eeb76b20a0
Submitted by: Ted Unangst <tedu@stanford.edu> Correct some inaccurate and badly formatted comments. config_subdisk: If our drive is down, ensure that the subdisk is crashed. Previously it was possible for the subdisk to be up when the drive was down. Change the way the plex lock mutexes work. Previously they were part of the struct plex, which tore apart the mutex linked lists when the plex table was expanded. Now we maintain a pool of mutexes (currently 32) to be shared by all plexes. This is still a lot better than the splhigh() method used in other architectures. update_volume_config: Remove redundant diskconfig parameter. Approved by: re (jhb)
2153 lines
71 KiB
C
2153 lines
71 KiB
C
/*-
|
|
* Copyright (c) 1997, 1998
|
|
* Nan Yang Computer Services Limited. All rights reserved.
|
|
*
|
|
* This software is distributed under the so-called ``Berkeley
|
|
* License'':
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Nan Yang Computer
|
|
* Services Limited.
|
|
* 4. Neither the name of the Company nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* This software is provided ``as is'', and any express or implied
|
|
* warranties, including, but not limited to, the implied warranties of
|
|
* merchantability and fitness for a particular purpose are disclaimed.
|
|
* In no event shall the company or contributors be liable for any
|
|
* direct, indirect, incidental, special, exemplary, or consequential
|
|
* damages (including, but not limited to, procurement of substitute
|
|
* goods or services; loss of use, data, or profits; or business
|
|
* interruption) however caused and on any theory of liability, whether
|
|
* in contract, strict liability, or tort (including negligence or
|
|
* otherwise) arising in any way out of the use of this software, even if
|
|
* advised of the possibility of such damage.
|
|
*
|
|
* $Id: vinumconfig.c,v 1.41 2003/05/23 00:57:34 grog Exp $
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#define STATIC static
|
|
|
|
#include <dev/vinum/vinumhdr.h>
|
|
#include <dev/vinum/request.h>
|
|
|
|
#define MAXTOKEN 64 /* maximum number of tokens in a line */
|
|
|
|
/*
|
|
* We can afford the luxury of global variables here,
|
|
* since start_config ensures that these functions
|
|
* are single-threaded.
|
|
*/
|
|
|
|
/* These are indices in vinum_conf of the last-mentioned of each kind of object */
|
|
static int current_drive; /* note the last drive we mention, for
|
|
* some defaults */
|
|
static int current_plex; /* and the same for the last plex */
|
|
static int current_volume; /* and the last volme */
|
|
static struct _ioctl_reply *ioctl_reply; /* struct to return via ioctl */
|
|
|
|
|
|
/* These values are used by most of these routines, so set them as globals */
|
|
static char *token[MAXTOKEN]; /* pointers to individual tokens */
|
|
static int tokens; /* number of tokens */
|
|
|
|
#define TOCONS 0x01
|
|
#define TOTTY 0x02
|
|
#define TOLOG 0x04
|
|
|
|
struct putchar_arg {
|
|
int flags;
|
|
struct tty *tty;
|
|
};
|
|
|
|
#define MSG_MAX 1024 /* maximum length of a formatted message */
|
|
/*
|
|
* Format an error message and return to the user
|
|
* in the reply. CARE: This routine is designed
|
|
* to be called only from the configuration
|
|
* routines, so it assumes it's the owner of the
|
|
* configuration lock, and unlocks it on exit.
|
|
*/
|
|
void
|
|
throw_rude_remark(int error, char *msg,...)
|
|
{
|
|
int retval;
|
|
va_list ap;
|
|
char *text;
|
|
static int finishing; /* don't recurse */
|
|
int was_finishing;
|
|
|
|
if ((vinum_conf.flags & VF_LOCKED) == 0) /* bug catcher */
|
|
panic("throw_rude_remark: called without config lock");
|
|
va_start(ap, msg);
|
|
if ((ioctl_reply != NULL) /* we're called from the user */
|
|
&&(!(vinum_conf.flags & VF_READING_CONFIG))) { /* and not reading from disk: return msg */
|
|
/*
|
|
* We can't just format to ioctl_reply, since it
|
|
* may contain our input parameters
|
|
*/
|
|
text = Malloc(MSG_MAX);
|
|
if (text == NULL) {
|
|
log(LOG_ERR, "vinum: can't allocate error message buffer\n");
|
|
printf("vinum: ");
|
|
vprintf(msg, ap); /* print to the console */
|
|
printf("\n");
|
|
} else {
|
|
retval = kvprintf(msg, NULL, (void *) text, 10, ap);
|
|
text[retval] = '\0'; /* delimit */
|
|
strlcpy(ioctl_reply->msg, text, sizeof(ioctl_reply->msg));
|
|
ioctl_reply->error = error; /* first byte is the error number */
|
|
Free(text);
|
|
}
|
|
} else {
|
|
printf("vinum: ");
|
|
vprintf(msg, ap); /* print to the console */
|
|
printf("\n");
|
|
}
|
|
va_end(ap);
|
|
|
|
if (vinum_conf.flags & VF_READING_CONFIG) { /* go through to the bitter end, */
|
|
if ((vinum_conf.flags & VF_READING_CONFIG) /* we're reading from disk, */
|
|
&&((daemon_options & daemon_noupdate) == 0)) {
|
|
log(LOG_NOTICE, "Disabling configuration updates\n");
|
|
daemon_options |= daemon_noupdate;
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* We have a problem here: we want to unlock the
|
|
* configuration, which implies tidying up, but
|
|
* if we find an error while tidying up, we
|
|
* could recurse for ever. Use this kludge to
|
|
* only try once.
|
|
*/
|
|
was_finishing = finishing;
|
|
finishing = 1;
|
|
finish_config(was_finishing); /* unlock anything we may be holding */
|
|
finishing = was_finishing;
|
|
longjmp(command_fail, error);
|
|
}
|
|
|
|
/*
|
|
* Check a volume to see if the plex is already assigned to it.
|
|
* Return index in volume->plex, or -1 if not assigned
|
|
*/
|
|
int
|
|
my_plex(int volno, int plexno)
|
|
{
|
|
int i;
|
|
struct volume *vol;
|
|
|
|
vol = &VOL[volno]; /* point to volno */
|
|
for (i = 0; i < vol->plexes; i++)
|
|
if (vol->plex[i] == plexno)
|
|
return i;
|
|
return -1; /* not found */
|
|
}
|
|
|
|
/*
|
|
* Check a plex to see if the subdisk is already assigned to it.
|
|
* Return index in plex->sd, or -1 if not assigned
|
|
*/
|
|
int
|
|
my_sd(int plexno, int sdno)
|
|
{
|
|
int i;
|
|
struct plex *plex;
|
|
|
|
plex = &PLEX[plexno];
|
|
for (i = 0; i < plex->subdisks; i++)
|
|
if (plex->sdnos[i] == sdno)
|
|
return i;
|
|
return -1; /* not found */
|
|
}
|
|
|
|
/* Add plex to the volume if possible */
|
|
int
|
|
give_plex_to_volume(int volno, int plexno, int preferme)
|
|
{
|
|
struct volume *vol;
|
|
int i;
|
|
int volplexno;
|
|
|
|
/*
|
|
* It's not an error for the plex to already
|
|
* belong to the volume, but we need to check a
|
|
* number of things to make sure it's done right.
|
|
* Some day.
|
|
*/
|
|
volplexno = my_plex(volno, plexno);
|
|
vol = &VOL[volno]; /* point to volume */
|
|
if (volplexno < 0) {
|
|
if (vol->plexes == MAXPLEX) /* all plexes allocated */
|
|
throw_rude_remark(ENOSPC,
|
|
"Too many plexes for volume %s",
|
|
vol->name);
|
|
else if ((vol->plexes > 0) /* we have other plexes */
|
|
&&((vol->flags & VF_CONFIG_SETUPSTATE) == 0)) /* and we're not setting up state */
|
|
invalidate_subdisks(&PLEX[plexno], sd_stale); /* make our subdisks invalid */
|
|
vol->plex[vol->plexes] = plexno; /* this one */
|
|
vol->plexes++; /* add another plex */
|
|
PLEX[plexno].volno = volno; /* note the number of our volume */
|
|
|
|
/* Find out how big our volume is */
|
|
for (i = 0; i < vol->plexes; i++)
|
|
vol->size = max(vol->size, PLEX[vol->plex[i]].length);
|
|
volplexno = vol->plexes - 1; /* number of plex in volume */
|
|
}
|
|
if (preferme) {
|
|
if (vol->preferred_plex >= 0) /* already had a facourite, */
|
|
printf("vinum: changing preferred plex for %s from %s to %s\n",
|
|
vol->name,
|
|
PLEX[vol->plex[vol->preferred_plex]].name,
|
|
PLEX[plexno].name);
|
|
vol->preferred_plex = volplexno;
|
|
}
|
|
return volplexno;
|
|
}
|
|
|
|
/*
|
|
* Add subdisk to a plex if possible
|
|
*/
|
|
int
|
|
give_sd_to_plex(int plexno, int sdno)
|
|
{
|
|
int i;
|
|
struct plex *plex;
|
|
struct sd *sd;
|
|
|
|
/*
|
|
* It's not an error for the sd to already
|
|
* belong to the plex, but we need to check a
|
|
* number of things to make sure it's done right.
|
|
* Some day.
|
|
*/
|
|
i = my_sd(plexno, sdno);
|
|
if (i >= 0) /* does it already belong to us? */
|
|
return i; /* that's it */
|
|
|
|
plex = &PLEX[plexno]; /* point to the plex */
|
|
sd = &SD[sdno]; /* and the subdisk */
|
|
|
|
/* Do we have an offset? Otherwise put it after the last one */
|
|
if (sd->plexoffset < 0) { /* no offset specified */
|
|
if (plex->subdisks > 0) {
|
|
struct sd *lastsd = &SD[plex->sdnos[plex->subdisks - 1]]; /* last subdisk */
|
|
|
|
if (plex->organization == plex_concat) /* concat, */
|
|
sd->plexoffset = lastsd->sectors + lastsd->plexoffset; /* starts here */
|
|
else /* striped, RAID-4 or RAID-5 */
|
|
sd->plexoffset = plex->stripesize * plex->subdisks; /* starts here */
|
|
} else /* first subdisk */
|
|
sd->plexoffset = 0; /* start at the beginning */
|
|
}
|
|
if (plex->subdisks == MAXSD) /* we already have our maximum */
|
|
throw_rude_remark(ENOSPC, /* crap out */
|
|
"Can't add %s to %s: plex full",
|
|
sd->name,
|
|
plex->name);
|
|
|
|
plex->subdisks++; /* another entry */
|
|
if (plex->subdisks >= plex->subdisks_allocated) /* need more space */
|
|
EXPAND(plex->sdnos, int, plex->subdisks_allocated, INITIAL_SUBDISKS_IN_PLEX);
|
|
|
|
/* Adjust size of plex and volume. */
|
|
if (isparity(plex)) /* RAID-4 or RAID-5 */
|
|
plex->length = (plex->subdisks - 1) * sd->sectors; /* size is one disk short */
|
|
else
|
|
plex->length += sd->sectors; /* plex gets this much bigger */
|
|
if (plex->volno >= 0) /* we have a volume */
|
|
VOL[plex->volno].size = max(VOL[plex->volno].size, plex->length); /* adjust its size */
|
|
|
|
/*
|
|
* We need to check that the subdisks don't overlap,
|
|
* but we can't do that until a point where we *must*
|
|
* know the size of all the subdisks. That's not
|
|
* here. But we need to sort them by offset
|
|
*/
|
|
for (i = 0; i < plex->subdisks - 1; i++) {
|
|
if (sd->plexoffset < SD[plex->sdnos[i]].plexoffset) { /* it fits before this one */
|
|
/* First move any remaining subdisks by one */
|
|
int j;
|
|
|
|
for (j = plex->subdisks - 1; j > i; j--) /* move up one at a time */
|
|
plex->sdnos[j] = plex->sdnos[j - 1];
|
|
plex->sdnos[i] = sdno;
|
|
sd->plexsdno = i; /* note where we are in the subdisk */
|
|
return i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The plex doesn't have any subdisk with a
|
|
* larger offset. Insert it here.
|
|
*/
|
|
plex->sdnos[i] = sdno;
|
|
sd->plexsdno = i; /* note where we are in the subdisk */
|
|
sd->plexno = plex->plexno; /* and who we belong to */
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Add a subdisk to drive if possible. The
|
|
* pointer to the drive must already be stored in
|
|
* the sd structure, but the drive doesn't know
|
|
* about the subdisk yet.
|
|
*/
|
|
void
|
|
give_sd_to_drive(int sdno)
|
|
{
|
|
struct sd *sd; /* pointer to subdisk */
|
|
struct drive *drive; /* and drive */
|
|
int fe; /* index in free list */
|
|
int sfe; /* and index of subdisk when assigning max */
|
|
|
|
sd = &SD[sdno]; /* point to sd */
|
|
drive = &DRIVE[sd->driveno]; /* and drive */
|
|
|
|
if (drive->state != drive_up) {
|
|
update_sd_state(sdno); /* that crashes the subdisk */
|
|
return;
|
|
}
|
|
sd->sectorsize = drive->sectorsize; /* get sector size from drive */
|
|
if (drive->flags & VF_HOTSPARE) /* the drive is a hot spare, */
|
|
throw_rude_remark(ENOSPC,
|
|
"Can't place %s on hot spare drive %s",
|
|
sd->name,
|
|
drive->label.name);
|
|
if ((drive->sectors_available == 0) /* no space left */
|
|
||(sd->sectors > drive->sectors_available)) { /* or too big, */
|
|
sd->driveoffset = -1; /* don't be confusing */
|
|
free_sd(sd->sdno);
|
|
throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name);
|
|
return; /* in case we come back here */
|
|
}
|
|
drive->subdisks_used++; /* one more subdisk */
|
|
|
|
if (sd->sectors == 0) { /* take the largest chunk */
|
|
sfe = 0; /* to keep the compiler happy */
|
|
for (fe = 0; fe < drive->freelist_entries; fe++) {
|
|
if (drive->freelist[fe].sectors >= sd->sectors) { /* more space here */
|
|
sd->sectors = drive->freelist[fe].sectors; /* take it */
|
|
sd->driveoffset = drive->freelist[fe].offset;
|
|
sfe = fe; /* and note the index for later */
|
|
}
|
|
}
|
|
if (sd->sectors == 0) { /* no luck, */
|
|
sd->driveoffset = -1; /* don't be confusing */
|
|
free_sd(sd->sdno);
|
|
throw_rude_remark(ENOSPC, /* give up */
|
|
"No space for %s on %s",
|
|
sd->name,
|
|
drive->label.name);
|
|
}
|
|
if (sfe < (drive->freelist_entries - 1)) /* not the last one, */
|
|
bcopy(&drive->freelist[sfe + 1],
|
|
&drive->freelist[sfe],
|
|
(drive->freelist_entries - sfe) * sizeof(struct drive_freelist));
|
|
drive->freelist_entries--; /* one less entry */
|
|
drive->sectors_available -= sd->sectors; /* and note how much less space we have */
|
|
} else if (sd->driveoffset < 0) { /* no offset specified, find one */
|
|
for (fe = 0; fe < drive->freelist_entries; fe++) {
|
|
if (drive->freelist[fe].sectors >= sd->sectors) { /* it'll fit here */
|
|
sd->driveoffset = drive->freelist[fe].offset;
|
|
if (sd->sectors == drive->freelist[fe].sectors) { /* used up the entire entry */
|
|
if (fe < (drive->freelist_entries - 1)) /* not the last one, */
|
|
bcopy(&drive->freelist[fe + 1],
|
|
&drive->freelist[fe],
|
|
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
|
|
drive->freelist_entries--; /* one less entry */
|
|
} else {
|
|
drive->freelist[fe].sectors -= sd->sectors; /* this much less space */
|
|
drive->freelist[fe].offset += sd->sectors; /* this much further on */
|
|
}
|
|
drive->sectors_available -= sd->sectors; /* and note how much less space we have */
|
|
break;
|
|
}
|
|
}
|
|
if (sd->driveoffset < 0)
|
|
/*
|
|
* Didn't find anything. Although the drive has
|
|
* enough space, it's too fragmented
|
|
*/
|
|
{
|
|
free_sd(sd->sdno);
|
|
throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name);
|
|
}
|
|
} else { /* specific offset */
|
|
/*
|
|
* For a specific offset to work, the space must be
|
|
* entirely in a single freelist entry. Look for it.
|
|
*/
|
|
u_int64_t sdend = sd->driveoffset + sd->sectors; /* end of our subdisk */
|
|
for (fe = 0; fe < drive->freelist_entries; fe++) {
|
|
u_int64_t dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of entry */
|
|
if (dend >= sdend) { /* fits before here */
|
|
if (drive->freelist[fe].offset > sd->driveoffset) { /* starts after the beginning of sd area */
|
|
sd->driveoffset = -1; /* don't be confusing */
|
|
set_sd_state(sd->sdno, sd_down, setstate_force);
|
|
throw_rude_remark(ENOSPC,
|
|
"No space for %s on drive %s at offset %lld",
|
|
sd->name,
|
|
drive->label.name,
|
|
sd->driveoffset);
|
|
return;
|
|
}
|
|
/*
|
|
* We've found the space, and we can allocate it.
|
|
* We don't need to say that to the subdisk, which
|
|
* already knows about it. We need to tell it to
|
|
* the free list, though. We have four possibilities:
|
|
*
|
|
* 1. The subdisk exactly eats up the entry. That's the
|
|
* same as above.
|
|
* 2. The subdisk starts at the beginning and leaves space
|
|
* at the end.
|
|
* 3. The subdisk starts after the beginning and leaves
|
|
* space at the end as well: we end up with another
|
|
* fragment.
|
|
* 4. The subdisk leaves space at the beginning and finishes
|
|
* at the end.
|
|
*/
|
|
drive->sectors_available -= sd->sectors; /* note how much less space we have */
|
|
if (sd->driveoffset == drive->freelist[fe].offset) { /* 1 or 2 */
|
|
if (sd->sectors == drive->freelist[fe].sectors) { /* 1: used up the entire entry */
|
|
if (fe < (drive->freelist_entries - 1)) /* not the last one, */
|
|
bcopy(&drive->freelist[fe + 1],
|
|
&drive->freelist[fe],
|
|
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
|
|
drive->freelist_entries--; /* one less entry */
|
|
} else { /* 2: space at the end */
|
|
drive->freelist[fe].sectors -= sd->sectors; /* this much less space */
|
|
drive->freelist[fe].offset += sd->sectors; /* this much further on */
|
|
}
|
|
} else { /* 3 or 4 */
|
|
drive->freelist[fe].sectors = sd->driveoffset - drive->freelist[fe].offset;
|
|
if (dend > sdend) { /* 3: space at the end as well */
|
|
if (fe < (drive->freelist_entries - 1)) /* not the last one */
|
|
bcopy(&drive->freelist[fe], /* move the rest down */
|
|
&drive->freelist[fe + 1],
|
|
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
|
|
drive->freelist_entries++; /* one less entry */
|
|
drive->freelist[fe + 1].offset = sdend; /* second entry starts after sd */
|
|
drive->freelist[fe + 1].sectors = dend - sdend; /* and is this long */
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
drive->opencount++; /* one more subdisk attached */
|
|
}
|
|
|
|
/* Get an empty drive entry from the drive table */
|
|
int
|
|
get_empty_drive(void)
|
|
{
|
|
int driveno;
|
|
struct drive *drive;
|
|
|
|
/* first see if we have one which has been deallocated */
|
|
for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) {
|
|
if (DRIVE[driveno].state == drive_unallocated) /* bingo */
|
|
break;
|
|
}
|
|
|
|
if (driveno >= vinum_conf.drives_allocated) /* we've used all our allocation */
|
|
EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES);
|
|
|
|
/* got a drive entry. Make it pretty */
|
|
drive = &DRIVE[driveno];
|
|
bzero(drive, sizeof(struct drive));
|
|
drive->driveno = driveno; /* put number in structure */
|
|
drive->flags |= VF_NEWBORN; /* newly born drive */
|
|
strcpy(drive->devicename, "unknown"); /* and make the name ``unknown'' */
|
|
return driveno; /* return the index */
|
|
}
|
|
|
|
/*
|
|
* Find the named drive in vinum_conf.drive,
|
|
* return the index in vinum_conf.drive.
|
|
* Don't mark the drive as allocated (XXX SMP)
|
|
* If create != 0, create an entry if it doesn't exist
|
|
*/
|
|
/* XXX check if we have it open from attach */
|
|
int
|
|
find_drive(const char *name, int create)
|
|
{
|
|
int driveno;
|
|
struct drive *drive;
|
|
|
|
if (name != NULL) {
|
|
for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) {
|
|
drive = &DRIVE[driveno]; /* point to drive */
|
|
if ((drive->label.name[0] != '\0') /* it has a name */
|
|
&&(strcmp(drive->label.name, name) == 0) /* and it's this one */
|
|
&&(drive->state > drive_unallocated)) /* and it's a real one: found */
|
|
return driveno;
|
|
}
|
|
}
|
|
/* the drive isn't in the list. Add it if he wants */
|
|
if (create == 0) /* don't want to create */
|
|
return -1; /* give up */
|
|
|
|
driveno = get_empty_drive();
|
|
drive = &DRIVE[driveno];
|
|
if (name != NULL)
|
|
strlcpy(drive->label.name, /* put in its name */
|
|
name,
|
|
sizeof(drive->label.name));
|
|
drive->state = drive_referenced; /* in use, nothing worthwhile there */
|
|
return driveno; /* return the index */
|
|
}
|
|
|
|
/*
|
|
* Find a drive given its device name.
|
|
* devname must be valid.
|
|
* Otherwise the same as find_drive above.
|
|
*/
|
|
int
|
|
find_drive_by_name(const char *devname, int create)
|
|
{
|
|
int driveno;
|
|
struct drive *drive;
|
|
|
|
for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) {
|
|
drive = &DRIVE[driveno]; /* point to drive */
|
|
if ((strcmp(drive->devicename, devname) == 0) /* it's this device */
|
|
&&(drive->state > drive_unallocated)) /* and it's a real one: found */
|
|
return driveno;
|
|
}
|
|
|
|
/* the drive isn't in the list. Add it if he wants */
|
|
if (create == 0) /* don't want to create */
|
|
return -1; /* give up */
|
|
|
|
driveno = get_empty_drive();
|
|
drive = &DRIVE[driveno];
|
|
bcopy(devname, /* put in its name */
|
|
drive->devicename,
|
|
min(sizeof(drive->devicename),
|
|
strlen(devname)));
|
|
drive->state = drive_referenced; /* in use, nothing worthwhile there */
|
|
return driveno; /* return the index */
|
|
}
|
|
|
|
/* Find an empty subdisk in the subdisk table */
|
|
int
|
|
get_empty_sd(void)
|
|
{
|
|
int sdno;
|
|
struct sd *sd;
|
|
|
|
/* first see if we have one which has been deallocated */
|
|
for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) {
|
|
if (SD[sdno].state == sd_unallocated) /* bingo */
|
|
break;
|
|
}
|
|
if (sdno >= vinum_conf.subdisks_allocated)
|
|
/*
|
|
* We've run out of space. sdno is pointing
|
|
* where we want it, but at the moment we
|
|
* don't have the space. Get it.
|
|
*
|
|
* XXX We should check for overflow here. We
|
|
* shouldn't allocate more than VINUM_MAXSD
|
|
* subdisks (currently at least a quarter of a
|
|
* million).
|
|
*/
|
|
EXPAND(SD, struct sd, vinum_conf.subdisks_allocated, INITIAL_SUBDISKS);
|
|
|
|
/* initialize some things */
|
|
sd = &SD[sdno]; /* point to it */
|
|
bzero(sd, sizeof(struct sd)); /* initialize */
|
|
sd->flags |= VF_NEWBORN; /* newly born subdisk */
|
|
sd->plexno = -1; /* no plex */
|
|
sd->sectors = -1; /* no space */
|
|
sd->driveno = -1; /* no drive */
|
|
sd->plexoffset = -1; /* and no offsets */
|
|
sd->driveoffset = -1;
|
|
return sdno; /* return the index */
|
|
}
|
|
|
|
/* return a drive to the free pool */
|
|
void
|
|
free_drive(struct drive *drive)
|
|
{
|
|
if ((drive->state > drive_referenced) /* real drive */
|
|
||(drive->flags & VF_OPEN)) { /* how can it be open without a state? */
|
|
LOCKDRIVE(drive);
|
|
if (drive->flags & VF_OPEN) { /* it's open, */
|
|
close_locked_drive(drive); /* close it */
|
|
drive->state = drive_down; /* and note the fact */
|
|
}
|
|
if (drive->freelist)
|
|
Free(drive->freelist);
|
|
bzero(drive, sizeof(struct drive)); /* this also sets drive_unallocated */
|
|
unlockdrive(drive);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the named subdisk in vinum_conf.sd.
|
|
*
|
|
* If create != 0, create an entry if it doesn't exist
|
|
*
|
|
* Return index in vinum_conf.sd
|
|
*/
|
|
int
|
|
find_subdisk(const char *name, int create)
|
|
{
|
|
int sdno;
|
|
struct sd *sd;
|
|
|
|
for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) {
|
|
if (strcmp(SD[sdno].name, name) == 0) /* found it */
|
|
return sdno;
|
|
}
|
|
|
|
/* the subdisk isn't in the list. Add it if he wants */
|
|
if (create == 0) /* don't want to create */
|
|
return -1; /* give up */
|
|
|
|
/* Allocate one and insert the name */
|
|
sdno = get_empty_sd();
|
|
sd = &SD[sdno];
|
|
bcopy(name, sd->name, min(sizeof(sd->name), strlen(name))); /* put in its name */
|
|
return sdno; /* return the pointer */
|
|
}
|
|
|
|
/* Return space to a drive */
|
|
void
|
|
return_drive_space(int driveno, int64_t offset, int length)
|
|
{
|
|
struct drive *drive;
|
|
int fe; /* free list entry */
|
|
u_int64_t sdend; /* end of our subdisk */
|
|
u_int64_t dend; /* end of our freelist entry */
|
|
|
|
drive = &DRIVE[driveno];
|
|
if (drive->state == drive_up) {
|
|
sdend = offset + length; /* end of our subdisk */
|
|
|
|
/* Look for where to return the sd address space */
|
|
for (fe = 0;
|
|
(fe < drive->freelist_entries) && (drive->freelist[fe].offset < offset);
|
|
fe++);
|
|
/*
|
|
* Now we are pointing to the last entry, the first
|
|
* with a higher offset than the subdisk, or both.
|
|
*/
|
|
if ((fe > 1) /* not the first entry */
|
|
&&((fe == drive->freelist_entries) /* gone past the end */
|
|
||(drive->freelist[fe].offset > offset))) /* or past the block were looking for */
|
|
fe--; /* point to the block before */
|
|
dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of the entry */
|
|
|
|
/*
|
|
* At this point, we are pointing to the correct
|
|
* place in the free list. A number of possibilities
|
|
* exist:
|
|
*
|
|
* 1. The block to be freed starts at the end of the
|
|
* block to which we are pointing. This has two
|
|
* subcases:
|
|
*
|
|
* a. The block to be freed ends at the beginning
|
|
* of the following block. Merge the three
|
|
* areas into a single block.
|
|
*
|
|
* b. The block is shorter than the space between
|
|
* the current block and the next one. Enlarge
|
|
* the current block.
|
|
*
|
|
* 2. The block to be freed starts after the end
|
|
* of the block. Again, we have two cases:
|
|
*
|
|
* a. It ends before the start of the following block.
|
|
* Create a new free block.
|
|
*
|
|
* b. It ends at the start of the following block.
|
|
* Enlarge the following block downwards.
|
|
*
|
|
* When there is only one free space block, and the
|
|
* space to be returned is before it, the pointer is
|
|
* to a non-existent zeroth block. XXX check this
|
|
*/
|
|
if (offset == dend) { /* Case 1: it starts at the end of this block */
|
|
if ((fe < drive->freelist_entries - 1) /* we're not the last block in the free list */
|
|
/* and the subdisk ends at the start of the next block */
|
|
&&(sdend == drive->freelist[fe + 1].offset)) {
|
|
drive->freelist[fe].sectors /* 1a: merge all three blocks */
|
|
= drive->freelist[fe + 1].sectors;
|
|
if (fe < drive->freelist_entries - 2) /* still more blocks after next */
|
|
bcopy(&drive->freelist[fe + 2], /* move down one */
|
|
&drive->freelist[fe + 1],
|
|
(drive->freelist_entries - 2 - fe)
|
|
* sizeof(struct drive_freelist));
|
|
drive->freelist_entries--; /* one less entry in the free list */
|
|
} else /* 1b: just enlarge this block */
|
|
drive->freelist[fe].sectors += length;
|
|
} else { /* Case 2 */
|
|
if (offset > dend) /* it starts after this block */
|
|
fe++; /* so look at the next block */
|
|
if ((fe < drive->freelist_entries) /* we're not the last block in the free list */
|
|
/* and the subdisk ends at the start of this block: case 4 */
|
|
&&(sdend == drive->freelist[fe].offset)) {
|
|
drive->freelist[fe].offset = offset; /* it starts where the sd was */
|
|
drive->freelist[fe].sectors += length; /* and it's this much bigger */
|
|
} else { /* case 3: non-contiguous */
|
|
if (fe < drive->freelist_entries) /* not after the last block, */
|
|
bcopy(&drive->freelist[fe], /* move the rest up one entry */
|
|
&drive->freelist[fe + 1],
|
|
(drive->freelist_entries - fe)
|
|
* sizeof(struct drive_freelist));
|
|
drive->freelist_entries++; /* one less entry */
|
|
drive->freelist[fe].offset = offset; /* this entry represents the sd */
|
|
drive->freelist[fe].sectors = length;
|
|
}
|
|
}
|
|
drive->sectors_available += length; /* the sectors are now available */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free an allocated sd entry.
|
|
* This performs memory management only. remove()
|
|
* is responsible for checking relationships.
|
|
*/
|
|
void
|
|
free_sd(int sdno)
|
|
{
|
|
struct sd *sd;
|
|
|
|
sd = &SD[sdno];
|
|
if ((sd->driveno >= 0) /* we have a drive, */
|
|
&&(sd->sectors > 0)) /* and some space on it */
|
|
return_drive_space(sd->driveno, /* return the space */
|
|
sd->driveoffset,
|
|
sd->sectors);
|
|
if (sd->plexno >= 0)
|
|
PLEX[sd->plexno].subdisks--; /* one less subdisk */
|
|
destroy_dev(sd->dev);
|
|
bzero(sd, sizeof(struct sd)); /* and clear it out */
|
|
sd->state = sd_unallocated;
|
|
vinum_conf.subdisks_used--; /* one less sd */
|
|
}
|
|
|
|
/* Find an empty plex in the plex table */
|
|
int
|
|
get_empty_plex(void)
|
|
{
|
|
int plexno;
|
|
struct plex *plex; /* if we allocate one */
|
|
|
|
/* first see if we have one which has been deallocated */
|
|
for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) {
|
|
if (PLEX[plexno].state == plex_unallocated) /* bingo */
|
|
break; /* and get out of here */
|
|
}
|
|
|
|
if (plexno >= vinum_conf.plexes_allocated)
|
|
EXPAND(PLEX, struct plex, vinum_conf.plexes_allocated, INITIAL_PLEXES);
|
|
|
|
/* Found a plex. Give it an sd structure */
|
|
plex = &PLEX[plexno]; /* this one is ours */
|
|
bzero(plex, sizeof(struct plex)); /* polish it up */
|
|
plex->sdnos = (int *) Malloc(sizeof(int) * INITIAL_SUBDISKS_IN_PLEX); /* allocate sd table */
|
|
CHECKALLOC(plex->sdnos, "vinum: Can't allocate plex subdisk table");
|
|
bzero(plex->sdnos, (sizeof(int) * INITIAL_SUBDISKS_IN_PLEX)); /* do we need this? */
|
|
plex->flags |= VF_NEWBORN; /* newly born plex */
|
|
plex->subdisks = 0; /* no subdisks in use */
|
|
plex->subdisks_allocated = INITIAL_SUBDISKS_IN_PLEX; /* and we have space for this many */
|
|
plex->organization = plex_disorg; /* and it's not organized */
|
|
plex->volno = -1; /* no volume yet */
|
|
return plexno; /* return the index */
|
|
}
|
|
|
|
/*
|
|
* Find the named plex in vinum_conf.plex
|
|
*
|
|
* If create != 0, create an entry if it doesn't exist
|
|
* return index in vinum_conf.plex
|
|
*/
|
|
int
|
|
find_plex(const char *name, int create)
|
|
{
|
|
int plexno;
|
|
struct plex *plex;
|
|
|
|
for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) {
|
|
if (strcmp(PLEX[plexno].name, name) == 0) /* found it */
|
|
return plexno;
|
|
}
|
|
|
|
/* the plex isn't in the list. Add it if he wants */
|
|
if (create == 0) /* don't want to create */
|
|
return -1; /* give up */
|
|
|
|
/* Allocate one and insert the name */
|
|
plexno = get_empty_plex();
|
|
plex = &PLEX[plexno]; /* point to it */
|
|
bcopy(name, plex->name, min(sizeof(plex->name), strlen(name))); /* put in its name */
|
|
return plexno; /* return the pointer */
|
|
}
|
|
|
|
/*
|
|
* Free an allocated plex entry
|
|
* and its associated memory areas
|
|
*/
|
|
void
|
|
free_plex(int plexno)
|
|
{
|
|
struct plex *plex;
|
|
|
|
plex = &PLEX[plexno];
|
|
if (plex->sdnos)
|
|
Free(plex->sdnos);
|
|
if (plex->lock)
|
|
Free(plex->lock);
|
|
destroy_dev(plex->dev);
|
|
bzero(plex, sizeof(struct plex)); /* and clear it out */
|
|
plex->state = plex_unallocated;
|
|
}
|
|
|
|
/* Find an empty volume in the volume table */
|
|
int
|
|
get_empty_volume(void)
|
|
{
|
|
int volno;
|
|
struct volume *vol;
|
|
int i;
|
|
|
|
/* first see if we have one which has been deallocated */
|
|
for (volno = 0; volno < vinum_conf.volumes_allocated; volno++) {
|
|
if (VOL[volno].state == volume_unallocated) /* bingo */
|
|
break;
|
|
}
|
|
|
|
if (volno >= vinum_conf.volumes_allocated)
|
|
EXPAND(VOL, struct volume, vinum_conf.volumes_allocated, INITIAL_VOLUMES);
|
|
|
|
/* Now initialize fields */
|
|
vol = &VOL[volno];
|
|
bzero(vol, sizeof(struct volume));
|
|
vol->flags |= VF_NEWBORN | VF_CREATED; /* newly born volume */
|
|
vol->preferred_plex = ROUND_ROBIN_READPOL; /* round robin */
|
|
for (i = 0; i < MAXPLEX; i++) /* mark the plexes missing */
|
|
vol->plex[i] = -1;
|
|
return volno; /* return the index */
|
|
}
|
|
|
|
/*
|
|
* Find the named volume in vinum_conf.volume.
|
|
*
|
|
* If create != 0, create an entry if it doesn't exist
|
|
* return the index in vinum_conf
|
|
*/
|
|
int
|
|
find_volume(const char *name, int create)
|
|
{
|
|
int volno;
|
|
struct volume *vol;
|
|
|
|
for (volno = 0; volno < vinum_conf.volumes_allocated; volno++) {
|
|
if (strcmp(VOL[volno].name, name) == 0) /* found it */
|
|
return volno;
|
|
}
|
|
|
|
/* the volume isn't in the list. Add it if he wants */
|
|
if (create == 0) /* don't want to create */
|
|
return -1; /* give up */
|
|
|
|
/* Allocate one and insert the name */
|
|
volno = get_empty_volume();
|
|
vol = &VOL[volno];
|
|
bcopy(name, vol->name, min(sizeof(vol->name), strlen(name))); /* put in its name */
|
|
vol->blocksize = DEV_BSIZE; /* block size of this volume */
|
|
return volno; /* return the pointer */
|
|
}
|
|
|
|
/*
|
|
* Free an allocated volume entry
|
|
* and its associated memory areas
|
|
*/
|
|
void
|
|
free_volume(int volno)
|
|
{
|
|
struct volume *vol;
|
|
|
|
vol = &VOL[volno];
|
|
destroy_dev(vol->dev);
|
|
bzero(vol, sizeof(struct volume)); /* and clear it out */
|
|
vol->state = volume_unallocated;
|
|
}
|
|
|
|
/*
|
|
* Handle a drive definition. We store the information in the global variable
|
|
* drive, so we don't need to allocate.
|
|
*
|
|
* If we find an error, print a message and return
|
|
*/
|
|
void
|
|
config_drive(int update)
|
|
{
|
|
enum drive_label_info partition_status; /* info about the partition */
|
|
int parameter;
|
|
int driveno; /* index of drive in vinum_conf */
|
|
struct drive *drive; /* and pointer to it */
|
|
int otherdriveno; /* index of possible second drive */
|
|
int sdno;
|
|
|
|
if (tokens < 2) /* not enough tokens */
|
|
throw_rude_remark(EINVAL, "Drive has no name\n");
|
|
driveno = find_drive(token[1], 1); /* allocate a drive to initialize */
|
|
drive = &DRIVE[driveno]; /* and get a pointer */
|
|
if (update && ((drive->flags & VF_NEWBORN) == 0)) /* this drive exists already */
|
|
return; /* don't do anything */
|
|
drive->flags &= ~VF_NEWBORN; /* no longer newly born */
|
|
|
|
if (drive->state != drive_referenced) { /* we already know this drive */
|
|
/*
|
|
* XXX Check which definition is more up-to-date. Give
|
|
* preference for the definition on its own drive.
|
|
*/
|
|
return; /* XXX */
|
|
}
|
|
for (parameter = 2; parameter < tokens; parameter++) { /* look at the other tokens */
|
|
switch (get_keyword(token[parameter], &keyword_set)) {
|
|
case kw_device:
|
|
parameter++;
|
|
otherdriveno = find_drive_by_name(token[parameter], 0); /* see if it exists already */
|
|
if (otherdriveno >= 0) { /* yup, */
|
|
drive->state = drive_unallocated; /* deallocate the drive */
|
|
throw_rude_remark(EEXIST, /* and complain */
|
|
"Drive %s would have same device as drive %s",
|
|
token[1],
|
|
DRIVE[otherdriveno].label.name);
|
|
}
|
|
if (drive->devicename[0] == '/') { /* we know this drive... */
|
|
if (strcmp(drive->devicename, token[parameter])) /* different name */
|
|
close_drive(drive); /* close it if it's open */
|
|
else /* no change */
|
|
break;
|
|
}
|
|
/* open the device and get the configuration */
|
|
bcopy(token[parameter], /* insert device information */
|
|
drive->devicename,
|
|
min(sizeof(drive->devicename),
|
|
strlen(token[parameter])));
|
|
partition_status = read_drive_label(drive, 1);
|
|
switch (partition_status) {
|
|
case DL_CANT_OPEN: /* not our kind */
|
|
close_drive(drive);
|
|
if (drive->lasterror == EFTYPE) /* wrong kind of partition */
|
|
throw_rude_remark(drive->lasterror,
|
|
"Drive %s has invalid partition type",
|
|
drive->label.name);
|
|
else /* I/O error of some kind */
|
|
throw_rude_remark(drive->lasterror,
|
|
"Can't initialize drive %s",
|
|
drive->label.name);
|
|
break;
|
|
|
|
case DL_WRONG_DRIVE: /* valid drive, not the name we expected */
|
|
if (vinum_conf.flags & VF_FORCECONFIG) { /* but we'll accept that */
|
|
bcopy(token[1], drive->label.name, sizeof(drive->label.name));
|
|
break;
|
|
}
|
|
close_drive(drive);
|
|
/*
|
|
* There's a potential race condition here:
|
|
* the rude remark refers to a field in an
|
|
* unallocated drive, which potentially could
|
|
* be reused. This works because we're the only
|
|
* thread accessing the config at the moment.
|
|
*/
|
|
drive->state = drive_unallocated; /* throw it away completely */
|
|
throw_rude_remark(drive->lasterror,
|
|
"Incorrect drive name %s specified for drive %s",
|
|
token[1],
|
|
drive->label.name);
|
|
break;
|
|
|
|
case DL_DELETED_LABEL: /* it was a drive, but we deleted it */
|
|
case DL_NOT_OURS: /* nothing to do with the rest */
|
|
case DL_OURS:
|
|
break;
|
|
}
|
|
/*
|
|
* read_drive_label overwrites the device name.
|
|
* If we get here, we can have the drive,
|
|
* so put it back again
|
|
*/
|
|
bcopy(token[parameter],
|
|
drive->devicename,
|
|
min(sizeof(drive->devicename),
|
|
strlen(token[parameter])));
|
|
break;
|
|
|
|
case kw_state:
|
|
parameter++; /* skip the keyword */
|
|
if (vinum_conf.flags & VF_READING_CONFIG)
|
|
drive->state = DriveState(token[parameter]); /* set the state */
|
|
break;
|
|
|
|
case kw_hotspare: /* this drive is a hot spare */
|
|
drive->flags |= VF_HOTSPARE;
|
|
break;
|
|
|
|
default:
|
|
close_drive(drive);
|
|
throw_rude_remark(EINVAL,
|
|
"Drive %s, invalid keyword: %s",
|
|
token[1],
|
|
token[parameter]);
|
|
}
|
|
}
|
|
|
|
if (drive->devicename[0] != '/') {
|
|
drive->state = drive_unallocated; /* deallocate the drive */
|
|
throw_rude_remark(EINVAL, "No device name for %s", drive->label.name);
|
|
}
|
|
vinum_conf.drives_used++; /* passed all hurdles: one more in use */
|
|
/*
|
|
* If we're replacing a drive, it could be that
|
|
* we already have subdisks referencing this
|
|
* drive. Note where they should be and change
|
|
* their state to obsolete.
|
|
*/
|
|
for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) {
|
|
if ((SD[sdno].state > sd_referenced)
|
|
&& (SD[sdno].driveno == driveno)) {
|
|
give_sd_to_drive(sdno);
|
|
if (SD[sdno].state > sd_stale)
|
|
SD[sdno].state = sd_stale;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a subdisk definition. We store the
|
|
* information in the global variable sd, so we
|
|
* don't need to allocate.
|
|
*
|
|
* On error throw a message back to the caller.
|
|
*/
|
|
void
|
|
config_subdisk(int update)
|
|
{
|
|
int parameter;
|
|
int sdno; /* index of sd in vinum_conf */
|
|
struct sd *sd; /* and pointer to it */
|
|
u_int64_t size;
|
|
int detached = 0; /* set to 1 if this is a detached subdisk */
|
|
int sdindex = -1; /* index in plexes subdisk table */
|
|
enum sdstate state = sd_unallocated; /* state to set, if specified */
|
|
int autosize = 0; /* set if we autosize in give_sd_to_drive */
|
|
int namedsdno; /* index of another with this name */
|
|
char partition = 0; /* partition of external subdisk */
|
|
|
|
sdno = get_empty_sd(); /* allocate an SD to initialize */
|
|
sd = &SD[sdno]; /* and get a pointer */
|
|
|
|
for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */
|
|
switch (get_keyword(token[parameter], &keyword_set)) {
|
|
/*
|
|
* If we have a 'name' parameter, it must
|
|
* come first, because we're too lazy to tidy
|
|
* up dangling refs if it comes later.
|
|
*/
|
|
case kw_name:
|
|
namedsdno = find_subdisk(token[++parameter], 0); /* find an existing sd with this name */
|
|
if (namedsdno >= 0) { /* got one */
|
|
if (SD[namedsdno].state == sd_referenced) { /* we've been told about this one */
|
|
if (parameter > 2)
|
|
throw_rude_remark(EINVAL,
|
|
"sd %s: name parameter must come first\n", /* no go */
|
|
token[parameter]);
|
|
else {
|
|
int i;
|
|
struct plex *plex; /* for tidying up dangling references */
|
|
|
|
*sd = SD[namedsdno]; /* copy from the referenced one */
|
|
SD[namedsdno].state = sd_unallocated; /* and deallocate the referenced one */
|
|
plex = &PLEX[sd->plexno]; /* now take a look at our plex */
|
|
for (i = 0; i < plex->subdisks; i++) { /* look for the pointer */
|
|
if (plex->sdnos[i] == namedsdno) /* pointing to the old subdisk */
|
|
plex->sdnos[i] = sdno; /* bend it to point here */
|
|
}
|
|
}
|
|
}
|
|
if (update) /* are we updating? */
|
|
return; /* that's OK, nothing more to do */
|
|
else
|
|
throw_rude_remark(EINVAL, "Duplicate subdisk %s", token[parameter]);
|
|
} else
|
|
bcopy(token[parameter],
|
|
sd->name,
|
|
min(sizeof(sd->name), strlen(token[parameter])));
|
|
break;
|
|
|
|
case kw_detached:
|
|
detached = 1;
|
|
break;
|
|
|
|
case kw_plexoffset:
|
|
size = sizespec(token[++parameter]);
|
|
if ((size == -1) /* unallocated */
|
|
&&(vinum_conf.flags & VF_READING_CONFIG)) /* reading from disk */
|
|
break; /* invalid sd; just ignore it */
|
|
if ((size % DEV_BSIZE) != 0)
|
|
throw_rude_remark(EINVAL,
|
|
"sd %s, bad plex offset alignment: %lld",
|
|
sd->name,
|
|
(long long) size);
|
|
else
|
|
sd->plexoffset = size / DEV_BSIZE;
|
|
break;
|
|
|
|
case kw_driveoffset:
|
|
size = sizespec(token[++parameter]);
|
|
if ((size == -1) /* unallocated */
|
|
&&(vinum_conf.flags & VF_READING_CONFIG)) /* reading from disk */
|
|
break; /* invalid sd; just ignore it */
|
|
if ((size % DEV_BSIZE) != 0)
|
|
throw_rude_remark(EINVAL,
|
|
"sd %s, bad drive offset alignment: %lld",
|
|
sd->name,
|
|
(long long) size);
|
|
else
|
|
sd->driveoffset = size / DEV_BSIZE;
|
|
break;
|
|
|
|
case kw_len:
|
|
if (get_keyword(token[++parameter], &keyword_set) == kw_max) /* select maximum size from drive */
|
|
size = 0; /* this is how we say it :-) */
|
|
else
|
|
size = sizespec(token[parameter]);
|
|
if ((size % DEV_BSIZE) != 0)
|
|
throw_rude_remark(EINVAL, "sd %s, length %d not multiple of sector size", sd->name, size);
|
|
else
|
|
sd->sectors = size / DEV_BSIZE;
|
|
/*
|
|
* We have a problem with autosizing: we need to
|
|
* give the drive to the plex before we give it
|
|
* to the drive, in order to be clean if we give
|
|
* up in the middle, but at this time the size hasn't
|
|
* been set. Note that we have to fix up after
|
|
* giving the subdisk to the drive.
|
|
*/
|
|
if (size == 0)
|
|
autosize = 1; /* note that we're autosizing */
|
|
break;
|
|
|
|
case kw_drive:
|
|
sd->driveno = find_drive(token[++parameter], 1); /* insert drive information */
|
|
break;
|
|
|
|
case kw_plex:
|
|
sd->plexno = find_plex(token[++parameter], 1); /* insert plex information */
|
|
break;
|
|
|
|
/*
|
|
* Set the state. We can't do this directly,
|
|
* because give_sd_to_plex may change it
|
|
*/
|
|
case kw_state:
|
|
parameter++; /* skip the keyword */
|
|
if (vinum_conf.flags & VF_READING_CONFIG)
|
|
state = SdState(token[parameter]); /* set the state */
|
|
break;
|
|
|
|
case kw_partition:
|
|
parameter++; /* skip the keyword */
|
|
if ((strlen(token[parameter]) != 1)
|
|
|| (token[parameter][0] < 'a')
|
|
|| (token[parameter][0] > 'h'))
|
|
throw_rude_remark(EINVAL,
|
|
"%s: invalid partition %c",
|
|
sd->name,
|
|
token[parameter][0]);
|
|
else
|
|
partition = token[parameter][0];
|
|
break;
|
|
|
|
case kw_retryerrors:
|
|
sd->flags |= VF_RETRYERRORS;
|
|
break;
|
|
|
|
default:
|
|
throw_rude_remark(EINVAL, "%s: invalid keyword: %s", sd->name, token[parameter]);
|
|
}
|
|
}
|
|
|
|
/* Check we have a drive name */
|
|
if (sd->driveno < 0) { /* didn't specify a drive */
|
|
sd->driveno = current_drive; /* set to the current drive */
|
|
if (sd->driveno < 0) /* no current drive? */
|
|
throw_rude_remark(EINVAL, "Subdisk %s is not associated with a drive", sd->name);
|
|
}
|
|
if (DRIVE[sd->driveno].state != drive_up)
|
|
sd->state = sd_crashed;
|
|
|
|
/*
|
|
* This is tacky. If something goes wrong
|
|
* with the checks, we may end up losing drive
|
|
* space. FIXME.
|
|
*/
|
|
if (autosize != 0) /* need to find a size, */
|
|
give_sd_to_drive(sdno); /* do it before the plex */
|
|
|
|
/* Check for a plex name */
|
|
if ((sd->plexno < 0) /* didn't specify a plex */
|
|
&&(!detached)) /* and didn't say not to, */
|
|
sd->plexno = current_plex; /* set to the current plex */
|
|
|
|
if (sd->plexno >= 0)
|
|
sdindex = give_sd_to_plex(sd->plexno, sdno); /* now tell the plex that it has this sd */
|
|
|
|
sd->sdno = sdno; /* point to our entry in the table */
|
|
|
|
/* Does the subdisk have a name? If not, give it one */
|
|
if (sd->name[0] == '\0') { /* no name */
|
|
char sdsuffix[8]; /* form sd name suffix here */
|
|
|
|
/* Do we have a plex name? */
|
|
if (sdindex >= 0) /* we have a plex */
|
|
strlcpy(sd->name, /* take it from there */
|
|
PLEX[sd->plexno].name,
|
|
sizeof(sd->name));
|
|
else /* no way */
|
|
throw_rude_remark(EINVAL, "Unnamed sd is not associated with a plex");
|
|
sprintf(sdsuffix, ".s%d", sdindex); /* form the suffix */
|
|
strlcat(sd->name, sdsuffix, sizeof(sd->name)); /* and add it to the name */
|
|
}
|
|
/* do we have complete info for this subdisk? */
|
|
if (sd->sectors < 0)
|
|
throw_rude_remark(EINVAL, "sd %s has no length spec", sd->name);
|
|
|
|
if (sd->dev == NULL)
|
|
/*
|
|
* sdno can (at least theoretically) overflow
|
|
* into the low order bit of the type field.
|
|
* This gives rise to a subdisk with type
|
|
* VINUM_SD2_TYPE. This is a feature, not a
|
|
* bug.
|
|
*/
|
|
sd->dev = make_dev(&vinum_cdevsw,
|
|
VINUMMINOR(sdno, VINUM_SD_TYPE),
|
|
UID_ROOT,
|
|
GID_OPERATOR,
|
|
S_IRUSR | S_IWUSR | S_IRGRP,
|
|
"vinum/sd/%s",
|
|
sd->name);
|
|
if (state != sd_unallocated) /* we had a specific state to set */
|
|
sd->state = state; /* do it now */
|
|
else if (sd->state == sd_unallocated) /* no, nothing set yet, */
|
|
sd->state = sd_empty; /* must be empty */
|
|
if (autosize == 0) /* no autoconfig, do the drive now */
|
|
give_sd_to_drive(sdno);
|
|
vinum_conf.subdisks_used++; /* one more in use */
|
|
}
|
|
|
|
/*
|
|
* Handle a plex definition.
|
|
*/
|
|
void
|
|
config_plex(int update)
|
|
{
|
|
int parameter;
|
|
int plexno; /* index of plex in vinum_conf */
|
|
struct plex *plex; /* and pointer to it */
|
|
int pindex = MAXPLEX; /* index in volume's plex list */
|
|
int detached = 0; /* don't give it to a volume */
|
|
int namedplexno;
|
|
enum plexstate state = plex_init; /* state to set at end */
|
|
int preferme; /* set if we want to be preferred access */
|
|
|
|
current_plex = -1; /* forget the previous plex */
|
|
preferme = 0; /* nothing special yet */
|
|
plexno = get_empty_plex(); /* allocate a plex */
|
|
plex = &PLEX[plexno]; /* and point to it */
|
|
plex->plexno = plexno; /* and back to the config */
|
|
|
|
for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */
|
|
switch (get_keyword(token[parameter], &keyword_set)) {
|
|
/*
|
|
* If we have a 'name' parameter, it must
|
|
* come first, because we're too lazy to tidy
|
|
* up dangling refs if it comes later.
|
|
*/
|
|
case kw_name:
|
|
namedplexno = find_plex(token[++parameter], 0); /* find an existing plex with this name */
|
|
if (namedplexno >= 0) { /* plex exists already, */
|
|
if (PLEX[namedplexno].state == plex_referenced) { /* we've been told about this one */
|
|
if (parameter > 2) /* we've done other things first, */
|
|
throw_rude_remark(EINVAL,
|
|
"plex %s: name parameter must come first\n", /* no go */
|
|
token[parameter]);
|
|
else {
|
|
int i;
|
|
struct volume *vol; /* for tidying up dangling references */
|
|
|
|
*plex = PLEX[namedplexno]; /* get the info */
|
|
PLEX[namedplexno].state = plex_unallocated; /* and deallocate the other one */
|
|
vol = &VOL[plex->volno]; /* point to the volume */
|
|
for (i = 0; i < MAXPLEX; i++) { /* for each plex */
|
|
if (vol->plex[i] == namedplexno)
|
|
vol->plex[i] = plexno; /* bend the pointer */
|
|
}
|
|
}
|
|
break; /* use this one */
|
|
}
|
|
if (update) /* are we updating? */
|
|
return; /* yes: that's OK, just return */
|
|
else
|
|
throw_rude_remark(EINVAL, "Duplicate plex %s", token[parameter]);
|
|
} else
|
|
bcopy(token[parameter], /* put in the name */
|
|
plex->name,
|
|
min(MAXPLEXNAME, strlen(token[parameter])));
|
|
break;
|
|
|
|
case kw_detached:
|
|
detached = 1;
|
|
break;
|
|
|
|
case kw_org: /* plex organization */
|
|
switch (get_keyword(token[++parameter], &keyword_set)) {
|
|
case kw_concat:
|
|
plex->organization = plex_concat;
|
|
break;
|
|
|
|
case kw_striped:
|
|
{
|
|
int stripesize = sizespec(token[++parameter]);
|
|
|
|
plex->organization = plex_striped;
|
|
if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */
|
|
throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size",
|
|
plex->name,
|
|
stripesize);
|
|
else
|
|
plex->stripesize = stripesize / DEV_BSIZE;
|
|
break;
|
|
}
|
|
|
|
case kw_raid4:
|
|
{
|
|
int stripesize = sizespec(token[++parameter]);
|
|
|
|
plex->organization = plex_raid4;
|
|
if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */
|
|
throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size",
|
|
plex->name,
|
|
stripesize);
|
|
else
|
|
plex->stripesize = stripesize / DEV_BSIZE;
|
|
break;
|
|
}
|
|
|
|
case kw_raid5:
|
|
{
|
|
int stripesize = sizespec(token[++parameter]);
|
|
|
|
plex->organization = plex_raid5;
|
|
if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */
|
|
throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size",
|
|
plex->name,
|
|
stripesize);
|
|
else
|
|
plex->stripesize = stripesize / DEV_BSIZE;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
throw_rude_remark(EINVAL, "Invalid plex organization");
|
|
}
|
|
if (isstriped(plex)
|
|
&& (plex->stripesize == 0)) /* didn't specify a valid stripe size */
|
|
throw_rude_remark(EINVAL, "Need a stripe size parameter");
|
|
break;
|
|
|
|
/*
|
|
* We're the preferred plex of our volume.
|
|
* Unfortunately, we don't know who our
|
|
* volume is yet. Note that we want to be
|
|
* preferred, and actually do it after we
|
|
* get a volume.
|
|
*/
|
|
case kw_preferred:
|
|
preferme = 1;
|
|
break;
|
|
|
|
case kw_volume:
|
|
plex->volno = find_volume(token[++parameter], 1); /* insert a pointer to the volume */
|
|
break;
|
|
|
|
case kw_sd: /* add a subdisk */
|
|
{
|
|
int sdno;
|
|
|
|
sdno = find_subdisk(token[++parameter], 1); /* find a subdisk */
|
|
SD[sdno].plexoffset = sizespec(token[++parameter]); /* get the offset */
|
|
give_sd_to_plex(plexno, sdno); /* and insert it there */
|
|
break;
|
|
}
|
|
|
|
case kw_state:
|
|
parameter++; /* skip the keyword */
|
|
if (vinum_conf.flags & VF_READING_CONFIG)
|
|
state = PlexState(token[parameter]); /* set the state */
|
|
break;
|
|
|
|
default:
|
|
throw_rude_remark(EINVAL, "plex %s, invalid keyword: %s",
|
|
plex->name,
|
|
token[parameter]);
|
|
}
|
|
}
|
|
|
|
if (plex->organization == plex_disorg)
|
|
throw_rude_remark(EINVAL, "No plex organization specified");
|
|
|
|
if ((plex->volno < 0) /* we don't have a volume */
|
|
&&(!detached)) /* and we wouldn't object */
|
|
plex->volno = current_volume;
|
|
|
|
if (plex->volno >= 0)
|
|
pindex = give_plex_to_volume(plex->volno, /* Now tell the volume that it has this plex */
|
|
plexno,
|
|
preferme);
|
|
|
|
/* Does the plex have a name? If not, give it one */
|
|
if (plex->name[0] == '\0') { /* no name */
|
|
char plexsuffix[8]; /* form plex name suffix here */
|
|
/* Do we have a volume name? */
|
|
if (plex->volno >= 0) /* we have a volume */
|
|
strlcpy(plex->name, /* take it from there */
|
|
VOL[plex->volno].name,
|
|
sizeof(plex->name));
|
|
else /* no way */
|
|
throw_rude_remark(EINVAL, "Unnamed plex is not associated with a volume");
|
|
sprintf(plexsuffix, ".p%d", pindex); /* form the suffix */
|
|
strlcat(plex->name, plexsuffix, sizeof(plex->name)); /* and add it to the name */
|
|
}
|
|
if (isstriped(plex)) {
|
|
plex->lock = (struct rangelock *)
|
|
Malloc(PLEX_LOCKS * sizeof(struct rangelock));
|
|
CHECKALLOC(plex->lock, "vinum: Can't allocate lock table\n");
|
|
bzero((char *) plex->lock, PLEX_LOCKS * sizeof(struct rangelock));
|
|
plex->lockmtx = &plexmutex[plexno % PLEXMUTEXES]; /* use this mutex for locking */
|
|
}
|
|
/* Note the last plex we configured */
|
|
current_plex = plexno;
|
|
plex->state = state; /* set whatever state we chose */
|
|
vinum_conf.plexes_used++; /* one more in use */
|
|
if (plex->dev == NULL)
|
|
plex->dev = make_dev(&vinum_cdevsw,
|
|
VINUMMINOR(plexno, VINUM_PLEX_TYPE),
|
|
UID_ROOT,
|
|
GID_OPERATOR,
|
|
S_IRUSR | S_IWUSR | S_IRGRP,
|
|
"vinum/plex/%s",
|
|
plex->name);
|
|
}
|
|
|
|
/*
|
|
* Handle a volume definition.
|
|
* If we find an error, print a message, deallocate the nascent volume, and return
|
|
*/
|
|
void
|
|
config_volume(int update)
|
|
{
|
|
int parameter;
|
|
int volno;
|
|
struct volume *vol; /* collect volume info here */
|
|
int i;
|
|
|
|
if (tokens < 2) /* not enough tokens */
|
|
throw_rude_remark(EINVAL, "Volume has no name");
|
|
current_volume = -1; /* forget the previous volume */
|
|
volno = find_volume(token[1], 1); /* allocate a volume to initialize */
|
|
vol = &VOL[volno]; /* and get a pointer */
|
|
if (update && ((vol->flags & VF_CREATED) == 0)) /* this volume exists already */
|
|
return; /* don't do anything */
|
|
vol->flags &= ~VF_CREATED; /* it exists now */
|
|
|
|
for (parameter = 2; parameter < tokens; parameter++) { /* look at all tokens */
|
|
switch (get_keyword(token[parameter], &keyword_set)) {
|
|
case kw_plex:
|
|
{
|
|
int plexno; /* index of this plex */
|
|
int myplexno; /* and index if it's already ours */
|
|
|
|
plexno = find_plex(token[++parameter], 1); /* find a plex */
|
|
if (plexno < 0) /* couldn't */
|
|
break; /* we've already had an error message */
|
|
myplexno = my_plex(volno, plexno); /* does it already belong to us? */
|
|
if (myplexno > 0) /* yes, shouldn't get it again */
|
|
throw_rude_remark(EINVAL,
|
|
"Plex %s already belongs to volume %s",
|
|
token[parameter],
|
|
vol->name);
|
|
else if (++vol->plexes > 8) /* another entry */
|
|
throw_rude_remark(EINVAL,
|
|
"Too many plexes for volume %s",
|
|
vol->name);
|
|
vol->plex[vol->plexes - 1] = plexno;
|
|
PLEX[plexno].state = plex_referenced; /* we know something about it */
|
|
PLEX[plexno].volno = volno; /* and this volume references it */
|
|
}
|
|
break;
|
|
|
|
case kw_readpol:
|
|
switch (get_keyword(token[++parameter], &keyword_set)) { /* decide what to do */
|
|
case kw_round:
|
|
vol->preferred_plex = ROUND_ROBIN_READPOL; /* default */
|
|
break;
|
|
|
|
case kw_prefer:
|
|
{
|
|
int myplexno; /* index of this plex */
|
|
|
|
myplexno = find_plex(token[++parameter], 1); /* find a plex */
|
|
if (myplexno < 0) { /* couldn't */
|
|
printf("vinum: couldn't find preferred plex %s for %s\n",
|
|
token[parameter],
|
|
vol->name);
|
|
break; /* we've already had an error message */
|
|
}
|
|
myplexno = my_plex(volno, myplexno); /* does it already belong to us? */
|
|
if (myplexno > 0) /* yes */
|
|
vol->preferred_plex = myplexno; /* just note the index */
|
|
else if (++vol->plexes > 8) /* another entry */
|
|
throw_rude_remark(EINVAL, "Too many plexes");
|
|
else { /* space for the new plex */
|
|
vol->plex[vol->plexes - 1] = myplexno; /* add it to our list */
|
|
vol->preferred_plex = vol->plexes - 1; /* and note the index */
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
throw_rude_remark(EINVAL, "Invalid read policy");
|
|
}
|
|
|
|
case kw_setupstate:
|
|
vol->flags |= VF_CONFIG_SETUPSTATE; /* set the volume up later on */
|
|
break;
|
|
|
|
case kw_state:
|
|
parameter++; /* skip the keyword */
|
|
if (vinum_conf.flags & VF_READING_CONFIG)
|
|
vol->state = VolState(token[parameter]); /* set the state */
|
|
break;
|
|
|
|
/*
|
|
* XXX experimental ideas. These are not
|
|
* documented, and will not be until I
|
|
* decide they're worth keeping.
|
|
*/
|
|
case kw_writethrough: /* set writethrough mode */
|
|
vol->flags |= VF_WRITETHROUGH;
|
|
break;
|
|
|
|
case kw_writeback: /* set writeback mode */
|
|
vol->flags &= ~VF_WRITETHROUGH;
|
|
break;
|
|
|
|
case kw_raw:
|
|
vol->flags |= VF_RAW; /* raw volume (no label) */
|
|
break;
|
|
|
|
default:
|
|
throw_rude_remark(EINVAL, "volume %s, invalid keyword: %s",
|
|
vol->name,
|
|
token[parameter]);
|
|
}
|
|
}
|
|
current_volume = volno; /* note last referred volume */
|
|
vol->volno = volno; /* also note in volume */
|
|
|
|
/*
|
|
* Before we can actually use the volume, we need
|
|
* a volume label. We could start to fake one here,
|
|
* but it will be a lot easier when we have some
|
|
* to copy from the drives, so defer it until we
|
|
* set up the configuration. XXX
|
|
*/
|
|
if (vol->state == volume_unallocated)
|
|
vol->state = volume_down; /* now ready to bring up at the end */
|
|
|
|
/* Find out how big our volume is */
|
|
for (i = 0; i < vol->plexes; i++)
|
|
vol->size = max(vol->size, PLEX[vol->plex[i]].length);
|
|
vinum_conf.volumes_used++; /* one more in use */
|
|
if (vol->dev == NULL)
|
|
vol->dev = make_dev(&vinum_cdevsw,
|
|
VINUMMINOR(volno, VINUM_VOLUME_TYPE),
|
|
UID_ROOT,
|
|
GID_OPERATOR,
|
|
S_IRUSR | S_IWUSR | S_IRGRP,
|
|
"vinum/%s",
|
|
vol->name);
|
|
}
|
|
|
|
/*
|
|
* Parse a config entry. CARE! This destroys the original contents of the
|
|
* config entry, which we don't really need after this. More specifically, it
|
|
* places \0 characters at the end of each token.
|
|
*
|
|
* Return 0 if all is well, otherwise EINVAL for invalid keyword,
|
|
* or ENOENT if 'read' command doesn't find any drives.
|
|
*/
|
|
int
|
|
parse_config(char *cptr, struct keywordset *keyset, int update)
|
|
{
|
|
int status;
|
|
|
|
status = 0; /* until proven otherwise */
|
|
tokens = tokenize(cptr, token, MAXTOKEN); /* chop up into tokens */
|
|
|
|
if (tokens <= 0) /* screwed up or empty line */
|
|
return tokens; /* give up */
|
|
else if (tokens == MAXTOKEN) /* too many */
|
|
throw_rude_remark(E2BIG,
|
|
"Configuration error for %s: too many parameters",
|
|
token[1]);
|
|
|
|
if (token[0][0] == '#') /* comment line */
|
|
return 0;
|
|
|
|
switch (get_keyword(token[0], keyset)) { /* decide what to do */
|
|
case kw_drive:
|
|
config_drive(update);
|
|
break;
|
|
|
|
case kw_subdisk:
|
|
config_subdisk(update);
|
|
break;
|
|
|
|
case kw_plex:
|
|
config_plex(update);
|
|
break;
|
|
|
|
case kw_volume:
|
|
config_volume(update);
|
|
break;
|
|
|
|
/* Anything else is invalid in this context */
|
|
default:
|
|
throw_rude_remark(EINVAL, /* should we die? */
|
|
"Invalid configuration information: %s",
|
|
token[0]);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* parse a line handed in from userland via ioctl.
|
|
* This differs only by the error reporting mechanism:
|
|
* we return the error indication in the reply to the
|
|
* ioctl, so we need to set a global static pointer in
|
|
* this file. This technique works because we have
|
|
* ensured that configuration is performed in a single-
|
|
* threaded manner
|
|
*/
|
|
int
|
|
parse_user_config(char *cptr, struct keywordset *keyset)
|
|
{
|
|
int status;
|
|
|
|
ioctl_reply = (struct _ioctl_reply *) cptr;
|
|
status = parse_config(cptr, keyset, 0);
|
|
ioctl_reply = NULL; /* don't do this again */
|
|
return status;
|
|
}
|
|
|
|
/* Remove an object */
|
|
void
|
|
remove(struct vinum_ioctl_msg *msg)
|
|
{
|
|
struct vinum_ioctl_msg message = *msg; /* make a copy to hand on */
|
|
|
|
ioctl_reply = (struct _ioctl_reply *) msg; /* reinstate the address to reply to */
|
|
ioctl_reply->error = 0; /* no error, */
|
|
ioctl_reply->msg[0] = '\0'; /* no message */
|
|
|
|
switch (message.type) {
|
|
case drive_object:
|
|
remove_drive_entry(message.index, message.force);
|
|
updateconfig(0);
|
|
return;
|
|
|
|
case sd_object:
|
|
remove_sd_entry(message.index, message.force, message.recurse);
|
|
updateconfig(0);
|
|
return;
|
|
|
|
case plex_object:
|
|
remove_plex_entry(message.index, message.force, message.recurse);
|
|
updateconfig(0);
|
|
return;
|
|
|
|
case volume_object:
|
|
remove_volume_entry(message.index, message.force, message.recurse);
|
|
updateconfig(0);
|
|
return;
|
|
|
|
default:
|
|
ioctl_reply->error = EINVAL;
|
|
strcpy(ioctl_reply->msg, "Invalid object type");
|
|
}
|
|
}
|
|
|
|
/* Remove a drive. */
|
|
void
|
|
remove_drive_entry(int driveno, int force)
|
|
{
|
|
struct drive *drive = &DRIVE[driveno];
|
|
int sdno;
|
|
|
|
if ((driveno > vinum_conf.drives_allocated) /* not a valid drive */
|
|
||(drive->state == drive_unallocated)) { /* or nothing there */
|
|
ioctl_reply->error = EINVAL;
|
|
strcpy(ioctl_reply->msg, "No such drive");
|
|
} else if (drive->opencount > 0) { /* we have subdisks */
|
|
if (force) { /* do it at any cost */
|
|
for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) {
|
|
if ((SD[sdno].state != sd_unallocated) /* subdisk is allocated */
|
|
&&(SD[sdno].driveno == driveno)) /* and it belongs to this drive */
|
|
remove_sd_entry(sdno, force, 0);
|
|
}
|
|
remove_drive(driveno); /* now remove it */
|
|
vinum_conf.drives_used--; /* one less drive */
|
|
} else
|
|
ioctl_reply->error = EBUSY; /* can't do that */
|
|
} else {
|
|
remove_drive(driveno); /* just remove it */
|
|
vinum_conf.drives_used--; /* one less drive */
|
|
}
|
|
}
|
|
|
|
/* remove a subdisk */
|
|
void
|
|
remove_sd_entry(int sdno, int force, int recurse)
|
|
{
|
|
struct sd *sd = &SD[sdno];
|
|
|
|
if ((sdno > vinum_conf.subdisks_allocated) /* not a valid sd */
|
|
||(sd->state == sd_unallocated)) { /* or nothing there */
|
|
ioctl_reply->error = EINVAL;
|
|
strcpy(ioctl_reply->msg, "No such subdisk");
|
|
} else if (sd->flags & VF_OPEN) /* we're open */
|
|
ioctl_reply->error = EBUSY; /* no getting around that */
|
|
else if (sd->plexno >= 0) { /* we have a plex */
|
|
if (force) { /* do it at any cost */
|
|
struct plex *plex = &PLEX[sd->plexno]; /* point to our plex */
|
|
int mysdno;
|
|
|
|
for (mysdno = 0; /* look for ourselves */
|
|
mysdno < plex->subdisks && &SD[plex->sdnos[mysdno]] != sd;
|
|
mysdno++);
|
|
if (mysdno == plex->subdisks) /* didn't find it */
|
|
log(LOG_ERR,
|
|
"Error removing subdisk %s: not found in plex %s\n",
|
|
SD[mysdno].name,
|
|
plex->name);
|
|
else { /* remove the subdisk from plex */
|
|
if (mysdno < (plex->subdisks - 1)) /* not the last subdisk */
|
|
bcopy(&plex->sdnos[mysdno + 1],
|
|
&plex->sdnos[mysdno],
|
|
(plex->subdisks - 1 - mysdno) * sizeof(int));
|
|
plex->subdisks--;
|
|
sd->plexno = -1; /* disown the subdisk */
|
|
}
|
|
|
|
/*
|
|
* Removing a subdisk from a striped or
|
|
* RAID-4 or RAID-5 plex really tears the
|
|
* hell out of the structure, and it needs
|
|
* to be reinitialized.
|
|
*/
|
|
if (plex->organization != plex_concat) /* not concatenated, */
|
|
set_plex_state(plex->plexno, plex_faulty, setstate_force); /* need to reinitialize */
|
|
log(LOG_INFO, "vinum: removing %s\n", sd->name);
|
|
free_sd(sdno);
|
|
} else
|
|
ioctl_reply->error = EBUSY; /* can't do that */
|
|
} else {
|
|
log(LOG_INFO, "vinum: removing %s\n", sd->name);
|
|
free_sd(sdno);
|
|
}
|
|
}
|
|
|
|
/* remove a plex */
|
|
void
|
|
remove_plex_entry(int plexno, int force, int recurse)
|
|
{
|
|
struct plex *plex = &PLEX[plexno];
|
|
int sdno;
|
|
|
|
if ((plexno > vinum_conf.plexes_allocated) /* not a valid plex */
|
|
||(plex->state == plex_unallocated)) { /* or nothing there */
|
|
ioctl_reply->error = EINVAL;
|
|
strcpy(ioctl_reply->msg, "No such plex");
|
|
} else if (plex->flags & VF_OPEN) { /* we're open */
|
|
ioctl_reply->error = EBUSY; /* no getting around that */
|
|
return;
|
|
}
|
|
if (plex->subdisks) {
|
|
if (force) { /* do it anyway */
|
|
if (recurse) { /* remove all below */
|
|
int sds = plex->subdisks;
|
|
for (sdno = 0; sdno < sds; sdno++)
|
|
free_sd(plex->sdnos[sdno]); /* free all subdisks */
|
|
} else { /* just tear them out */
|
|
int sds = plex->subdisks;
|
|
for (sdno = 0; sdno < sds; sdno++)
|
|
SD[plex->sdnos[sdno]].plexno = -1; /* no plex any more */
|
|
}
|
|
} else { /* can't do it without force */
|
|
ioctl_reply->error = EBUSY; /* can't do that */
|
|
return;
|
|
}
|
|
}
|
|
if (plex->volno >= 0) { /* we are part of a volume */
|
|
if (force) { /* do it at any cost */
|
|
struct volume *vol = &VOL[plex->volno];
|
|
int myplexno;
|
|
|
|
for (myplexno = 0; myplexno < vol->plexes; myplexno++)
|
|
if (vol->plex[myplexno] == plexno) /* found it */
|
|
break;
|
|
if (myplexno == vol->plexes) /* didn't find it. Huh? */
|
|
log(LOG_ERR,
|
|
"Error removing plex %s: not found in volume %s\n",
|
|
plex->name,
|
|
vol->name);
|
|
if (myplexno < (vol->plexes - 1)) /* not the last plex in the list */
|
|
bcopy(&vol->plex[myplexno + 1],
|
|
&vol->plex[myplexno],
|
|
vol->plexes - 1 - myplexno);
|
|
vol->plexes--;
|
|
} else {
|
|
ioctl_reply->error = EBUSY; /* can't do that */
|
|
return;
|
|
}
|
|
}
|
|
log(LOG_INFO, "vinum: removing %s\n", plex->name);
|
|
free_plex(plexno);
|
|
vinum_conf.plexes_used--; /* one less plex */
|
|
}
|
|
|
|
/* remove a volume */
|
|
void
|
|
remove_volume_entry(int volno, int force, int recurse)
|
|
{
|
|
struct volume *vol = &VOL[volno];
|
|
int plexno;
|
|
|
|
if ((volno > vinum_conf.volumes_allocated) /* not a valid volume */
|
|
||(vol->state == volume_unallocated)) { /* or nothing there */
|
|
ioctl_reply->error = EINVAL;
|
|
strcpy(ioctl_reply->msg, "No such volume");
|
|
} else if (vol->flags & VF_OPEN) /* we're open */
|
|
ioctl_reply->error = EBUSY; /* no getting around that */
|
|
else if (vol->plexes) {
|
|
if (recurse && force) { /* remove all below */
|
|
int plexes = vol->plexes;
|
|
|
|
/* for (plexno = plexes - 1; plexno >= 0; plexno--) */
|
|
for (plexno = 0; plexno < plexes; plexno++)
|
|
remove_plex_entry(vol->plex[plexno], force, recurse);
|
|
log(LOG_INFO, "vinum: removing %s\n", vol->name);
|
|
free_volume(volno);
|
|
vinum_conf.volumes_used--; /* one less volume */
|
|
} else
|
|
ioctl_reply->error = EBUSY; /* can't do that */
|
|
} else {
|
|
log(LOG_INFO, "vinum: removing %s\n", vol->name);
|
|
free_volume(volno);
|
|
vinum_conf.volumes_used--; /* one less volume */
|
|
}
|
|
}
|
|
|
|
/* Currently called only from ioctl */
|
|
void
|
|
update_sd_config(int sdno, int diskconfig)
|
|
{
|
|
if (!diskconfig)
|
|
set_sd_state(sdno, sd_up, setstate_configuring);
|
|
SD[sdno].flags &= ~VF_NEWBORN;
|
|
}
|
|
|
|
void
|
|
update_plex_config(int plexno, int diskconfig)
|
|
{
|
|
u_int64_t size;
|
|
int sdno;
|
|
struct plex *plex = &PLEX[plexno];
|
|
enum plexstate state = plex_up; /* state we want the plex in */
|
|
int remainder; /* size of fractional stripe at end */
|
|
int added_plex; /* set if we add a plex to a volume */
|
|
int required_sds; /* number of subdisks we need */
|
|
struct sd *sd;
|
|
struct volume *vol;
|
|
int data_sds = 0; /* number of sds carrying data */
|
|
|
|
if (plex->state < plex_init) /* not a real plex, */
|
|
return;
|
|
added_plex = 0;
|
|
if (plex->volno >= 0) { /* we have a volume */
|
|
vol = &VOL[plex->volno];
|
|
|
|
/*
|
|
* If we're newly born,
|
|
* and the volume isn't,
|
|
* and it has other plexes,
|
|
* and we didn't read this mess from disk,
|
|
* we were added later.
|
|
*/
|
|
if ((plex->flags & VF_NEWBORN)
|
|
&& ((vol->flags & VF_NEWBORN) == 0)
|
|
&& (vol->plexes > 0)
|
|
&& (diskconfig == 0)) {
|
|
added_plex = 1;
|
|
state = plex_down; /* so take ourselves down */
|
|
}
|
|
}
|
|
/*
|
|
* Check that our subdisks make sense. For
|
|
* striped plexes, we need at least two
|
|
* subdisks, and for RAID-4 and RAID-5 plexes we
|
|
* need at least three subdisks. In each case
|
|
* they must all be the same size.
|
|
*/
|
|
if (plex->organization == plex_striped) {
|
|
data_sds = plex->subdisks;
|
|
required_sds = 2;
|
|
} else if (isparity(plex)) { /* RAID 4 or 5 */
|
|
data_sds = plex->subdisks - 1;
|
|
required_sds = 3;
|
|
} else
|
|
required_sds = 0;
|
|
if (required_sds > 0) { /* striped, RAID-4 or RAID-5 */
|
|
if (plex->subdisks < required_sds) {
|
|
log(LOG_ERR,
|
|
"vinum: plex %s does not have at least %d subdisks\n",
|
|
plex->name,
|
|
required_sds);
|
|
state = plex_faulty;
|
|
}
|
|
/*
|
|
* Now see if the plex size is a multiple of
|
|
* the stripe size. If not, trim off the end
|
|
* of each subdisk and return it to the drive.
|
|
*/
|
|
if (plex->length > 0) {
|
|
if (data_sds > 0) {
|
|
if (plex->stripesize > 0) {
|
|
remainder = (int) (plex->length /* are we exact? */
|
|
% ((u_int64_t) plex->stripesize * data_sds));
|
|
if (remainder) { /* no */
|
|
log(LOG_INFO, "vinum: removing %d blocks of partial stripe at the end of %s\n",
|
|
remainder,
|
|
plex->name);
|
|
plex->length -= remainder; /* shorten the plex */
|
|
remainder /= data_sds; /* spread the remainder amongst the sds */
|
|
for (sdno = 0; sdno < plex->subdisks; sdno++) {
|
|
sd = &SD[plex->sdnos[sdno]]; /* point to the subdisk */
|
|
return_drive_space(sd->driveno, /* return the space */
|
|
sd->driveoffset + sd->sectors - remainder,
|
|
remainder);
|
|
sd->sectors -= remainder; /* and shorten it */
|
|
}
|
|
}
|
|
} else /* no data sds, */
|
|
plex->length = 0; /* reset length */
|
|
}
|
|
}
|
|
}
|
|
size = 0;
|
|
for (sdno = 0; sdno < plex->subdisks; sdno++) {
|
|
sd = &SD[plex->sdnos[sdno]];
|
|
if (isstriped(plex)
|
|
&& (sdno > 0)
|
|
&& (sd->sectors != SD[plex->sdnos[sdno - 1]].sectors)) {
|
|
log(LOG_ERR, "vinum: %s must have equal sized subdisks\n", plex->name);
|
|
state = plex_down;
|
|
}
|
|
size += sd->sectors;
|
|
if (added_plex) /* we were added later */
|
|
sd->state = sd_stale; /* stale until proven otherwise */
|
|
if (plex->sectorsize != 0) {
|
|
if (sd->sectorsize != plex->sectorsize) /* incompatible sector sizes? */
|
|
printf("vinum: incompatible sector sizes. "
|
|
"%s has %d bytes, %s has %d bytes. Ignored.\n",
|
|
sd->name,
|
|
sd->sectorsize,
|
|
plex->name,
|
|
plex->sectorsize);
|
|
} else /* not set yet, */
|
|
plex->sectorsize = sd->sectorsize;
|
|
}
|
|
|
|
if (plex->subdisks) { /* plex has subdisks, calculate size */
|
|
/*
|
|
* XXX We shouldn't need to calculate the size any
|
|
* more. Check this some time
|
|
*/
|
|
if (isparity(plex))
|
|
size = size / plex->subdisks * (plex->subdisks - 1); /* less space for RAID-4 and RAID-5 */
|
|
if (plex->length != size)
|
|
log(LOG_INFO,
|
|
"Correcting length of %s: was %lld, is %lld\n",
|
|
plex->name,
|
|
(long long) plex->length,
|
|
(long long) size);
|
|
plex->length = size;
|
|
} else { /* no subdisks, */
|
|
plex->length = 0; /* no size */
|
|
state = plex_down; /* take it down */
|
|
}
|
|
update_plex_state(plexno); /* set the state */
|
|
plex->flags &= ~VF_NEWBORN;
|
|
}
|
|
|
|
void
|
|
update_volume_config(int volno)
|
|
{
|
|
struct volume *vol = &VOL[volno];
|
|
struct plex *plex;
|
|
int plexno;
|
|
|
|
if (vol->state != volume_unallocated)
|
|
/*
|
|
* Recalculate the size of the volume,
|
|
* which might change if the original
|
|
* plexes were not a multiple of the
|
|
* stripe size.
|
|
*/
|
|
{
|
|
vol->size = 0;
|
|
for (plexno = 0; plexno < vol->plexes; plexno++) {
|
|
plex = &PLEX[vol->plex[plexno]];
|
|
vol->size = max(plex->length, vol->size); /* maximum size */
|
|
plex->volplexno = plexno; /* note it in the plex */
|
|
if (vol->sectorsize != 0) {
|
|
if (plex->sectorsize != vol->sectorsize) /* incompatible sector sizes? */
|
|
printf("vinum: incompatible sector sizes. "
|
|
"%s has %d, %s has %d. Ignored.\n",
|
|
plex->name,
|
|
plex->sectorsize,
|
|
vol->name,
|
|
vol->sectorsize);
|
|
} else /* not set yet, */
|
|
vol->sectorsize = plex->sectorsize;
|
|
}
|
|
}
|
|
vol->flags &= ~VF_NEWBORN; /* no longer newly born */
|
|
}
|
|
|
|
/*
|
|
* Update the global configuration. This is
|
|
* called after configuration changes.
|
|
*
|
|
* diskconfig is != 0 if we're reading in a config
|
|
* from disk. In this case, we don't try to bring
|
|
* the devices up, though we will bring them down
|
|
* if there's some error which got missed when
|
|
* writing to disk.
|
|
*/
|
|
void
|
|
updateconfig(int diskconfig)
|
|
{
|
|
int plexno;
|
|
int volno;
|
|
|
|
for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++)
|
|
update_plex_config(plexno, diskconfig);
|
|
|
|
for (volno = 0; volno < vinum_conf.volumes_allocated; volno++) {
|
|
if (VOL[volno].state > volume_uninit) {
|
|
VOL[volno].flags &= ~VF_CONFIG_SETUPSTATE; /* no more setupstate */
|
|
update_volume_state(volno);
|
|
update_volume_config(volno);
|
|
}
|
|
}
|
|
save_config();
|
|
}
|
|
|
|
/*
|
|
* Start manual changes to the configuration and lock out
|
|
* others who may wish to do so.
|
|
* XXX why do we need this and lock_config too?
|
|
*/
|
|
int
|
|
start_config(int force)
|
|
{
|
|
int error;
|
|
|
|
current_drive = -1; /* note the last drive we mention, for
|
|
* some defaults */
|
|
current_plex = -1; /* and the same for the last plex */
|
|
current_volume = -1; /* and the last volume */
|
|
while ((vinum_conf.flags & VF_CONFIGURING) != 0) {
|
|
vinum_conf.flags |= VF_WILL_CONFIGURE;
|
|
if ((error = tsleep(&vinum_conf, PRIBIO | PCATCH, "vincfg", 0)) != 0)
|
|
return error;
|
|
}
|
|
/*
|
|
* We need two flags here: VF_CONFIGURING
|
|
* tells other processes to hold off (this
|
|
* function), and VF_CONFIG_INCOMPLETE
|
|
* tells the state change routines not to
|
|
* propagate incrememntal state changes
|
|
*/
|
|
vinum_conf.flags |= VF_CONFIGURING | VF_CONFIG_INCOMPLETE;
|
|
if (force)
|
|
vinum_conf.flags |= VF_FORCECONFIG; /* overwrite differently named drives */
|
|
current_drive = -1; /* reset the defaults */
|
|
current_plex = -1; /* and the same for the last plex */
|
|
current_volume = -1; /* and the last volme */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the config if update is 1, and unlock
|
|
* it. We won't update the configuration if we
|
|
* are called in a recursive loop via throw_rude_remark.
|
|
*/
|
|
void
|
|
finish_config(int update)
|
|
{
|
|
/* we've finished our config */
|
|
vinum_conf.flags &= ~(VF_CONFIG_INCOMPLETE | VF_READING_CONFIG | VF_FORCECONFIG);
|
|
if (update)
|
|
updateconfig(0); /* so update things */
|
|
else
|
|
updateconfig(1); /* do some updates only */
|
|
vinum_conf.flags &= ~VF_CONFIGURING; /* and now other people can take a turn */
|
|
if ((vinum_conf.flags & VF_WILL_CONFIGURE) != 0) {
|
|
vinum_conf.flags &= ~VF_WILL_CONFIGURE;
|
|
wakeup_one(&vinum_conf);
|
|
}
|
|
}
|
|
/* Local Variables: */
|
|
/* fill-column: 50 */
|
|
/* End: */
|