eecb0a8aa7
shutdown which caused extra abort from peer. - RTT time calculation was not being done in express sack handling since it refered to an unused variable (rto_pending). Removed variable. - socket buffer high water access macro-ized.
931 lines
28 KiB
C
931 lines
28 KiB
C
/*-
|
|
* Copyright (c) 2001-2007, Cisco Systems, Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* a) Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* b) Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the distribution.
|
|
*
|
|
* c) Neither the name of Cisco Systems, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* $KAME: sctp_structs.h,v 1.13 2005/03/06 16:04:18 itojun Exp $ */
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifndef __sctp_structs_h__
|
|
#define __sctp_structs_h__
|
|
|
|
#include <netinet/sctp_os.h>
|
|
#include <netinet/sctp_header.h>
|
|
#include <netinet/sctp_uio.h>
|
|
#include <netinet/sctp_auth.h>
|
|
|
|
struct sctp_timer {
|
|
sctp_os_timer_t timer;
|
|
|
|
int type;
|
|
/*
|
|
* Depending on the timer type these will be setup and cast with the
|
|
* appropriate entity.
|
|
*/
|
|
void *ep;
|
|
void *tcb;
|
|
void *net;
|
|
|
|
/* for sanity checking */
|
|
void *self;
|
|
uint32_t ticks;
|
|
uint32_t stopped_from;
|
|
};
|
|
|
|
struct sctp_nonpad_sndrcvinfo {
|
|
uint16_t sinfo_stream;
|
|
uint16_t sinfo_ssn;
|
|
uint16_t sinfo_flags;
|
|
uint32_t sinfo_ppid;
|
|
uint32_t sinfo_context;
|
|
uint32_t sinfo_timetolive;
|
|
uint32_t sinfo_tsn;
|
|
uint32_t sinfo_cumtsn;
|
|
sctp_assoc_t sinfo_assoc_id;
|
|
};
|
|
|
|
struct sctp_foo_stuff {
|
|
struct sctp_inpcb *inp;
|
|
uint32_t lineno;
|
|
uint32_t ticks;
|
|
int updown;
|
|
};
|
|
|
|
|
|
/*
|
|
* This is the information we track on each interface that we know about from
|
|
* the distant end.
|
|
*/
|
|
TAILQ_HEAD(sctpnetlisthead, sctp_nets);
|
|
|
|
struct sctp_stream_reset_list {
|
|
TAILQ_ENTRY(sctp_stream_reset_list) next_resp;
|
|
uint32_t tsn;
|
|
int number_entries;
|
|
struct sctp_stream_reset_out_request req;
|
|
};
|
|
|
|
TAILQ_HEAD(sctp_resethead, sctp_stream_reset_list);
|
|
|
|
/*
|
|
* Users of the iterator need to malloc a iterator with a call to
|
|
* sctp_initiate_iterator(inp_func, assoc_func, inp_func, pcb_flags, pcb_features,
|
|
* asoc_state, void-ptr-arg, uint32-arg, end_func, inp);
|
|
*
|
|
* Use the following two defines if you don't care what pcb flags are on the EP
|
|
* and/or you don't care what state the association is in.
|
|
*
|
|
* Note that if you specify an INP as the last argument then ONLY each
|
|
* association of that single INP will be executed upon. Note that the pcb
|
|
* flags STILL apply so if the inp you specify has different pcb_flags then
|
|
* what you put in pcb_flags nothing will happen. use SCTP_PCB_ANY_FLAGS to
|
|
* assure the inp you specify gets treated.
|
|
*/
|
|
#define SCTP_PCB_ANY_FLAGS 0x00000000
|
|
#define SCTP_PCB_ANY_FEATURES 0x00000000
|
|
#define SCTP_ASOC_ANY_STATE 0x00000000
|
|
|
|
typedef void (*asoc_func) (struct sctp_inpcb *, struct sctp_tcb *, void *ptr,
|
|
uint32_t val);
|
|
typedef int (*inp_func) (struct sctp_inpcb *, void *ptr, uint32_t val);
|
|
typedef void (*end_func) (void *ptr, uint32_t val);
|
|
|
|
struct sctp_iterator {
|
|
TAILQ_ENTRY(sctp_iterator) sctp_nxt_itr;
|
|
struct sctp_timer tmr;
|
|
struct sctp_inpcb *inp; /* current endpoint */
|
|
struct sctp_tcb *stcb; /* current* assoc */
|
|
asoc_func function_assoc; /* per assoc function */
|
|
inp_func function_inp; /* per endpoint function */
|
|
inp_func function_inp_end; /* end INP function */
|
|
end_func function_atend;/* iterator completion function */
|
|
void *pointer; /* pointer for apply func to use */
|
|
uint32_t val; /* value for apply func to use */
|
|
uint32_t pcb_flags; /* endpoint flags being checked */
|
|
uint32_t pcb_features; /* endpoint features being checked */
|
|
uint32_t asoc_state; /* assoc state being checked */
|
|
uint32_t iterator_flags;
|
|
uint8_t no_chunk_output;
|
|
uint8_t done_current_ep;
|
|
};
|
|
|
|
/* iterator_flags values */
|
|
#define SCTP_ITERATOR_DO_ALL_INP 0x00000001
|
|
#define SCTP_ITERATOR_DO_SINGLE_INP 0x00000002
|
|
|
|
TAILQ_HEAD(sctpiterators, sctp_iterator);
|
|
|
|
struct sctp_copy_all {
|
|
struct sctp_inpcb *inp; /* ep */
|
|
struct mbuf *m;
|
|
struct sctp_sndrcvinfo sndrcv;
|
|
int sndlen;
|
|
int cnt_sent;
|
|
int cnt_failed;
|
|
};
|
|
|
|
struct sctp_asconf_iterator {
|
|
struct sctpladdr list_of_work;
|
|
int cnt;
|
|
};
|
|
|
|
|
|
struct sctp_nets {
|
|
TAILQ_ENTRY(sctp_nets) sctp_next; /* next link */
|
|
|
|
/*
|
|
* Things on the top half may be able to be split into a common
|
|
* structure shared by all.
|
|
*/
|
|
struct sctp_timer pmtu_timer;
|
|
|
|
/*
|
|
* The following two in combination equate to a route entry for v6
|
|
* or v4.
|
|
*/
|
|
struct sctp_route {
|
|
struct rtentry *ro_rt;
|
|
union sctp_sockstore _l_addr; /* remote peer addr */
|
|
struct sctp_ifa *_s_addr; /* our selected src addr */
|
|
} ro;
|
|
/* mtu discovered so far */
|
|
uint32_t mtu;
|
|
uint32_t ssthresh; /* not sure about this one for split */
|
|
|
|
/* smoothed average things for RTT and RTO itself */
|
|
int lastsa;
|
|
int lastsv;
|
|
unsigned int RTO;
|
|
|
|
/* This is used for SHUTDOWN/SHUTDOWN-ACK/SEND or INIT timers */
|
|
struct sctp_timer rxt_timer;
|
|
struct sctp_timer fr_timer; /* for early fr */
|
|
|
|
/* last time in seconds I sent to it */
|
|
struct timeval last_sent_time;
|
|
int ref_count;
|
|
|
|
/* Congestion stats per destination */
|
|
/*
|
|
* flight size variables and such, sorry Vern, I could not avoid
|
|
* this if I wanted performance :>
|
|
*/
|
|
uint32_t flight_size;
|
|
uint32_t cwnd; /* actual cwnd */
|
|
uint32_t prev_cwnd; /* cwnd before any processing */
|
|
uint32_t partial_bytes_acked; /* in CA tracks when to incr a MTU */
|
|
uint32_t rtt_variance;
|
|
uint32_t prev_rtt;
|
|
/* tracking variables to avoid the aloc/free in sack processing */
|
|
unsigned int net_ack;
|
|
unsigned int net_ack2;
|
|
|
|
/*
|
|
* CMT variables (iyengar@cis.udel.edu)
|
|
*/
|
|
uint32_t this_sack_highest_newack; /* tracks highest TSN newly
|
|
* acked for a given dest in
|
|
* the current SACK. Used in
|
|
* SFR and HTNA algos */
|
|
uint32_t pseudo_cumack; /* CMT CUC algorithm. Maintains next expected
|
|
* pseudo-cumack for this destination */
|
|
uint32_t rtx_pseudo_cumack; /* CMT CUC algorithm. Maintains next
|
|
* expected pseudo-cumack for this
|
|
* destination */
|
|
|
|
/* CMT fast recovery variables */
|
|
uint32_t fast_recovery_tsn;
|
|
uint32_t heartbeat_random1;
|
|
uint32_t heartbeat_random2;
|
|
uint32_t tos_flowlabel;
|
|
|
|
/* if this guy is ok or not ... status */
|
|
uint16_t dest_state;
|
|
/* number of transmit failures to down this guy */
|
|
uint16_t failure_threshold;
|
|
/* error stats on destination */
|
|
uint16_t error_count;
|
|
|
|
uint8_t fast_retran_loss_recovery;
|
|
uint8_t will_exit_fast_recovery;
|
|
/* Flags that probably can be combined into dest_state */
|
|
uint8_t rto_variance_dir; /* increase = 1, decreasing = 0 */
|
|
uint8_t fast_retran_ip; /* fast retransmit in progress */
|
|
uint8_t hb_responded;
|
|
uint8_t saw_newack; /* CMT's SFR algorithm flag */
|
|
uint8_t src_addr_selected; /* if we split we move */
|
|
uint8_t indx_of_eligible_next_to_use;
|
|
uint8_t addr_is_local; /* its a local address (if known) could move
|
|
* in split */
|
|
|
|
/*
|
|
* CMT variables (iyengar@cis.udel.edu)
|
|
*/
|
|
uint8_t find_pseudo_cumack; /* CMT CUC algorithm. Flag used to
|
|
* find a new pseudocumack. This flag
|
|
* is set after a new pseudo-cumack
|
|
* has been received and indicates
|
|
* that the sender should find the
|
|
* next pseudo-cumack expected for
|
|
* this destination */
|
|
uint8_t find_rtx_pseudo_cumack; /* CMT CUCv2 algorithm. Flag used to
|
|
* find a new rtx-pseudocumack. This
|
|
* flag is set after a new
|
|
* rtx-pseudo-cumack has been received
|
|
* and indicates that the sender
|
|
* should find the next
|
|
* rtx-pseudo-cumack expected for this
|
|
* destination */
|
|
uint8_t new_pseudo_cumack; /* CMT CUC algorithm. Flag used to
|
|
* indicate if a new pseudo-cumack or
|
|
* rtx-pseudo-cumack has been received */
|
|
#ifdef SCTP_HIGH_SPEED
|
|
uint8_t last_hs_used; /* index into the last HS table entry we used */
|
|
#endif
|
|
struct timeval start_time; /* time when this net was created */
|
|
uint32_t marked_retrans;/* number or DATA chunks marked for timer
|
|
* based retransmissions */
|
|
uint32_t marked_fastretrans;
|
|
};
|
|
|
|
|
|
struct sctp_data_chunkrec {
|
|
uint32_t TSN_seq; /* the TSN of this transmit */
|
|
uint16_t stream_seq; /* the stream sequence number of this transmit */
|
|
uint16_t stream_number; /* the stream number of this guy */
|
|
uint32_t payloadtype;
|
|
uint32_t context; /* from send */
|
|
|
|
/* ECN Nonce: Nonce Value for this chunk */
|
|
uint8_t ect_nonce;
|
|
|
|
/*
|
|
* part of the Highest sacked algorithm to be able to stroke counts
|
|
* on ones that are FR'd.
|
|
*/
|
|
uint32_t fast_retran_tsn; /* sending_seq at the time of FR */
|
|
struct timeval timetodrop; /* time we drop it from queue */
|
|
uint8_t doing_fast_retransmit;
|
|
uint8_t rcv_flags; /* flags pulled from data chunk on inbound for
|
|
* outbound holds sending flags for PR-SCTP. */
|
|
uint8_t state_flags;
|
|
uint8_t chunk_was_revoked;
|
|
};
|
|
|
|
TAILQ_HEAD(sctpchunk_listhead, sctp_tmit_chunk);
|
|
|
|
/* The lower byte is used to enumerate PR_SCTP policies */
|
|
#define CHUNK_FLAGS_PR_SCTP_TTL SCTP_PR_SCTP_TTL
|
|
#define CHUNK_FLAGS_PR_SCTP_BUF SCTP_PR_SCTP_BUF
|
|
#define CHUNK_FLAGS_PR_SCTP_RTX SCTP_PR_SCTP_RTX
|
|
|
|
/* The upper byte is used a a bit mask */
|
|
#define CHUNK_FLAGS_FRAGMENT_OK 0x0100
|
|
|
|
struct chk_id {
|
|
uint16_t id;
|
|
uint16_t can_take_data;
|
|
};
|
|
|
|
|
|
struct sctp_tmit_chunk {
|
|
union {
|
|
struct sctp_data_chunkrec data;
|
|
struct chk_id chunk_id;
|
|
} rec;
|
|
struct sctp_association *asoc; /* bp to asoc this belongs to */
|
|
struct timeval sent_rcv_time; /* filled in if RTT being calculated */
|
|
struct mbuf *data; /* pointer to mbuf chain of data */
|
|
struct mbuf *last_mbuf; /* pointer to last mbuf in chain */
|
|
struct sctp_nets *whoTo;
|
|
TAILQ_ENTRY(sctp_tmit_chunk) sctp_next; /* next link */
|
|
int32_t sent; /* the send status */
|
|
uint16_t snd_count; /* number of times I sent */
|
|
uint16_t flags; /* flags, such as FRAGMENT_OK */
|
|
uint16_t send_size;
|
|
uint16_t book_size;
|
|
uint16_t mbcnt;
|
|
uint8_t pad_inplace;
|
|
uint8_t do_rtt;
|
|
uint8_t book_size_scale;
|
|
uint8_t addr_over; /* flag which is set if the dest address for
|
|
* this chunk is overridden by user. Used for
|
|
* CMT (iyengar@cis.udel.edu, 2005/06/21) */
|
|
uint8_t no_fr_allowed;
|
|
uint8_t pr_sctp_on;
|
|
uint8_t copy_by_ref;
|
|
};
|
|
|
|
/*
|
|
* The first part of this structure MUST be the entire sinfo structure. Maybe
|
|
* I should have made it a sub structure... we can circle back later and do
|
|
* that if we want.
|
|
*/
|
|
struct sctp_queued_to_read { /* sinfo structure Pluse more */
|
|
uint16_t sinfo_stream; /* off the wire */
|
|
uint16_t sinfo_ssn; /* off the wire */
|
|
uint16_t sinfo_flags; /* SCTP_UNORDERED from wire use SCTP_EOF for
|
|
* EOR */
|
|
uint32_t sinfo_ppid; /* off the wire */
|
|
uint32_t sinfo_context; /* pick this up from assoc def context? */
|
|
uint32_t sinfo_timetolive; /* not used by kernel */
|
|
uint32_t sinfo_tsn; /* Use this in reassembly as first TSN */
|
|
uint32_t sinfo_cumtsn; /* Use this in reassembly as last TSN */
|
|
sctp_assoc_t sinfo_assoc_id; /* our assoc id */
|
|
/* Non sinfo stuff */
|
|
uint32_t length; /* length of data */
|
|
uint32_t held_length; /* length held in sb */
|
|
struct sctp_nets *whoFrom; /* where it came from */
|
|
struct mbuf *data; /* front of the mbuf chain of data with
|
|
* PKT_HDR */
|
|
struct mbuf *tail_mbuf; /* used for multi-part data */
|
|
struct sctp_tcb *stcb; /* assoc, used for window update */
|
|
TAILQ_ENTRY(sctp_queued_to_read) next;
|
|
uint16_t port_from;
|
|
uint16_t spec_flags; /* Flags to hold the notification field */
|
|
uint8_t do_not_ref_stcb;
|
|
uint8_t end_added;
|
|
uint8_t pdapi_aborted;
|
|
uint8_t resv;
|
|
};
|
|
|
|
/* This data structure will be on the outbound
|
|
* stream queues. Data will be pulled off from
|
|
* the front of the mbuf data and chunk-ified
|
|
* by the output routines. We will custom
|
|
* fit every chunk we pull to the send/sent
|
|
* queue to make up the next full packet
|
|
* if we can. An entry cannot be removed
|
|
* from the stream_out queue until
|
|
* the msg_is_complete flag is set. This
|
|
* means at times data/tail_mbuf MIGHT
|
|
* be NULL.. If that occurs it happens
|
|
* for one of two reasons. Either the user
|
|
* is blocked on a send() call and has not
|
|
* awoken to copy more data down... OR
|
|
* the user is in the explict MSG_EOR mode
|
|
* and wrote some data, but has not completed
|
|
* sending.
|
|
*/
|
|
struct sctp_stream_queue_pending {
|
|
struct mbuf *data;
|
|
struct mbuf *tail_mbuf;
|
|
struct timeval ts;
|
|
struct sctp_nets *net;
|
|
TAILQ_ENTRY(sctp_stream_queue_pending) next;
|
|
uint32_t length;
|
|
uint32_t timetolive;
|
|
uint32_t ppid;
|
|
uint32_t context;
|
|
uint16_t sinfo_flags;
|
|
uint16_t stream;
|
|
uint16_t strseq;
|
|
uint16_t act_flags;
|
|
uint8_t msg_is_complete;
|
|
uint8_t some_taken;
|
|
uint8_t addr_over;
|
|
uint8_t pr_sctp_on;
|
|
};
|
|
|
|
/*
|
|
* this struct contains info that is used to track inbound stream data and
|
|
* help with ordering.
|
|
*/
|
|
TAILQ_HEAD(sctpwheelunrel_listhead, sctp_stream_in);
|
|
struct sctp_stream_in {
|
|
struct sctp_readhead inqueue;
|
|
TAILQ_ENTRY(sctp_stream_in) next_spoke;
|
|
uint16_t stream_no;
|
|
uint16_t last_sequence_delivered; /* used for re-order */
|
|
};
|
|
|
|
/* This struct is used to track the traffic on outbound streams */
|
|
TAILQ_HEAD(sctpwheel_listhead, sctp_stream_out);
|
|
struct sctp_stream_out {
|
|
struct sctp_streamhead outqueue;
|
|
TAILQ_ENTRY(sctp_stream_out) next_spoke; /* next link in wheel */
|
|
uint16_t stream_no;
|
|
uint16_t next_sequence_sent; /* next one I expect to send out */
|
|
uint8_t last_msg_incomplete;
|
|
};
|
|
|
|
/* used to keep track of the addresses yet to try to add/delete */
|
|
TAILQ_HEAD(sctp_asconf_addrhead, sctp_asconf_addr);
|
|
struct sctp_asconf_addr {
|
|
TAILQ_ENTRY(sctp_asconf_addr) next;
|
|
struct sctp_asconf_addr_param ap;
|
|
struct sctp_ifa *ifa; /* save the ifa for add/del ip */
|
|
uint8_t sent; /* has this been sent yet? */
|
|
};
|
|
|
|
struct sctp_scoping {
|
|
uint8_t ipv4_addr_legal;
|
|
uint8_t ipv6_addr_legal;
|
|
uint8_t loopback_scope;
|
|
uint8_t ipv4_local_scope;
|
|
uint8_t local_scope;
|
|
uint8_t site_scope;
|
|
};
|
|
|
|
#define SCTP_TSN_LOG_SIZE 40
|
|
|
|
struct sctp_tsn_log {
|
|
uint32_t tsn;
|
|
uint16_t strm;
|
|
uint16_t seq;
|
|
};
|
|
|
|
/*
|
|
* Here we have information about each individual association that we track.
|
|
* We probably in production would be more dynamic. But for ease of
|
|
* implementation we will have a fixed array that we hunt for in a linear
|
|
* fashion.
|
|
*/
|
|
struct sctp_association {
|
|
/* association state */
|
|
int state;
|
|
/* queue of pending addrs to add/delete */
|
|
struct sctp_asconf_addrhead asconf_queue;
|
|
struct timeval time_entered; /* time we entered state */
|
|
struct timeval time_last_rcvd;
|
|
struct timeval time_last_sent;
|
|
struct timeval time_last_sat_advance;
|
|
struct sctp_sndrcvinfo def_send; /* default send parameters */
|
|
|
|
/* timers and such */
|
|
struct sctp_timer hb_timer; /* hb timer */
|
|
struct sctp_timer dack_timer; /* Delayed ack timer */
|
|
struct sctp_timer asconf_timer; /* Asconf */
|
|
struct sctp_timer strreset_timer; /* stream reset */
|
|
struct sctp_timer shut_guard_timer; /* guard */
|
|
struct sctp_timer autoclose_timer; /* automatic close timer */
|
|
struct sctp_timer delayed_event_timer; /* timer for delayed events */
|
|
|
|
/* list of local addresses when add/del in progress */
|
|
struct sctpladdr sctp_restricted_addrs;
|
|
|
|
struct sctpnetlisthead nets;
|
|
|
|
/* Free chunk list */
|
|
struct sctpchunk_listhead free_chunks;
|
|
|
|
/* Free stream output control list */
|
|
struct sctp_streamhead free_strmoq;
|
|
|
|
/* Control chunk queue */
|
|
struct sctpchunk_listhead control_send_queue;
|
|
|
|
/*
|
|
* Once a TSN hits the wire it is moved to the sent_queue. We
|
|
* maintain two counts here (don't know if any but retran_cnt is
|
|
* needed). The idea is that the sent_queue_retran_cnt reflects how
|
|
* many chunks have been marked for retranmission by either T3-rxt
|
|
* or FR.
|
|
*/
|
|
struct sctpchunk_listhead sent_queue;
|
|
struct sctpchunk_listhead send_queue;
|
|
|
|
|
|
/* re-assembly queue for fragmented chunks on the inbound path */
|
|
struct sctpchunk_listhead reasmqueue;
|
|
|
|
/*
|
|
* this queue is used when we reach a condition that we can NOT put
|
|
* data into the socket buffer. We track the size of this queue and
|
|
* set our rwnd to the space in the socket minus also the
|
|
* size_on_delivery_queue.
|
|
*/
|
|
struct sctpwheel_listhead out_wheel;
|
|
|
|
/*
|
|
* This pointer will be set to NULL most of the time. But when we
|
|
* have a fragmented message, where we could not get out all of the
|
|
* message at the last send then this will point to the stream to go
|
|
* get data from.
|
|
*/
|
|
struct sctp_stream_out *locked_on_sending;
|
|
|
|
/* If an iterator is looking at me, this is it */
|
|
struct sctp_iterator *stcb_starting_point_for_iterator;
|
|
|
|
/* ASCONF destination address last sent to */
|
|
/* struct sctp_nets *asconf_last_sent_to;*/
|
|
/* Peter, greppign for the above shows only on strange set
|
|
* I don't think we need it so I have commented it out.
|
|
*/
|
|
|
|
/* ASCONF save the last ASCONF-ACK so we can resend it if necessary */
|
|
struct mbuf *last_asconf_ack_sent;
|
|
|
|
/*
|
|
* pointer to last stream reset queued to control queue by us with
|
|
* requests.
|
|
*/
|
|
struct sctp_tmit_chunk *str_reset;
|
|
/*
|
|
* if Source Address Selection happening, this will rotate through
|
|
* the link list.
|
|
*/
|
|
struct sctp_laddr *last_used_address;
|
|
|
|
/* stream arrays */
|
|
struct sctp_stream_in *strmin;
|
|
struct sctp_stream_out *strmout;
|
|
uint8_t *mapping_array;
|
|
/* primary destination to use */
|
|
struct sctp_nets *primary_destination;
|
|
/* For CMT */
|
|
struct sctp_nets *last_net_data_came_from;
|
|
/* last place I got a data chunk from */
|
|
struct sctp_nets *last_data_chunk_from;
|
|
/* last place I got a control from */
|
|
struct sctp_nets *last_control_chunk_from;
|
|
|
|
/* circular looking for output selection */
|
|
struct sctp_stream_out *last_out_stream;
|
|
|
|
/*
|
|
* wait to the point the cum-ack passes req->send_reset_at_tsn for
|
|
* any req on the list.
|
|
*/
|
|
struct sctp_resethead resetHead;
|
|
|
|
/* queue of chunks waiting to be sent into the local stack */
|
|
struct sctp_readhead pending_reply_queue;
|
|
|
|
uint32_t vrf_id;
|
|
|
|
uint32_t cookie_preserve_req;
|
|
/* ASCONF next seq I am sending out, inits at init-tsn */
|
|
uint32_t asconf_seq_out;
|
|
/* ASCONF last received ASCONF from peer, starts at peer's TSN-1 */
|
|
uint32_t asconf_seq_in;
|
|
|
|
/* next seq I am sending in str reset messages */
|
|
uint32_t str_reset_seq_out;
|
|
|
|
/* next seq I am expecting in str reset messages */
|
|
uint32_t str_reset_seq_in;
|
|
|
|
|
|
/* various verification tag information */
|
|
uint32_t my_vtag; /* The tag to be used. if assoc is re-initited
|
|
* by remote end, and I have unlocked this
|
|
* will be regenerated to a new random value. */
|
|
uint32_t peer_vtag; /* The peers last tag */
|
|
|
|
uint32_t my_vtag_nonce;
|
|
uint32_t peer_vtag_nonce;
|
|
|
|
uint32_t assoc_id;
|
|
|
|
/* This is the SCTP fragmentation threshold */
|
|
uint32_t smallest_mtu;
|
|
|
|
/*
|
|
* Special hook for Fast retransmit, allows us to track the highest
|
|
* TSN that is NEW in this SACK if gap ack blocks are present.
|
|
*/
|
|
uint32_t this_sack_highest_gap;
|
|
|
|
/*
|
|
* The highest consecutive TSN that has been acked by peer on my
|
|
* sends
|
|
*/
|
|
uint32_t last_acked_seq;
|
|
|
|
/* The next TSN that I will use in sending. */
|
|
uint32_t sending_seq;
|
|
|
|
/* Original seq number I used ??questionable to keep?? */
|
|
uint32_t init_seq_number;
|
|
|
|
|
|
/* The Advanced Peer Ack Point, as required by the PR-SCTP */
|
|
/* (A1 in Section 4.2) */
|
|
uint32_t advanced_peer_ack_point;
|
|
|
|
/*
|
|
* The highest consequetive TSN at the bottom of the mapping array
|
|
* (for his sends).
|
|
*/
|
|
uint32_t cumulative_tsn;
|
|
/*
|
|
* Used to track the mapping array and its offset bits. This MAY be
|
|
* lower then cumulative_tsn.
|
|
*/
|
|
uint32_t mapping_array_base_tsn;
|
|
/*
|
|
* used to track highest TSN we have received and is listed in the
|
|
* mapping array.
|
|
*/
|
|
uint32_t highest_tsn_inside_map;
|
|
|
|
uint32_t last_echo_tsn;
|
|
uint32_t last_cwr_tsn;
|
|
uint32_t fast_recovery_tsn;
|
|
uint32_t sat_t3_recovery_tsn;
|
|
uint32_t tsn_last_delivered;
|
|
/*
|
|
* For the pd-api we should re-write this a bit more efficent. We
|
|
* could have multiple sctp_queued_to_read's that we are building at
|
|
* once. Now we only do this when we get ready to deliver to the
|
|
* socket buffer. Note that we depend on the fact that the struct is
|
|
* "stuck" on the read queue until we finish all the pd-api.
|
|
*/
|
|
struct sctp_queued_to_read *control_pdapi;
|
|
|
|
uint32_t tsn_of_pdapi_last_delivered;
|
|
uint32_t pdapi_ppid;
|
|
uint32_t context;
|
|
uint32_t last_reset_action[SCTP_MAX_RESET_PARAMS];
|
|
uint32_t last_sending_seq[SCTP_MAX_RESET_PARAMS];
|
|
uint32_t last_base_tsnsent[SCTP_MAX_RESET_PARAMS];
|
|
#ifdef SCTP_ASOCLOG_OF_TSNS
|
|
/*
|
|
* special log - This adds considerable size to the asoc, but
|
|
* provides a log that you can use to detect problems via kgdb.
|
|
*/
|
|
struct sctp_tsn_log in_tsnlog[SCTP_TSN_LOG_SIZE];
|
|
struct sctp_tsn_log out_tsnlog[SCTP_TSN_LOG_SIZE];
|
|
uint16_t tsn_in_at;
|
|
uint16_t tsn_out_at;
|
|
#endif /* SCTP_ASOCLOG_OF_TSNS */
|
|
/*
|
|
* window state information and smallest MTU that I use to bound
|
|
* segmentation
|
|
*/
|
|
uint32_t peers_rwnd;
|
|
uint32_t my_rwnd;
|
|
uint32_t my_last_reported_rwnd;
|
|
uint32_t my_rwnd_control_len;
|
|
|
|
uint32_t total_output_queue_size;
|
|
|
|
uint32_t sb_cc; /* shadow of sb_cc in one-2-one */
|
|
uint32_t sb_mbcnt; /* shadow of sb_mbcnt in one-2-one */
|
|
/* 32 bit nonce stuff */
|
|
uint32_t nonce_resync_tsn;
|
|
uint32_t nonce_wait_tsn;
|
|
uint32_t default_flowlabel;
|
|
uint32_t pr_sctp_cnt;
|
|
int ctrl_queue_cnt; /* could be removed REM */
|
|
/*
|
|
* All outbound datagrams queue into this list from the individual
|
|
* stream queue. Here they get assigned a TSN and then await
|
|
* sending. The stream seq comes when it is first put in the
|
|
* individual str queue
|
|
*/
|
|
unsigned int stream_queue_cnt;
|
|
unsigned int send_queue_cnt;
|
|
unsigned int sent_queue_cnt;
|
|
unsigned int sent_queue_cnt_removeable;
|
|
/*
|
|
* Number on sent queue that are marked for retran until this value
|
|
* is 0 we only send one packet of retran'ed data.
|
|
*/
|
|
unsigned int sent_queue_retran_cnt;
|
|
|
|
unsigned int size_on_reasm_queue;
|
|
unsigned int cnt_on_reasm_queue;
|
|
/* amount of data (bytes) currently in flight (on all destinations) */
|
|
unsigned int total_flight;
|
|
/* Total book size in flight */
|
|
unsigned int total_flight_count; /* count of chunks used with
|
|
* book total */
|
|
/* count of destinaton nets and list of destination nets */
|
|
unsigned int numnets;
|
|
|
|
/* Total error count on this association */
|
|
unsigned int overall_error_count;
|
|
|
|
unsigned int cnt_msg_on_sb;
|
|
|
|
/* All stream count of chunks for delivery */
|
|
unsigned int size_on_all_streams;
|
|
unsigned int cnt_on_all_streams;
|
|
|
|
/* Heart Beat delay in ticks */
|
|
unsigned int heart_beat_delay;
|
|
|
|
/* autoclose */
|
|
unsigned int sctp_autoclose_ticks;
|
|
|
|
/* how many preopen streams we have */
|
|
unsigned int pre_open_streams;
|
|
|
|
/* How many streams I support coming into me */
|
|
unsigned int max_inbound_streams;
|
|
|
|
/* the cookie life I award for any cookie, in seconds */
|
|
unsigned int cookie_life;
|
|
/* time to delay acks for */
|
|
unsigned int delayed_ack;
|
|
unsigned int old_delayed_ack;
|
|
unsigned int sack_freq;
|
|
unsigned int data_pkts_seen;
|
|
|
|
unsigned int numduptsns;
|
|
int dup_tsns[SCTP_MAX_DUP_TSNS];
|
|
unsigned int initial_init_rto_max; /* initial RTO for INIT's */
|
|
unsigned int initial_rto; /* initial send RTO */
|
|
unsigned int minrto; /* per assoc RTO-MIN */
|
|
unsigned int maxrto; /* per assoc RTO-MAX */
|
|
|
|
/* authentication fields */
|
|
sctp_auth_chklist_t *local_auth_chunks;
|
|
sctp_auth_chklist_t *peer_auth_chunks;
|
|
sctp_hmaclist_t *local_hmacs; /* local HMACs supported */
|
|
sctp_hmaclist_t *peer_hmacs; /* peer HMACs supported */
|
|
struct sctp_keyhead shared_keys; /* assoc's shared keys */
|
|
sctp_authinfo_t authinfo; /* randoms, cached keys */
|
|
/*
|
|
* refcnt to block freeing when a sender or receiver is off coping
|
|
* user data in.
|
|
*/
|
|
uint32_t refcnt;
|
|
uint32_t chunks_on_out_queue; /* total chunks floating around,
|
|
* locked by send socket buffer */
|
|
|
|
uint16_t peer_hmac_id; /* peer HMAC id to send */
|
|
|
|
/*
|
|
* Being that we have no bag to collect stale cookies, and that we
|
|
* really would not want to anyway.. we will count them in this
|
|
* counter. We of course feed them to the pigeons right away (I have
|
|
* always thought of pigeons as flying rats).
|
|
*/
|
|
uint16_t stale_cookie_count;
|
|
|
|
/*
|
|
* For the partial delivery API, if up, invoked this is what last
|
|
* TSN I delivered
|
|
*/
|
|
uint16_t str_of_pdapi;
|
|
uint16_t ssn_of_pdapi;
|
|
|
|
/* counts of actual built streams. Allocation may be more however */
|
|
/* could re-arrange to optimize space here. */
|
|
uint16_t streamincnt;
|
|
uint16_t streamoutcnt;
|
|
|
|
/* my maximum number of retrans of INIT and SEND */
|
|
/* copied from SCTP but should be individually setable */
|
|
uint16_t max_init_times;
|
|
uint16_t max_send_times;
|
|
|
|
uint16_t def_net_failure;
|
|
|
|
/*
|
|
* lock flag: 0 is ok to send, 1+ (duals as a retran count) is
|
|
* awaiting ACK
|
|
*/
|
|
uint16_t asconf_sent; /* possibly removable REM */
|
|
uint16_t mapping_array_size;
|
|
|
|
uint16_t last_strm_seq_delivered;
|
|
uint16_t last_strm_no_delivered;
|
|
|
|
uint16_t last_revoke_count;
|
|
int16_t num_send_timers_up;
|
|
|
|
uint16_t stream_locked_on;
|
|
uint16_t ecn_echo_cnt_onq;
|
|
|
|
uint16_t free_chunk_cnt;
|
|
uint16_t free_strmoq_cnt;
|
|
|
|
uint8_t stream_locked;
|
|
uint8_t authenticated; /* packet authenticated ok */
|
|
/*
|
|
* This flag indicates that a SACK need to be sent. Initially this
|
|
* is 1 to send the first sACK immediately.
|
|
*/
|
|
uint8_t send_sack;
|
|
|
|
/* max burst after fast retransmit completes */
|
|
uint8_t max_burst;
|
|
|
|
uint8_t sat_network; /* RTT is in range of sat net or greater */
|
|
uint8_t sat_network_lockout; /* lockout code */
|
|
uint8_t burst_limit_applied; /* Burst limit in effect at last send? */
|
|
/* flag goes on when we are doing a partial delivery api */
|
|
uint8_t hb_random_values[4];
|
|
uint8_t fragmented_delivery_inprogress;
|
|
uint8_t fragment_flags;
|
|
uint8_t last_flags_delivered;
|
|
uint8_t hb_ect_randombit;
|
|
uint8_t hb_random_idx;
|
|
uint8_t hb_is_disabled; /* is the hb disabled? */
|
|
uint8_t default_tos;
|
|
|
|
/* ECN Nonce stuff */
|
|
uint8_t receiver_nonce_sum; /* nonce I sum and put in my sack */
|
|
uint8_t ecn_nonce_allowed; /* Tells us if ECN nonce is on */
|
|
uint8_t nonce_sum_check;/* On off switch used during re-sync */
|
|
uint8_t nonce_wait_for_ecne; /* flag when we expect a ECN */
|
|
uint8_t peer_supports_ecn_nonce;
|
|
|
|
/*
|
|
* This value, plus all other ack'd but above cum-ack is added
|
|
* together to cross check against the bit that we have yet to
|
|
* define (probably in the SACK). When the cum-ack is updated, this
|
|
* sum is updated as well.
|
|
*/
|
|
uint8_t nonce_sum_expect_base;
|
|
/* Flag to tell if ECN is allowed */
|
|
uint8_t ecn_allowed;
|
|
|
|
/* flag to indicate if peer can do asconf */
|
|
uint8_t peer_supports_asconf;
|
|
/* pr-sctp support flag */
|
|
uint8_t peer_supports_prsctp;
|
|
/* peer authentication support flag */
|
|
uint8_t peer_supports_auth;
|
|
/* stream resets are supported by the peer */
|
|
uint8_t peer_supports_strreset;
|
|
|
|
/*
|
|
* packet drop's are supported by the peer, we don't really care
|
|
* about this but we bookkeep it anyway.
|
|
*/
|
|
uint8_t peer_supports_pktdrop;
|
|
|
|
/* Do we allow V6/V4? */
|
|
uint8_t ipv4_addr_legal;
|
|
uint8_t ipv6_addr_legal;
|
|
/* Address scoping flags */
|
|
/* scope value for IPv4 */
|
|
uint8_t ipv4_local_scope;
|
|
/* scope values for IPv6 */
|
|
uint8_t local_scope;
|
|
uint8_t site_scope;
|
|
/* loopback scope */
|
|
uint8_t loopback_scope;
|
|
/* flags to handle send alternate net tracking */
|
|
uint8_t used_alt_onsack;
|
|
uint8_t used_alt_asconfack;
|
|
uint8_t fast_retran_loss_recovery;
|
|
uint8_t sat_t3_loss_recovery;
|
|
uint8_t dropped_special_cnt;
|
|
uint8_t seen_a_sack_this_pkt;
|
|
uint8_t stream_reset_outstanding;
|
|
uint8_t stream_reset_out_is_outstanding;
|
|
uint8_t delayed_connection;
|
|
uint8_t ifp_had_enobuf;
|
|
uint8_t saw_sack_with_frags;
|
|
uint8_t in_restart_hash;
|
|
uint8_t assoc_up_sent;
|
|
/* CMT variables */
|
|
uint8_t cmt_dac_pkts_rcvd;
|
|
uint8_t sctp_cmt_on_off;
|
|
uint8_t iam_blocking;
|
|
uint8_t cookie_how[8];
|
|
/*
|
|
* The mapping array is used to track out of order sequences above
|
|
* last_acked_seq. 0 indicates packet missing 1 indicates packet
|
|
* rec'd. We slide it up every time we raise last_acked_seq and 0
|
|
* trailing locactions out. If I get a TSN above the array
|
|
* mappingArraySz, I discard the datagram and let retransmit happen.
|
|
*/
|
|
uint32_t marked_retrans;
|
|
uint32_t timoinit;
|
|
uint32_t timodata;
|
|
uint32_t timosack;
|
|
uint32_t timoshutdown;
|
|
uint32_t timoheartbeat;
|
|
uint32_t timocookie;
|
|
uint32_t timoshutdownack;
|
|
struct timeval start_time;
|
|
struct timeval discontinuity_time;
|
|
};
|
|
|
|
#endif
|