freebsd-skq/sys/dev/aacraid/aacraid_cam.c
Achim Leubner 3fea9c0d26 Update aacraid to version 3.2.5.
Full MSI-X interrupt support added.
Timeout and reset handling reworked, firmware flash update test added.
Support for drives with 4KB block size added.
Changes made to avoid exposure of phys. array components by default.

Approved by:	scottl (mentor), emaste (co-mentor)
2013-11-08 13:23:26 +00:00

1421 lines
38 KiB
C

/*-
* Copyright (c) 2002-2010 Adaptec, Inc.
* Copyright (c) 2010-2012 PMC-Sierra, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* CAM front-end for communicating with non-DASD devices
*/
#include "opt_aacraid.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#if __FreeBSD_version < 801000
#include <cam/cam_xpt_periph.h>
#endif
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <machine/md_var.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/aacraid/aacraid_reg.h>
#include <sys/aac_ioctl.h>
#include <dev/aacraid/aacraid_debug.h>
#include <dev/aacraid/aacraid_var.h>
#if __FreeBSD_version >= 700025
#ifndef CAM_NEW_TRAN_CODE
#define CAM_NEW_TRAN_CODE 1
#endif
#endif
#ifndef SVPD_SUPPORTED_PAGE_LIST
struct scsi_vpd_supported_page_list
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_SUPPORTED_PAGE_LIST 0x00
u_int8_t reserved;
u_int8_t length; /* number of VPD entries */
#define SVPD_SUPPORTED_PAGES_SIZE 251
u_int8_t list[SVPD_SUPPORTED_PAGES_SIZE];
};
#endif
/************************** Version Compatibility *************************/
#if __FreeBSD_version < 700031
#define aac_sim_alloc(a,b,c,d,e,f,g,h,i) cam_sim_alloc(a,b,c,d,e,g,h,i)
#else
#define aac_sim_alloc cam_sim_alloc
#endif
struct aac_cam {
device_t dev;
struct aac_sim *inf;
struct cam_sim *sim;
struct cam_path *path;
};
static int aac_cam_probe(device_t dev);
static int aac_cam_attach(device_t dev);
static int aac_cam_detach(device_t dev);
static void aac_cam_action(struct cam_sim *, union ccb *);
static void aac_cam_poll(struct cam_sim *);
static void aac_cam_complete(struct aac_command *);
static void aac_container_complete(struct aac_command *);
#if __FreeBSD_version >= 700000
static void aac_cam_rescan(struct aac_softc *sc, uint32_t channel,
uint32_t target_id);
#endif
static void aac_set_scsi_error(struct aac_softc *sc, union ccb *ccb,
u_int8_t status, u_int8_t key, u_int8_t asc, u_int8_t ascq);
static int aac_load_map_command_sg(struct aac_softc *, struct aac_command *);
static u_int64_t aac_eval_blockno(u_int8_t *);
static void aac_container_rw_command(struct cam_sim *, union ccb *, u_int8_t *);
static void aac_container_special_command(struct cam_sim *, union ccb *,
u_int8_t *);
static void aac_passthrough_command(struct cam_sim *, union ccb *);
static u_int32_t aac_cam_reset_bus(struct cam_sim *, union ccb *);
static u_int32_t aac_cam_abort_ccb(struct cam_sim *, union ccb *);
static u_int32_t aac_cam_term_io(struct cam_sim *, union ccb *);
static devclass_t aacraid_pass_devclass;
static device_method_t aacraid_pass_methods[] = {
DEVMETHOD(device_probe, aac_cam_probe),
DEVMETHOD(device_attach, aac_cam_attach),
DEVMETHOD(device_detach, aac_cam_detach),
{ 0, 0 }
};
static driver_t aacraid_pass_driver = {
"aacraidp",
aacraid_pass_methods,
sizeof(struct aac_cam)
};
DRIVER_MODULE(aacraidp, aacraid, aacraid_pass_driver, aacraid_pass_devclass, 0, 0);
MODULE_DEPEND(aacraidp, cam, 1, 1, 1);
MALLOC_DEFINE(M_AACRAIDCAM, "aacraidcam", "AACRAID CAM info");
static void
aac_set_scsi_error(struct aac_softc *sc, union ccb *ccb, u_int8_t status,
u_int8_t key, u_int8_t asc, u_int8_t ascq)
{
#if __FreeBSD_version >= 900000
struct scsi_sense_data_fixed *sense =
(struct scsi_sense_data_fixed *)&ccb->csio.sense_data;
#else
struct scsi_sense_data *sense = &ccb->csio.sense_data;
#endif
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "Error %d!", status);
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = status;
if (status == SCSI_STATUS_CHECK_COND) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
bzero(&ccb->csio.sense_data, ccb->csio.sense_len);
ccb->csio.sense_data.error_code =
SSD_CURRENT_ERROR | SSD_ERRCODE_VALID;
sense->flags = key;
if (ccb->csio.sense_len >= 14) {
sense->extra_len = 6;
sense->add_sense_code = asc;
sense->add_sense_code_qual = ascq;
}
}
}
#if __FreeBSD_version >= 700000
static void
aac_cam_rescan(struct aac_softc *sc, uint32_t channel, uint32_t target_id)
{
union ccb *ccb;
struct aac_sim *sim;
struct aac_cam *camsc;
if (target_id == AAC_CAM_TARGET_WILDCARD)
target_id = CAM_TARGET_WILDCARD;
TAILQ_FOREACH(sim, &sc->aac_sim_tqh, sim_link) {
camsc = sim->aac_cam;
if (camsc == NULL || camsc->inf == NULL ||
camsc->inf->BusNumber != channel)
continue;
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(sc->aac_dev,
"Cannot allocate ccb for bus rescan.\n");
return;
}
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
cam_sim_path(camsc->sim),
target_id, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
device_printf(sc->aac_dev,
"Cannot create path for bus rescan.\n");
return;
}
xpt_rescan(ccb);
break;
}
}
#endif
static void
aac_cam_event(struct aac_softc *sc, struct aac_event *event, void *arg)
{
union ccb *ccb;
struct aac_cam *camsc;
switch (event->ev_type) {
case AAC_EVENT_CMFREE:
ccb = arg;
camsc = ccb->ccb_h.sim_priv.entries[0].ptr;
free(event, M_AACRAIDCAM);
xpt_release_simq(camsc->sim, 1);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
break;
default:
device_printf(sc->aac_dev, "unknown event %d in aac_cam\n",
event->ev_type);
break;
}
return;
}
static int
aac_cam_probe(device_t dev)
{
struct aac_softc *sc;
struct aac_cam *camsc;
camsc = (struct aac_cam *)device_get_softc(dev);
if (!camsc->inf)
return (0);
sc = camsc->inf->aac_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return (0);
}
static int
aac_cam_detach(device_t dev)
{
struct aac_softc *sc;
struct aac_cam *camsc;
camsc = (struct aac_cam *)device_get_softc(dev);
if (!camsc->inf)
return (0);
sc = camsc->inf->aac_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
camsc->inf->aac_cam = NULL;
mtx_lock(&sc->aac_io_lock);
xpt_async(AC_LOST_DEVICE, camsc->path, NULL);
xpt_free_path(camsc->path);
xpt_bus_deregister(cam_sim_path(camsc->sim));
cam_sim_free(camsc->sim, /*free_devq*/TRUE);
sc->cam_rescan_cb = NULL;
mtx_unlock(&sc->aac_io_lock);
return (0);
}
/*
* Register the driver as a CAM SIM
*/
static int
aac_cam_attach(device_t dev)
{
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
struct aac_cam *camsc;
struct aac_sim *inf;
camsc = (struct aac_cam *)device_get_softc(dev);
inf = (struct aac_sim *)device_get_ivars(dev);
if (!inf)
return (EIO);
fwprintf(inf->aac_sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
camsc->inf = inf;
camsc->inf->aac_cam = camsc;
devq = cam_simq_alloc(inf->TargetsPerBus);
if (devq == NULL)
return (EIO);
sim = aac_sim_alloc(aac_cam_action, aac_cam_poll, "aacraidp", camsc,
device_get_unit(dev), &inf->aac_sc->aac_io_lock, 1, 1, devq);
if (sim == NULL) {
cam_simq_free(devq);
return (EIO);
}
/* Since every bus has it's own sim, every bus 'appears' as bus 0 */
mtx_lock(&inf->aac_sc->aac_io_lock);
if (aac_xpt_bus_register(sim, dev, 0) != CAM_SUCCESS) {
cam_sim_free(sim, TRUE);
mtx_unlock(&inf->aac_sc->aac_io_lock);
return (EIO);
}
if (xpt_create_path(&path, NULL, cam_sim_path(sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, TRUE);
mtx_unlock(&inf->aac_sc->aac_io_lock);
return (EIO);
}
#if __FreeBSD_version >= 700000
inf->aac_sc->cam_rescan_cb = aac_cam_rescan;
#endif
mtx_unlock(&inf->aac_sc->aac_io_lock);
camsc->sim = sim;
camsc->path = path;
return (0);
}
static u_int64_t
aac_eval_blockno(u_int8_t *cmdp)
{
u_int64_t blockno;
switch (cmdp[0]) {
case READ_6:
case WRITE_6:
blockno = scsi_3btoul(((struct scsi_rw_6 *)cmdp)->addr);
break;
case READ_10:
case WRITE_10:
blockno = scsi_4btoul(((struct scsi_rw_10 *)cmdp)->addr);
break;
case READ_12:
case WRITE_12:
blockno = scsi_4btoul(((struct scsi_rw_12 *)cmdp)->addr);
break;
case READ_16:
case WRITE_16:
blockno = scsi_8btou64(((struct scsi_rw_16 *)cmdp)->addr);
break;
default:
blockno = 0;
break;
}
return(blockno);
}
static void
aac_container_rw_command(struct cam_sim *sim, union ccb *ccb, u_int8_t *cmdp)
{
struct aac_cam *camsc;
struct aac_softc *sc;
struct aac_command *cm;
struct aac_fib *fib;
u_int64_t blockno;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return;
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return;
}
fib = cm->cm_fib;
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags |= AAC_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags |= AAC_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
break;
default:
cm->cm_flags |= AAC_CMD_DATAIN | AAC_CMD_DATAOUT;
break;
}
blockno = aac_eval_blockno(cmdp);
cm->cm_complete = aac_container_complete;
cm->cm_ccb = ccb;
cm->cm_timestamp = time_uptime;
cm->cm_data = (void *)ccb->csio.data_ptr;
cm->cm_datalen = ccb->csio.dxfer_len;
fib->Header.Size = sizeof(struct aac_fib_header);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE2) {
struct aac_raw_io2 *raw;
raw = (struct aac_raw_io2 *)&fib->data[0];
bzero(raw, sizeof(struct aac_raw_io2));
fib->Header.Command = RawIo2;
raw->strtBlkLow = (u_int32_t)blockno;
raw->strtBlkHigh = (u_int32_t)(blockno >> 32);
raw->byteCnt = cm->cm_datalen;
raw->ldNum = ccb->ccb_h.target_id;
fib->Header.Size += sizeof(struct aac_raw_io2);
cm->cm_sgtable = (struct aac_sg_table *)raw->sge;
if (cm->cm_flags & AAC_CMD_DATAIN)
raw->flags = RIO2_IO_TYPE_READ | RIO2_SG_FORMAT_IEEE1212;
else
raw->flags = RIO2_IO_TYPE_WRITE | RIO2_SG_FORMAT_IEEE1212;
} else if (sc->flags & AAC_FLAGS_RAW_IO) {
struct aac_raw_io *raw;
raw = (struct aac_raw_io *)&fib->data[0];
bzero(raw, sizeof(struct aac_raw_io));
fib->Header.Command = RawIo;
raw->BlockNumber = blockno;
raw->ByteCount = cm->cm_datalen;
raw->ContainerId = ccb->ccb_h.target_id;
fib->Header.Size += sizeof(struct aac_raw_io);
cm->cm_sgtable = (struct aac_sg_table *)
&raw->SgMapRaw;
if (cm->cm_flags & AAC_CMD_DATAIN)
raw->Flags = 1;
} else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
fib->Header.Command = ContainerCommand;
if (cm->cm_flags & AAC_CMD_DATAIN) {
struct aac_blockread *br;
br = (struct aac_blockread *)&fib->data[0];
br->Command = VM_CtBlockRead;
br->ContainerId = ccb->ccb_h.target_id;
br->BlockNumber = blockno;
br->ByteCount = cm->cm_datalen;
fib->Header.Size += sizeof(struct aac_blockread);
cm->cm_sgtable = &br->SgMap;
} else {
struct aac_blockwrite *bw;
bw = (struct aac_blockwrite *)&fib->data[0];
bw->Command = VM_CtBlockWrite;
bw->ContainerId = ccb->ccb_h.target_id;
bw->BlockNumber = blockno;
bw->ByteCount = cm->cm_datalen;
bw->Stable = CUNSTABLE;
fib->Header.Size += sizeof(struct aac_blockwrite);
cm->cm_sgtable = &bw->SgMap;
}
} else {
fib->Header.Command = ContainerCommand64;
if (cm->cm_flags & AAC_CMD_DATAIN) {
struct aac_blockread64 *br;
br = (struct aac_blockread64 *)&fib->data[0];
br->Command = VM_CtHostRead64;
br->ContainerId = ccb->ccb_h.target_id;
br->SectorCount = cm->cm_datalen/AAC_BLOCK_SIZE;
br->BlockNumber = blockno;
br->Pad = 0;
br->Flags = 0;
fib->Header.Size += sizeof(struct aac_blockread64);
cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
} else {
struct aac_blockwrite64 *bw;
bw = (struct aac_blockwrite64 *)&fib->data[0];
bw->Command = VM_CtHostWrite64;
bw->ContainerId = ccb->ccb_h.target_id;
bw->SectorCount = cm->cm_datalen/AAC_BLOCK_SIZE;
bw->BlockNumber = blockno;
bw->Pad = 0;
bw->Flags = 0;
fib->Header.Size += sizeof(struct aac_blockwrite64);
cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
}
}
aac_enqueue_ready(cm);
aacraid_startio(cm->cm_sc);
}
static void
aac_container_special_command(struct cam_sim *sim, union ccb *ccb,
u_int8_t *cmdp)
{
struct aac_cam *camsc;
struct aac_softc *sc;
struct aac_container *co;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
mtx_assert(&sc->aac_io_lock, MA_OWNED);
TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "found container %d search for %d", co->co_mntobj.ObjectId, ccb->ccb_h.target_id);
if (co->co_mntobj.ObjectId == ccb->ccb_h.target_id)
break;
}
if (co == NULL || ccb->ccb_h.target_lun != 0) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B,
"Container not present: cmd 0x%x id %d lun %d len %d",
*cmdp, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
xpt_done(ccb);
return;
}
if (ccb->csio.dxfer_len)
bzero(ccb->csio.data_ptr, ccb->csio.dxfer_len);
switch (*cmdp) {
case INQUIRY:
{
struct scsi_inquiry *inq = (struct scsi_inquiry *)cmdp;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container INQUIRY id %d lun %d len %d VPD 0x%x Page 0x%x",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len, inq->byte2, inq->page_code);
if (!(inq->byte2 & SI_EVPD)) {
struct scsi_inquiry_data *p =
(struct scsi_inquiry_data *)ccb->csio.data_ptr;
if (inq->page_code != 0) {
aac_set_scsi_error(sc, ccb,
SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
p->device = T_DIRECT;
p->version = SCSI_REV_SPC2;
p->response_format = 2;
if (ccb->csio.dxfer_len >= 36) {
p->additional_length = 31;
p->flags = SID_WBus16|SID_Sync|SID_CmdQue;
/* OEM Vendor defines */
strcpy(p->vendor,"Adaptec ");
strcpy(p->product,"Array ");
strcpy(p->revision,"V1.0");
}
} else {
if (inq->page_code == SVPD_SUPPORTED_PAGE_LIST) {
struct scsi_vpd_supported_page_list *p =
(struct scsi_vpd_supported_page_list *)
ccb->csio.data_ptr;
p->device = T_DIRECT;
p->page_code = SVPD_SUPPORTED_PAGE_LIST;
p->length = 2;
p->list[0] = SVPD_SUPPORTED_PAGE_LIST;
p->list[1] = SVPD_UNIT_SERIAL_NUMBER;
} else if (inq->page_code == SVPD_UNIT_SERIAL_NUMBER) {
struct scsi_vpd_unit_serial_number *p =
(struct scsi_vpd_unit_serial_number *)
ccb->csio.data_ptr;
p->device = T_DIRECT;
p->page_code = SVPD_UNIT_SERIAL_NUMBER;
p->length = sprintf((char *)p->serial_num,
"%08X%02X", co->co_uid,
ccb->ccb_h.target_id);
} else {
aac_set_scsi_error(sc, ccb,
SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case REPORT_LUNS:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container REPORT_LUNS id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case START_STOP:
{
struct scsi_start_stop_unit *ss =
(struct scsi_start_stop_unit *)cmdp;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container START_STOP id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
if (sc->aac_support_opt2 & AAC_SUPPORTED_POWER_MANAGEMENT) {
struct aac_command *cm;
struct aac_fib *fib;
struct aac_cnt_config *ccfg;
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return;
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return;
}
fib = cm->cm_fib;
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(struct aac_cnt_config);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = ContainerCommand;
/* Start unit */
ccfg = (struct aac_cnt_config *)&fib->data[0];
bzero(ccfg, sizeof (*ccfg) - CT_PACKET_SIZE);
ccfg->Command = VM_ContainerConfig;
ccfg->CTCommand.command = CT_PM_DRIVER_SUPPORT;
ccfg->CTCommand.param[0] = (ss->how & SSS_START ?
AAC_PM_DRIVERSUP_START_UNIT :
AAC_PM_DRIVERSUP_STOP_UNIT);
ccfg->CTCommand.param[1] = co->co_mntobj.ObjectId;
ccfg->CTCommand.param[2] = 0; /* 1 - immediate */
if (aacraid_wait_command(cm) != 0 ||
*(u_int32_t *)&fib->data[0] != 0) {
printf("Power Management: Error start/stop container %d\n",
co->co_mntobj.ObjectId);
}
aacraid_release_command(cm);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case TEST_UNIT_READY:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container TEST_UNIT_READY id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case REQUEST_SENSE:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container REQUEST_SENSE id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case READ_CAPACITY:
{
struct scsi_read_capacity_data *p =
(struct scsi_read_capacity_data *)ccb->csio.data_ptr;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container READ_CAPACITY id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
scsi_ulto4b(co->co_mntobj.ObjExtension.BlockDevice.BlockSize, p->length);
/* check if greater than 2TB */
if (co->co_mntobj.CapacityHigh) {
if (sc->flags & AAC_FLAGS_LBA_64BIT)
scsi_ulto4b(0xffffffff, p->addr);
} else {
scsi_ulto4b(co->co_mntobj.Capacity-1, p->addr);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case SERVICE_ACTION_IN:
{
struct scsi_read_capacity_data_long *p =
(struct scsi_read_capacity_data_long *)
ccb->csio.data_ptr;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container SERVICE_ACTION_IN id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
if (((struct scsi_read_capacity_16 *)cmdp)->service_action !=
SRC16_SERVICE_ACTION) {
aac_set_scsi_error(sc, ccb, SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
scsi_ulto4b(co->co_mntobj.ObjExtension.BlockDevice.BlockSize, p->length);
scsi_ulto4b(co->co_mntobj.CapacityHigh, p->addr);
scsi_ulto4b(co->co_mntobj.Capacity-1, &p->addr[4]);
if (ccb->csio.dxfer_len >= 14) {
u_int32_t mapping = co->co_mntobj.ObjExtension.BlockDevice.bdLgclPhysMap;
p->prot_lbppbe = 0;
while (mapping > 1) {
mapping >>= 1;
p->prot_lbppbe++;
}
p->prot_lbppbe &= 0x0f;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case MODE_SENSE_6:
{
struct scsi_mode_sense_6 *msp =(struct scsi_mode_sense_6 *)cmdp;
struct ms6_data {
struct scsi_mode_hdr_6 hd;
struct scsi_mode_block_descr bd;
char pages;
} *p = (struct ms6_data *)ccb->csio.data_ptr;
char *pagep;
int return_all_pages = FALSE;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container MODE_SENSE id %d lun %d len %d page %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len, msp->page);
p->hd.datalen = sizeof(struct scsi_mode_hdr_6) - 1;
if (co->co_mntobj.ContentState & AAC_FSCS_READONLY)
p->hd.dev_specific = 0x80; /* WP */
p->hd.dev_specific |= 0x10; /* DPOFUA */
if (msp->byte2 & SMS_DBD) {
p->hd.block_descr_len = 0;
} else {
p->hd.block_descr_len =
sizeof(struct scsi_mode_block_descr);
p->hd.datalen += p->hd.block_descr_len;
scsi_ulto3b(co->co_mntobj.ObjExtension.BlockDevice.BlockSize, p->bd.block_len);
if (co->co_mntobj.Capacity > 0xffffff ||
co->co_mntobj.CapacityHigh) {
p->bd.num_blocks[0] = 0xff;
p->bd.num_blocks[1] = 0xff;
p->bd.num_blocks[2] = 0xff;
} else {
p->bd.num_blocks[0] = (u_int8_t)
(co->co_mntobj.Capacity >> 16);
p->bd.num_blocks[1] = (u_int8_t)
(co->co_mntobj.Capacity >> 8);
p->bd.num_blocks[2] = (u_int8_t)
(co->co_mntobj.Capacity);
}
}
pagep = &p->pages;
switch (msp->page & SMS_PAGE_CODE) {
case SMS_ALL_PAGES_PAGE:
return_all_pages = TRUE;
case SMS_CONTROL_MODE_PAGE:
{
struct scsi_control_page *cp =
(struct scsi_control_page *)pagep;
if (ccb->csio.dxfer_len <= p->hd.datalen + 8) {
aac_set_scsi_error(sc, ccb,
SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
cp->page_code = SMS_CONTROL_MODE_PAGE;
cp->page_length = 6;
p->hd.datalen += 8;
pagep += 8;
if (!return_all_pages)
break;
}
case SMS_VENDOR_SPECIFIC_PAGE:
break;
default:
aac_set_scsi_error(sc, ccb, SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case SYNCHRONIZE_CACHE:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container SYNCHRONIZE_CACHE id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
default:
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B,
"Container unsupp. cmd 0x%x id %d lun %d len %d",
*cmdp, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP; /*CAM_REQ_INVALID*/
break;
}
xpt_done(ccb);
}
static void
aac_passthrough_command(struct cam_sim *sim, union ccb *ccb)
{
struct aac_cam *camsc;
struct aac_softc *sc;
struct aac_command *cm;
struct aac_fib *fib;
struct aac_srb *srb;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return;
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return;
}
fib = cm->cm_fib;
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags |= AAC_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags |= AAC_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
break;
default:
cm->cm_flags |= AAC_CMD_DATAIN | AAC_CMD_DATAOUT;
break;
}
srb = (struct aac_srb *)&fib->data[0];
srb->function = AAC_SRB_FUNC_EXECUTE_SCSI;
if (cm->cm_flags & (AAC_CMD_DATAIN|AAC_CMD_DATAOUT))
srb->flags = AAC_SRB_FLAGS_UNSPECIFIED_DIRECTION;
if (cm->cm_flags & AAC_CMD_DATAIN)
srb->flags = AAC_SRB_FLAGS_DATA_IN;
else if (cm->cm_flags & AAC_CMD_DATAOUT)
srb->flags = AAC_SRB_FLAGS_DATA_OUT;
else
srb->flags = AAC_SRB_FLAGS_NO_DATA_XFER;
/*
* Copy the CDB into the SRB. It's only 6-16 bytes,
* so a copy is not too expensive.
*/
srb->cdb_len = ccb->csio.cdb_len;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
bcopy(ccb->csio.cdb_io.cdb_ptr, (u_int8_t *)&srb->cdb[0],
srb->cdb_len);
else
bcopy(ccb->csio.cdb_io.cdb_bytes, (u_int8_t *)&srb->cdb[0],
srb->cdb_len);
/* Set command */
fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) ?
ScsiPortCommandU64 : ScsiPortCommand;
fib->Header.Size = sizeof(struct aac_fib_header) +
sizeof(struct aac_srb);
/* Map the s/g list */
cm->cm_sgtable = &srb->sg_map;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
/*
* Arrange things so that the S/G
* map will get set up automagically
*/
cm->cm_data = (void *)ccb->csio.data_ptr;
cm->cm_datalen = ccb->csio.dxfer_len;
srb->data_len = ccb->csio.dxfer_len;
} else {
cm->cm_data = NULL;
cm->cm_datalen = 0;
srb->data_len = 0;
}
srb->bus = camsc->inf->BusNumber - 1; /* Bus no. rel. to the card */
srb->target = ccb->ccb_h.target_id;
srb->lun = ccb->ccb_h.target_lun;
srb->timeout = ccb->ccb_h.timeout; /* XXX */
srb->retry_limit = 0;
cm->cm_complete = aac_cam_complete;
cm->cm_ccb = ccb;
cm->cm_timestamp = time_uptime;
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
aac_enqueue_ready(cm);
aacraid_startio(cm->cm_sc);
}
static void
aac_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct aac_cam *camsc;
struct aac_softc *sc;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
/* Synchronous ops, and ops that don't require communication with the
* controller */
switch(ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
/* This is handled down below */
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size /
((1024L * 1024L) / ccg->block_size);
if (size_mb >= (2 * 1024)) { /* 2GB */
ccg->heads = 255;
ccg->secs_per_track = 63;
} else if (size_mb >= (1 * 1024)) { /* 1GB */
ccg->heads = 128;
ccg->secs_per_track = 32;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
}
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = camsc->inf->TargetsPerBus;
cpi->max_lun = 8; /* Per the controller spec */
cpi->initiator_id = camsc->inf->InitiatorBusId;
cpi->bus_id = camsc->inf->BusNumber;
#if __FreeBSD_version >= 800000
cpi->maxio = sc->aac_max_sectors << 9;
#endif
/*
* Resetting via the passthrough or parallel bus scan
* causes problems.
*/
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->base_transfer_speed = 300000;
#ifdef CAM_NEW_TRAN_CODE
cpi->hba_misc |= PIM_SEQSCAN;
cpi->protocol = PROTO_SCSI;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol_version = SCSI_REV_SPC2;
#endif
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "PMC-Sierra", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
}
case XPT_GET_TRAN_SETTINGS:
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi =
&ccb->cts.proto_specific.scsi;
struct ccb_trans_settings_spi *spi =
&ccb->cts.xport_specific.spi;
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_SPC2;
ccb->cts.transport = XPORT_SAS;
ccb->cts.transport_version = 0;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
spi->valid |= CTS_SPI_VALID_DISC;
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
#else
ccb->cts.flags = ~(CCB_TRANS_DISC_ENB | CCB_TRANS_TAG_ENB);
ccb->cts.valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
#endif
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
}
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
return;
case XPT_RESET_BUS:
if (!(sc->flags & AAC_FLAGS_CAM_NORESET) &&
camsc->inf->BusType != CONTAINER_BUS) {
ccb->ccb_h.status = aac_cam_reset_bus(sim, ccb);
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
return;
case XPT_RESET_DEV:
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
case XPT_ABORT:
ccb->ccb_h.status = aac_cam_abort_ccb(sim, ccb);
xpt_done(ccb);
return;
case XPT_TERM_IO:
ccb->ccb_h.status = aac_cam_term_io(sim, ccb);
xpt_done(ccb);
return;
default:
device_printf(sc->aac_dev, "Unsupported command 0x%x\n",
ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(ccb);
return;
}
/* Async ops that require communcation with the controller */
if (camsc->inf->BusType == CONTAINER_BUS) {
u_int8_t *cmdp;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
cmdp = ccb->csio.cdb_io.cdb_ptr;
else
cmdp = &ccb->csio.cdb_io.cdb_bytes[0];
if (*cmdp==READ_6 || *cmdp==WRITE_6 || *cmdp==READ_10 ||
*cmdp==WRITE_10 || *cmdp==READ_12 || *cmdp==WRITE_12 ||
*cmdp==READ_16 || *cmdp==WRITE_16)
aac_container_rw_command(sim, ccb, cmdp);
else
aac_container_special_command(sim, ccb, cmdp);
} else {
aac_passthrough_command(sim, ccb);
}
}
static void
aac_cam_poll(struct cam_sim *sim)
{
/*
* Pinging the interrupt routine isn't very safe, nor is it
* really necessary. Do nothing.
*/
}
static void
aac_container_complete(struct aac_command *cm)
{
struct aac_softc *sc;
union ccb *ccb;
u_int32_t status;
sc = cm->cm_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
ccb = cm->cm_ccb;
status = ((u_int32_t *)cm->cm_fib->data)[0];
if (cm->cm_flags & AAC_CMD_RESET) {
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
} else if (status == ST_OK) {
ccb->ccb_h.status = CAM_REQ_CMP;
} else if (status == ST_NOT_READY) {
ccb->ccb_h.status = CAM_BUSY;
} else {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
}
aacraid_release_command(cm);
xpt_done(ccb);
}
static void
aac_cam_complete(struct aac_command *cm)
{
union ccb *ccb;
struct aac_srb_response *srbr;
struct aac_softc *sc;
sc = cm->cm_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
ccb = cm->cm_ccb;
srbr = (struct aac_srb_response *)&cm->cm_fib->data[0];
if (cm->cm_flags & AAC_CMD_FASTRESP) {
/* fast response */
srbr->srb_status = CAM_REQ_CMP;
srbr->scsi_status = SCSI_STATUS_OK;
srbr->sense_len = 0;
}
if (cm->cm_flags & AAC_CMD_RESET) {
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
} else if (srbr->fib_status != 0) {
device_printf(sc->aac_dev, "Passthru FIB failed!\n");
ccb->ccb_h.status = CAM_REQ_ABORTED;
} else {
/*
* The SRB error codes just happen to match the CAM error
* codes. How convienient!
*/
ccb->ccb_h.status = srbr->srb_status;
/* Take care of SCSI_IO ops. */
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
u_int8_t command, device;
ccb->csio.scsi_status = srbr->scsi_status;
/* Take care of autosense */
if (srbr->sense_len) {
int sense_len, scsi_sense_len;
scsi_sense_len = sizeof(struct scsi_sense_data);
bzero(&ccb->csio.sense_data, scsi_sense_len);
sense_len = (srbr->sense_len >
scsi_sense_len) ? scsi_sense_len :
srbr->sense_len;
bcopy(&srbr->sense[0], &ccb->csio.sense_data,
srbr->sense_len);
ccb->csio.sense_len = sense_len;
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
// scsi_sense_print(&ccb->csio);
}
/* If this is an inquiry command, fake things out */
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
command = ccb->csio.cdb_io.cdb_ptr[0];
else
command = ccb->csio.cdb_io.cdb_bytes[0];
if (command == INQUIRY) {
if (ccb->ccb_h.status == CAM_REQ_CMP) {
device = ccb->csio.data_ptr[0] & 0x1f;
/*
* We want DASD and PROC devices to only be
* visible through the pass device.
*/
if ((device == T_DIRECT &&
!(sc->aac_feature_bits & AAC_SUPPL_SUPPORTED_JBOD)) ||
(device == T_PROCESSOR))
ccb->csio.data_ptr[0] =
((device & 0xe0) | T_NODEVICE);
/* handle phys. components of a log. drive */
if (ccb->csio.data_ptr[0] & 0x20) {
if (sc->hint_flags & 8) {
/* expose phys. device (daXX) */
ccb->csio.data_ptr[0] &= 0xdf;
} else {
/* phys. device only visible through pass device (passXX) */
ccb->csio.data_ptr[0] |= 0x10;
}
}
} else if (ccb->ccb_h.status == CAM_SEL_TIMEOUT &&
ccb->ccb_h.target_lun != 0) {
/* fix for INQUIRYs on Lun>0 */
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
}
}
}
}
aacraid_release_command(cm);
xpt_done(ccb);
}
static u_int32_t
aac_cam_reset_bus(struct cam_sim *sim, union ccb *ccb)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_softc *sc;
struct aac_cam *camsc;
struct aac_vmioctl *vmi;
struct aac_resetbus *rbc;
u_int32_t rval;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
if (sc == NULL) {
printf("aac: Null sc?\n");
return (CAM_REQ_ABORTED);
}
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return (CAM_REQ_ABORTED);
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return (CAM_REQ_ABORTED);
}
fib = cm->cm_fib;
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(struct aac_vmioctl);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = ContainerCommand;
vmi = (struct aac_vmioctl *)&fib->data[0];
bzero(vmi, sizeof(struct aac_vmioctl));
vmi->Command = VM_Ioctl;
vmi->ObjType = FT_DRIVE;
vmi->MethId = sc->scsi_method_id;
vmi->ObjId = 0;
vmi->IoctlCmd = ResetBus;
rbc = (struct aac_resetbus *)&vmi->IoctlBuf[0];
rbc->BusNumber = camsc->inf->BusNumber - 1;
if (aacraid_wait_command(cm) != 0) {
device_printf(sc->aac_dev,"Error sending ResetBus command\n");
rval = CAM_REQ_ABORTED;
} else {
rval = CAM_REQ_CMP;
}
aacraid_release_command(cm);
return (rval);
}
static u_int32_t
aac_cam_abort_ccb(struct cam_sim *sim, union ccb *ccb)
{
return (CAM_UA_ABORT);
}
static u_int32_t
aac_cam_term_io(struct cam_sim *sim, union ccb *ccb)
{
return (CAM_UA_TERMIO);
}
static int
aac_load_map_command_sg(struct aac_softc *sc, struct aac_command *cm)
{
int error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
error = bus_dmamap_load(sc->aac_buffer_dmat,
cm->cm_datamap, cm->cm_data, cm->cm_datalen,
aacraid_map_command_sg, cm, 0);
if (error == EINPROGRESS) {
fwprintf(sc, HBA_FLAGS_DBG_INIT_B, "freezing queue\n");
sc->flags |= AAC_QUEUE_FRZN;
error = 0;
} else if (error != 0) {
panic("aac_load_map_command_sg: unexpected error %d from "
"busdma", error);
}
return(error);
}
/*
* Start as much queued I/O as possible on the controller
*/
void
aacraid_startio(struct aac_softc *sc)
{
struct aac_command *cm;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
for (;;) {
if (sc->aac_state & AAC_STATE_RESET) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "AAC_STATE_RESET");
break;
}
/*
* This flag might be set if the card is out of resources.
* Checking it here prevents an infinite loop of deferrals.
*/
if (sc->flags & AAC_QUEUE_FRZN) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "AAC_QUEUE_FRZN");
break;
}
/*
* Try to get a command that's been put off for lack of
* resources
*/
if (sc->flags & AAC_FLAGS_SYNC_MODE) {
/* sync. transfer mode */
if (sc->aac_sync_cm)
break;
cm = aac_dequeue_ready(sc);
sc->aac_sync_cm = cm;
} else {
cm = aac_dequeue_ready(sc);
}
/* nothing to do? */
if (cm == NULL)
break;
/* don't map more than once */
if (cm->cm_flags & AAC_CMD_MAPPED)
panic("aac: command %p already mapped", cm);
/*
* Set up the command to go to the controller. If there are no
* data buffers associated with the command then it can bypass
* busdma.
*/
if (cm->cm_datalen)
aac_load_map_command_sg(sc, cm);
else
aacraid_map_command_sg(cm, NULL, 0, 0);
}
}