst.extreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrel " << dyst.nextrel;
big_size = dyst.nextrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.extreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " locreloff " << dyst.locreloff;
if (dyst.locreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nlocrel " << dyst.nlocrel;
big_size = dyst.nlocrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.locreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
uint32_t object_size) {
if (dc.cmd == MachO::LC_DYLD_INFO)
outs() << " cmd LC_DYLD_INFO\n";
else
outs() << " cmd LC_DYLD_INFO_ONLY\n";
outs() << " cmdsize " << dc.cmdsize;
if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " rebase_off " << dc.rebase_off;
if (dc.rebase_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " rebase_size " << dc.rebase_size;
uint64_t big_size;
big_size = dc.rebase_off;
big_size += dc.rebase_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_off " << dc.bind_off;
if (dc.bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_size " << dc.bind_size;
big_size = dc.bind_off;
big_size += dc.bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_off " << dc.weak_bind_off;
if (dc.weak_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_size " << dc.weak_bind_size;
big_size = dc.weak_bind_off;
big_size += dc.weak_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_off " << dc.lazy_bind_off;
if (dc.lazy_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_size " << dc.lazy_bind_size;
big_size = dc.lazy_bind_off;
big_size += dc.lazy_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_off " << dc.export_off;
if (dc.export_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_size " << dc.export_size;
big_size = dc.export_off;
big_size += dc.export_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
const char *Ptr) {
if (dyld.cmd == MachO::LC_ID_DYLINKER)
outs() << " cmd LC_ID_DYLINKER\n";
else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
outs() << " cmd LC_LOAD_DYLINKER\n";
else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
outs() << " cmd LC_DYLD_ENVIRONMENT\n";
else
outs() << " cmd ?(" << dyld.cmd << ")\n";
outs() << " cmdsize " << dyld.cmdsize;
if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dyld.name >= dyld.cmdsize)
outs() << " name ?(bad offset " << dyld.name << ")\n";
else {
const char *P = (const char *)(Ptr) + dyld.name;
outs() << " name " << P << " (offset " << dyld.name << ")\n";
}
}
static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
outs() << " cmd LC_UUID\n";
outs() << " cmdsize " << uuid.cmdsize;
if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " uuid ";
outs() << format("%02" PRIX32, uuid.uuid[0]);
outs() << format("%02" PRIX32, uuid.uuid[1]);
outs() << format("%02" PRIX32, uuid.uuid[2]);
outs() << format("%02" PRIX32, uuid.uuid[3]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[4]);
outs() << format("%02" PRIX32, uuid.uuid[5]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[6]);
outs() << format("%02" PRIX32, uuid.uuid[7]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[8]);
outs() << format("%02" PRIX32, uuid.uuid[9]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[10]);
outs() << format("%02" PRIX32, uuid.uuid[11]);
outs() << format("%02" PRIX32, uuid.uuid[12]);
outs() << format("%02" PRIX32, uuid.uuid[13]);
outs() << format("%02" PRIX32, uuid.uuid[14]);
outs() << format("%02" PRIX32, uuid.uuid[15]);
outs() << "\n";
}
static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
outs() << " cmd LC_RPATH\n";
outs() << " cmdsize " << rpath.cmdsize;
if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (rpath.path >= rpath.cmdsize)
outs() << " path ?(bad offset " << rpath.path << ")\n";
else {
const char *P = (const char *)(Ptr) + rpath.path;
outs() << " path " << P << " (offset " << rpath.path << ")\n";
}
}
static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX)
outs() << " cmd LC_VERSION_MIN_MACOSX\n";
else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS)
outs() << " cmd LC_VERSION_MIN_IPHONEOS\n";
else
outs() << " cmd " << vd.cmd << " (?)\n";
outs() << " cmdsize " << vd.cmdsize;
if (vd.cmdsize != sizeof(struct MachO::version_min_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " version " << ((vd.version >> 16) & 0xffff) << "."
<< ((vd.version >> 8) & 0xff);
if ((vd.version & 0xff) != 0)
outs() << "." << (vd.version & 0xff);
outs() << "\n";
if (vd.sdk == 0)
outs() << " sdk n/a";
else {
outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "."
<< ((vd.sdk >> 8) & 0xff);
}
if ((vd.sdk & 0xff) != 0)
outs() << "." << (vd.sdk & 0xff);
outs() << "\n";
}
static void PrintSourceVersionCommand(MachO::source_version_command sd) {
outs() << " cmd LC_SOURCE_VERSION\n";
outs() << " cmdsize " << sd.cmdsize;
if (sd.cmdsize != sizeof(struct MachO::source_version_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
uint64_t a = (sd.version >> 40) & 0xffffff;
uint64_t b = (sd.version >> 30) & 0x3ff;
uint64_t c = (sd.version >> 20) & 0x3ff;
uint64_t d = (sd.version >> 10) & 0x3ff;
uint64_t e = sd.version & 0x3ff;
outs() << " version " << a << "." << b;
if (e != 0)
outs() << "." << c << "." << d << "." << e;
else if (d != 0)
outs() << "." << c << "." << d;
else if (c != 0)
outs() << "." << c;
outs() << "\n";
}
static void PrintEntryPointCommand(MachO::entry_point_command ep) {
outs() << " cmd LC_MAIN\n";
outs() << " cmdsize " << ep.cmdsize;
if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " entryoff " << ep.entryoff << "\n";
outs() << " stacksize " << ep.stacksize << "\n";
}
static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
uint32_t object_size) {
outs() << " cmd LC_ENCRYPTION_INFO\n";
outs() << " cmdsize " << ec.cmdsize;
if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " cryptoff " << ec.cryptoff;
if (ec.cryptoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptsize " << ec.cryptsize;
if (ec.cryptsize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptid " << ec.cryptid << "\n";
}
static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
uint32_t object_size) {
outs() << " cmd LC_ENCRYPTION_INFO_64\n";
outs() << " cmdsize " << ec.cmdsize;
if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " cryptoff " << ec.cryptoff;
if (ec.cryptoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptsize " << ec.cryptsize;
if (ec.cryptsize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptid " << ec.cryptid << "\n";
outs() << " pad " << ec.pad << "\n";
}
static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
const char *Ptr) {
outs() << " cmd LC_LINKER_OPTION\n";
outs() << " cmdsize " << lo.cmdsize;
if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " count " << lo.count << "\n";
const char *string = Ptr + sizeof(struct MachO::linker_option_command);
uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
uint32_t i = 0;
while (left > 0) {
while (*string == '\0' && left > 0) {
string++;
left--;
}
if (left > 0) {
i++;
outs() << " string #" << i << " " << format("%.*s\n", left, string);
uint32_t NullPos = StringRef(string, left).find('\0');
uint32_t len = std::min(NullPos, left) + 1;
string += len;
left -= len;
}
}
if (lo.count != i)
outs() << " count " << lo.count << " does not match number of strings "
<< i << "\n";
}
static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_FRAMEWORK\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.umbrella < sub.cmdsize) {
const char *P = Ptr + sub.umbrella;
outs() << " umbrella " << P << " (offset " << sub.umbrella << ")\n";
} else {
outs() << " umbrella ?(bad offset " << sub.umbrella << ")\n";
}
}
static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_UMBRELLA\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.sub_umbrella < sub.cmdsize) {
const char *P = Ptr + sub.sub_umbrella;
outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
} else {
outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
}
}
static void PrintSubLibraryCommand(MachO::sub_library_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_LIBRARY\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.sub_library < sub.cmdsize) {
const char *P = Ptr + sub.sub_library;
outs() << " sub_library " << P << " (offset " << sub.sub_library << ")\n";
} else {
outs() << " sub_library ?(bad offset " << sub.sub_library << ")\n";
}
}
static void PrintSubClientCommand(MachO::sub_client_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_CLIENT\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.client < sub.cmdsize) {
const char *P = Ptr + sub.client;
outs() << " client " << P << " (offset " << sub.client << ")\n";
} else {
outs() << " client ?(bad offset " << sub.client << ")\n";
}
}
static void PrintRoutinesCommand(MachO::routines_command r) {
outs() << " cmd LC_ROUTINES\n";
outs() << " cmdsize " << r.cmdsize;
if (r.cmdsize != sizeof(struct MachO::routines_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
outs() << " init_module " << r.init_module << "\n";
outs() << " reserved1 " << r.reserved1 << "\n";
outs() << " reserved2 " << r.reserved2 << "\n";
outs() << " reserved3 " << r.reserved3 << "\n";
outs() << " reserved4 " << r.reserved4 << "\n";
outs() << " reserved5 " << r.reserved5 << "\n";
outs() << " reserved6 " << r.reserved6 << "\n";
}
static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
outs() << " cmd LC_ROUTINES_64\n";
outs() << " cmdsize " << r.cmdsize;
if (r.cmdsize != sizeof(struct MachO::routines_command_64))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
outs() << " init_module " << r.init_module << "\n";
outs() << " reserved1 " << r.reserved1 << "\n";
outs() << " reserved2 " << r.reserved2 << "\n";
outs() << " reserved3 " << r.reserved3 << "\n";
outs() << " reserved4 " << r.reserved4 << "\n";
outs() << " reserved5 " << r.reserved5 << "\n";
outs() << " reserved6 " << r.reserved6 << "\n";
}
static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
outs() << " rax " << format("0x%016" PRIx64, cpu64.rax);
outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
outs() << " rcx " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
outs() << " rdx " << format("0x%016" PRIx64, cpu64.rdx);
outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
outs() << " rsi " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
outs() << " rbp " << format("0x%016" PRIx64, cpu64.rbp);
outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
outs() << " r8 " << format("0x%016" PRIx64, cpu64.r8) << "\n";
outs() << " r9 " << format("0x%016" PRIx64, cpu64.r9);
outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
outs() << " r11 " << format("0x%016" PRIx64, cpu64.r11) << "\n";
outs() << " r12 " << format("0x%016" PRIx64, cpu64.r12);
outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
outs() << " r14 " << format("0x%016" PRIx64, cpu64.r14) << "\n";
outs() << " r15 " << format("0x%016" PRIx64, cpu64.r15);
outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
outs() << "rflags " << format("0x%016" PRIx64, cpu64.rflags);
outs() << " cs " << format("0x%016" PRIx64, cpu64.cs);
outs() << " fs " << format("0x%016" PRIx64, cpu64.fs) << "\n";
outs() << " gs " << format("0x%016" PRIx64, cpu64.gs) << "\n";
}
static void Print_mmst_reg(MachO::mmst_reg_t &r) {
uint32_t f;
outs() << "\t mmst_reg ";
for (f = 0; f < 10; f++)
outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
outs() << "\n";
outs() << "\t mmst_rsrv ";
for (f = 0; f < 6; f++)
outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
outs() << "\n";
}
static void Print_xmm_reg(MachO::xmm_reg_t &r) {
uint32_t f;
outs() << "\t xmm_reg ";
for (f = 0; f < 16; f++)
outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
outs() << "\n";
}
static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
outs() << "\t fpu_reserved[0] " << fpu.fpu_reserved[0];
outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
outs() << "\t control: invalid " << fpu.fpu_fcw.invalid;
outs() << " denorm " << fpu.fpu_fcw.denorm;
outs() << " zdiv " << fpu.fpu_fcw.zdiv;
outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
outs() << " undfl " << fpu.fpu_fcw.undfl;
outs() << " precis " << fpu.fpu_fcw.precis << "\n";
outs() << "\t\t pc ";
if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
outs() << "FP_PREC_24B ";
else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
outs() << "FP_PREC_53B ";
else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
outs() << "FP_PREC_64B ";
else
outs() << fpu.fpu_fcw.pc << " ";
outs() << "rc ";
if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
outs() << "FP_RND_NEAR ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
outs() << "FP_RND_DOWN ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
outs() << "FP_RND_UP ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
outs() << "FP_CHOP ";
outs() << "\n";
outs() << "\t status: invalid " << fpu.fpu_fsw.invalid;
outs() << " denorm " << fpu.fpu_fsw.denorm;
outs() << " zdiv " << fpu.fpu_fsw.zdiv;
outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
outs() << " undfl " << fpu.fpu_fsw.undfl;
outs() << " precis " << fpu.fpu_fsw.precis;
outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
outs() << "\t errsumm " << fpu.fpu_fsw.errsumm;
outs() << " c0 " << fpu.fpu_fsw.c0;
outs() << " c1 " << fpu.fpu_fsw.c1;
outs() << " c2 " << fpu.fpu_fsw.c2;
outs() << " tos " << fpu.fpu_fsw.tos;
outs() << " c3 " << fpu.fpu_fsw.c3;
outs() << " busy " << fpu.fpu_fsw.busy << "\n";
outs() << "\t fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
outs() << "\t fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
outs() << "\t fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
outs() << "\n";
outs() << "\t fpu_stmm0:\n";
Print_mmst_reg(fpu.fpu_stmm0);
outs() << "\t fpu_stmm1:\n";
Print_mmst_reg(fpu.fpu_stmm1);
outs() << "\t fpu_stmm2:\n";
Print_mmst_reg(fpu.fpu_stmm2);
outs() << "\t fpu_stmm3:\n";
Print_mmst_reg(fpu.fpu_stmm3);
outs() << "\t fpu_stmm4:\n";
Print_mmst_reg(fpu.fpu_stmm4);
outs() << "\t fpu_stmm5:\n";
Print_mmst_reg(fpu.fpu_stmm5);
outs() << "\t fpu_stmm6:\n";
Print_mmst_reg(fpu.fpu_stmm6);
outs() << "\t fpu_stmm7:\n";
Print_mmst_reg(fpu.fpu_stmm7);
outs() << "\t fpu_xmm0:\n";
Print_xmm_reg(fpu.fpu_xmm0);
outs() << "\t fpu_xmm1:\n";
Print_xmm_reg(fpu.fpu_xmm1);
outs() << "\t fpu_xmm2:\n";
Print_xmm_reg(fpu.fpu_xmm2);
outs() << "\t fpu_xmm3:\n";
Print_xmm_reg(fpu.fpu_xmm3);
outs() << "\t fpu_xmm4:\n";
Print_xmm_reg(fpu.fpu_xmm4);
outs() << "\t fpu_xmm5:\n";
Print_xmm_reg(fpu.fpu_xmm5);
outs() << "\t fpu_xmm6:\n";
Print_xmm_reg(fpu.fpu_xmm6);
outs() << "\t fpu_xmm7:\n";
Print_xmm_reg(fpu.fpu_xmm7);
outs() << "\t fpu_xmm8:\n";
Print_xmm_reg(fpu.fpu_xmm8);
outs() << "\t fpu_xmm9:\n";
Print_xmm_reg(fpu.fpu_xmm9);
outs() << "\t fpu_xmm10:\n";
Print_xmm_reg(fpu.fpu_xmm10);
outs() << "\t fpu_xmm11:\n";
Print_xmm_reg(fpu.fpu_xmm11);
outs() << "\t fpu_xmm12:\n";
Print_xmm_reg(fpu.fpu_xmm12);
outs() << "\t fpu_xmm13:\n";
Print_xmm_reg(fpu.fpu_xmm13);
outs() << "\t fpu_xmm14:\n";
Print_xmm_reg(fpu.fpu_xmm14);
outs() << "\t fpu_xmm15:\n";
Print_xmm_reg(fpu.fpu_xmm15);
outs() << "\t fpu_rsrv4:\n";
for (uint32_t f = 0; f < 6; f++) {
outs() << "\t ";
for (uint32_t g = 0; g < 16; g++)
outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
outs() << "\n";
}
outs() << "\t fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
outs() << "\n";
}
static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
outs() << "\t trapno " << format("0x%08" PRIx32, exc64.trapno);
outs() << " err " << format("0x%08" PRIx32, exc64.err);
outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
}
static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
bool isLittleEndian, uint32_t cputype) {
if (t.cmd == MachO::LC_THREAD)
outs() << " cmd LC_THREAD\n";
else if (t.cmd == MachO::LC_UNIXTHREAD)
outs() << " cmd LC_UNIXTHREAD\n";
else
outs() << " cmd " << t.cmd << " (unknown)\n";
outs() << " cmdsize " << t.cmdsize;
if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
outs() << " Incorrect size\n";
else
outs() << "\n";
const char *begin = Ptr + sizeof(struct MachO::thread_command);
const char *end = Ptr + t.cmdsize;
uint32_t flavor, count, left;
if (cputype == MachO::CPU_TYPE_X86_64) {
while (begin < end) {
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&flavor, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
flavor = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(flavor);
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&count, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
count = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(count);
if (flavor == MachO::x86_THREAD_STATE64) {
outs() << " flavor x86_THREAD_STATE64\n";
if (count == MachO::x86_THREAD_STATE64_COUNT)
outs() << " count x86_THREAD_STATE64_COUNT\n";
else
outs() << " count " << count
<< " (not x86_THREAD_STATE64_COUNT)\n";
MachO::x86_thread_state64_t cpu64;
left = end - begin;
if (left >= sizeof(MachO::x86_thread_state64_t)) {
memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
begin += sizeof(MachO::x86_thread_state64_t);
} else {
memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
memcpy(&cpu64, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(cpu64);
Print_x86_thread_state64_t(cpu64);
} else if (flavor == MachO::x86_THREAD_STATE) {
outs() << " flavor x86_THREAD_STATE\n";
if (count == MachO::x86_THREAD_STATE_COUNT)
outs() << " count x86_THREAD_STATE_COUNT\n";
else
outs() << " count " << count
<< " (not x86_THREAD_STATE_COUNT)\n";
struct MachO::x86_thread_state_t ts;
left = end - begin;
if (left >= sizeof(MachO::x86_thread_state_t)) {
memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
begin += sizeof(MachO::x86_thread_state_t);
} else {
memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
memcpy(&ts, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(ts);
if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
outs() << "\t tsh.flavor x86_THREAD_STATE64 ";
if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
else
outs() << "tsh.count " << ts.tsh.count
<< " (not x86_THREAD_STATE64_COUNT\n";
Print_x86_thread_state64_t(ts.uts.ts64);
} else {
outs() << "\t tsh.flavor " << ts.tsh.flavor << " tsh.count "
<< ts.tsh.count << "\n";
}
} else if (flavor == MachO::x86_FLOAT_STATE) {
outs() << " flavor x86_FLOAT_STATE\n";
if (count == MachO::x86_FLOAT_STATE_COUNT)
outs() << " count x86_FLOAT_STATE_COUNT\n";
else
outs() << " count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
struct MachO::x86_float_state_t fs;
left = end - begin;
if (left >= sizeof(MachO::x86_float_state_t)) {
memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
begin += sizeof(MachO::x86_float_state_t);
} else {
memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
memcpy(&fs, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(fs);
if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
outs() << "\t fsh.flavor x86_FLOAT_STATE64 ";
if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
else
outs() << "fsh.count " << fs.fsh.count
<< " (not x86_FLOAT_STATE64_COUNT\n";
Print_x86_float_state_t(fs.ufs.fs64);
} else {
outs() << "\t fsh.flavor " << fs.fsh.flavor << " fsh.count "
<< fs.fsh.count << "\n";
}
} else if (flavor == MachO::x86_EXCEPTION_STATE) {
outs() << " flavor x86_EXCEPTION_STATE\n";
if (count == MachO::x86_EXCEPTION_STATE_COUNT)
outs() << " count x86_EXCEPTION_STATE_COUNT\n";
else
outs() << " count " << count
<< " (not x86_EXCEPTION_STATE_COUNT)\n";
struct MachO::x86_exception_state_t es;
left = end - begin;
if (left >= sizeof(MachO::x86_exception_state_t)) {
memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
begin += sizeof(MachO::x86_exception_state_t);
} else {
memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
memcpy(&es, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(es);
if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
outs() << "\t esh.flavor x86_EXCEPTION_STATE64\n";
if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
outs() << "\t esh.count x86_EXCEPTION_STATE64_COUNT\n";
else
outs() << "\t esh.count " << es.esh.count
<< " (not x86_EXCEPTION_STATE64_COUNT\n";
Print_x86_exception_state_t(es.ues.es64);
} else {
outs() << "\t esh.flavor " << es.esh.flavor << " esh.count "
<< es.esh.count << "\n";
}
} else {
outs() << " flavor " << flavor << " (unknown)\n";
outs() << " count " << count << "\n";
outs() << " state (unknown)\n";
begin += count * sizeof(uint32_t);
}
}
} else {
while (begin < end) {
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&flavor, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
flavor = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(flavor);
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&count, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
count = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(count);
outs() << " flavor " << flavor << "\n";
outs() << " count " << count << "\n";
outs() << " state (Unknown cputype/cpusubtype)\n";
begin += count * sizeof(uint32_t);
}
}
}
static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
if (dl.cmd == MachO::LC_ID_DYLIB)
outs() << " cmd LC_ID_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_DYLIB)
outs() << " cmd LC_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
outs() << " cmd LC_LOAD_WEAK_DYLIB\n";
else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
outs() << " cmd LC_REEXPORT_DYLIB\n";
else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
outs() << " cmd LC_LAZY_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
outs() << " cmd LC_LOAD_UPWARD_DYLIB\n";
else
outs() << " cmd " << dl.cmd << " (unknown)\n";
outs() << " cmdsize " << dl.cmdsize;
if (dl.cmdsize < sizeof(struct MachO::dylib_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dl.dylib.name < dl.cmdsize) {
const char *P = (const char *)(Ptr) + dl.dylib.name;
outs() << " name " << P << " (offset " << dl.dylib.name << ")\n";
} else {
outs() << " name ?(bad offset " << dl.dylib.name << ")\n";
}
outs() << " time stamp " << dl.dylib.timestamp << " ";
time_t t = dl.dylib.timestamp;
outs() << ctime(&t);
outs() << " current version ";
if (dl.dylib.current_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
<< ((dl.dylib.current_version >> 8) & 0xff) << "."
<< (dl.dylib.current_version & 0xff) << "\n";
outs() << "compatibility version ";
if (dl.dylib.compatibility_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
<< ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
<< (dl.dylib.compatibility_version & 0xff) << "\n";
}
static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
uint32_t object_size) {
if (ld.cmd == MachO::LC_CODE_SIGNATURE)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
outs() << " cmd LC_SEGMENT_SPLIT_INFO\n";
else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_DATA_IN_CODE)
outs() << " cmd LC_DATA_IN_CODE\n";
else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n";
else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n";
else
outs() << " cmd " << ld.cmd << " (?)\n";
outs() << " cmdsize " << ld.cmdsize;
if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " dataoff " << ld.dataoff;
if (ld.dataoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " datasize " << ld.datasize;
uint64_t big_size = ld.dataoff;
big_size += ld.datasize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t filetype,
uint32_t cputype, bool verbose) {
StringRef Buf = Obj->getData();
unsigned Index = 0;
for (const auto &Command : Obj->load_commands()) {
outs() << "Load command " << Index++ << "\n";
if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
const char *sg_segname = SLC.segname;
PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
verbose);
for (unsigned j = 0; j < SLC.nsects; j++) {
MachO::section S = Obj->getSection(Command, j);
PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
const char *sg_segname = SLC_64.segname;
PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
for (unsigned j = 0; j < SLC_64.nsects; j++) {
MachO::section_64 S_64 = Obj->getSection64(Command, j);
PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SYMTAB) {
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
} else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
Obj->is64Bit());
} else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
} else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
Command.C.cmd == MachO::LC_ID_DYLINKER ||
Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
PrintDyldLoadCommand(Dyld, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_UUID) {
MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
PrintUuidLoadCommand(Uuid);
} else if (Command.C.cmd == MachO::LC_RPATH) {
MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
PrintRpathLoadCommand(Rpath, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS) {
MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
PrintVersionMinLoadCommand(Vd);
} else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
PrintSourceVersionCommand(Sd);
} else if (Command.C.cmd == MachO::LC_MAIN) {
MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
PrintEntryPointCommand(Ep);
} else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
MachO::encryption_info_command Ei =
Obj->getEncryptionInfoCommand(Command);
PrintEncryptionInfoCommand(Ei, Buf.size());
} else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
MachO::encryption_info_command_64 Ei =
Obj->getEncryptionInfoCommand64(Command);
PrintEncryptionInfoCommand64(Ei, Buf.size());
} else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
MachO::linker_option_command Lo =
Obj->getLinkerOptionLoadCommand(Command);
PrintLinkerOptionCommand(Lo, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
PrintSubFrameworkCommand(Sf, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
PrintSubUmbrellaCommand(Sf, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
PrintSubLibraryCommand(Sl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
PrintSubClientCommand(Sc, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_ROUTINES) {
MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
PrintRoutinesCommand(Rc);
} else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
PrintRoutinesCommand64(Rc);
} else if (Command.C.cmd == MachO::LC_THREAD ||
Command.C.cmd == MachO::LC_UNIXTHREAD) {
MachO::thread_command Tc = Obj->getThreadCommand(Command);
PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
} else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
Command.C.cmd == MachO::LC_ID_DYLIB ||
Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
PrintDylibCommand(Dl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
Command.C.cmd == MachO::LC_DATA_IN_CODE ||
Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
MachO::linkedit_data_command Ld =
Obj->getLinkeditDataLoadCommand(Command);
PrintLinkEditDataCommand(Ld, Buf.size());
} else {
outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
<< ")\n";
outs() << " cmdsize " << Command.C.cmdsize << "\n";
// TODO: get and print the raw bytes of the load command.
}
// TODO: print all the other kinds of load commands.
}
}
static void getAndPrintMachHeader(const MachOObjectFile *Obj,
uint32_t &filetype, uint32_t &cputype,
bool verbose) {
if (Obj->is64Bit()) {
MachO::mach_header_64 H_64;
H_64 = Obj->getHeader64();
PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
filetype = H_64.filetype;
cputype = H_64.cputype;
} else {
MachO::mach_header H;
H = Obj->getHeader();
PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
H.sizeofcmds, H.flags, verbose);
filetype = H.filetype;
cputype = H.cputype;
}
}
void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
uint32_t filetype = 0;
uint32_t cputype = 0;
getAndPrintMachHeader(file, filetype, cputype, !NonVerbose);
PrintLoadCommands(file, filetype, cputype, !NonVerbose);
}
//===----------------------------------------------------------------------===//
// export trie dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
uint64_t Flags = Entry.flags();
bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
if (ReExport)
outs() << "[re-export] ";
else
outs() << format("0x%08llX ",
Entry.address()); // FIXME:add in base address
outs() << Entry.name();
if (WeakDef || ThreadLocal || Resolver || Abs) {
bool NeedsComma = false;
outs() << " [";
if (WeakDef) {
outs() << "weak_def";
NeedsComma = true;
}
if (ThreadLocal) {
if (NeedsComma)
outs() << ", ";
outs() << "per-thread";
NeedsComma = true;
}
if (Abs) {
if (NeedsComma)
outs() << ", ";
outs() << "absolute";
NeedsComma = true;
}
if (Resolver) {
if (NeedsComma)
outs() << ", ";
outs() << format("resolver=0x%08llX", Entry.other());
NeedsComma = true;
}
outs() << "]";
}
if (ReExport) {
StringRef DylibName = "unknown";
int Ordinal = Entry.other() - 1;
Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
if (Entry.otherName().empty())
outs() << " (from " << DylibName << ")";
else
outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
}
outs() << "\n";
}
}
//===----------------------------------------------------------------------===//
// rebase table dumping
//===----------------------------------------------------------------------===//
namespace {
class SegInfo {
public:
SegInfo(const object::MachOObjectFile *Obj);
StringRef segmentName(uint32_t SegIndex);
StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
private:
struct SectionInfo {
uint64_t Address;
uint64_t Size;
StringRef SectionName;
StringRef SegmentName;
uint64_t OffsetInSegment;
uint64_t SegmentStartAddress;
uint32_t SegmentIndex;
};
const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
SmallVector<SectionInfo, 32> Sections;
};
}
SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
// Build table of sections so segIndex/offset pairs can be translated.
uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
StringRef CurSegName;
uint64_t CurSegAddress;
for (const SectionRef &Section : Obj->sections()) {
SectionInfo Info;
if (error(Section.getName(Info.SectionName)))
return;
Info.Address = Section.getAddress();
Info.Size = Section.getSize();
Info.SegmentName =
Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
if (!Info.SegmentName.equals(CurSegName)) {
++CurSegIndex;
CurSegName = Info.SegmentName;
CurSegAddress = Info.Address;
}
Info.SegmentIndex = CurSegIndex - 1;
Info.OffsetInSegment = Info.Address - CurSegAddress;
Info.SegmentStartAddress = CurSegAddress;
Sections.push_back(Info);
}
}
StringRef SegInfo::segmentName(uint32_t SegIndex) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex == SegIndex)
return SI.SegmentName;
}
llvm_unreachable("invalid segIndex");
}
const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
uint64_t OffsetInSeg) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex != SegIndex)
continue;
if (SI.OffsetInSegment > OffsetInSeg)
continue;
if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
continue;
return SI;
}
llvm_unreachable("segIndex and offset not in any section");
}
StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
return findSection(SegIndex, OffsetInSeg).SectionName;
}
uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
return SI.SegmentStartAddress + OffsetInSeg;
}
void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type\n";
for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer
outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n",
SegmentName.str().c_str(), SectionName.str().c_str(),
Address, Entry.typeName().str().c_str());
}
}
static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
StringRef DylibName;
switch (Ordinal) {
case MachO::BIND_SPECIAL_DYLIB_SELF:
return "this-image";
case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
return "main-executable";
case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
return "flat-namespace";
default:
if (Ordinal > 0) {
std::error_code EC =
Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
if (EC)
return "<<bad library ordinal>>";
return DylibName;
}
}
return "<<unknown special ordinal>>";
}
//===----------------------------------------------------------------------===//
// bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type "
"addend dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard
StringRef Attr;
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
Attr = " (weak_import)";
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(Entry.typeName(), 8) << " "
<< format_decimal(Entry.addend(), 8) << " "
<< left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
<< Entry.symbolName() << Attr << "\n";
}
}
//===----------------------------------------------------------------------===//
// lazy bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 libSystem ___stack_chk_guard
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
<< Entry.symbolName() << "\n";
}
}
//===----------------------------------------------------------------------===//
// weak bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"type addend symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
// Strong symbols don't have a location to update.
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
outs() << " strong "
<< Entry.symbolName() << "\n";
continue;
}
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __data 0x00001000 pointer 0 _foo
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(Entry.typeName(), 8) << " "
<< format_decimal(Entry.addend(), 8) << " " << Entry.symbolName()
<< "\n";
}
}
// get_dyld_bind_info_symbolname() is used for disassembly and passed an
// address, ReferenceValue, in the Mach-O file and looks in the dyld bind
// information for that address. If the address is found its binding symbol
// name is returned. If not nullptr is returned.
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
if (info->bindtable == nullptr) {
info->bindtable = new (BindTable);
SegInfo sectionTable(info->O);
for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
const char *SymbolName = nullptr;
StringRef name = Entry.symbolName();
if (!name.empty())
SymbolName = name.data();
info->bindtable->push_back(std::make_pair(Address, SymbolName));
}
}
for (bind_table_iterator BI = info->bindtable->begin(),
BE = info->bindtable->end();
BI != BE; ++BI) {
uint64_t Address = BI->first;
if (ReferenceValue == Address) {
const char *SymbolName = BI->second;
return SymbolName;
}
}
return nullptr;
}