68dd718256
This change adds support for POWER8 and POWER9 PMCs (bare metal and pseries). All PowerISA 2.07B non-random events are supported. Implementation was based on that of PPC970. Reviewed by: jhibbits Sponsored by: Eldorado Research Institute (eldorado.org.br) Differential Revision: https://reviews.freebsd.org/D26110
649 lines
15 KiB
C
649 lines
15 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2011,2013 Justin Hibbits
|
|
* Copyright (c) 2005, Joseph Koshy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/pmc.h>
|
|
#include <sys/pmckern.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <machine/pmc_mdep.h>
|
|
#include <machine/spr.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/sr.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/stack.h>
|
|
|
|
#include "hwpmc_powerpc.h"
|
|
|
|
#ifdef __powerpc64__
|
|
#define OFFSET 4 /* Account for the TOC reload slot */
|
|
#else
|
|
#define OFFSET 0
|
|
#endif
|
|
|
|
struct powerpc_cpu **powerpc_pcpu;
|
|
struct pmc_ppc_event *ppc_event_codes;
|
|
size_t ppc_event_codes_size;
|
|
int ppc_event_first;
|
|
int ppc_event_last;
|
|
int ppc_max_pmcs;
|
|
|
|
void (*powerpc_set_pmc)(int cpu, int ri, int config);
|
|
pmc_value_t (*powerpc_pmcn_read)(unsigned int pmc);
|
|
void (*powerpc_pmcn_write)(unsigned int pmc, uint32_t val);
|
|
void (*powerpc_resume_pmc)(bool ie);
|
|
|
|
|
|
int
|
|
pmc_save_kernel_callchain(uintptr_t *cc, int maxsamples,
|
|
struct trapframe *tf)
|
|
{
|
|
uintptr_t *osp, *sp;
|
|
uintptr_t pc;
|
|
int frames = 0;
|
|
|
|
cc[frames++] = PMC_TRAPFRAME_TO_PC(tf);
|
|
sp = (uintptr_t *)PMC_TRAPFRAME_TO_FP(tf);
|
|
osp = (uintptr_t *)PAGE_SIZE;
|
|
|
|
for (; frames < maxsamples; frames++) {
|
|
if (sp <= osp)
|
|
break;
|
|
#ifdef __powerpc64__
|
|
pc = sp[2];
|
|
#else
|
|
pc = sp[1];
|
|
#endif
|
|
if ((pc & 3) || (pc < 0x100))
|
|
break;
|
|
|
|
/*
|
|
* trapexit() and asttrapexit() are sentinels
|
|
* for kernel stack tracing.
|
|
* */
|
|
if (pc + OFFSET == (uintptr_t) &trapexit ||
|
|
pc + OFFSET == (uintptr_t) &asttrapexit)
|
|
break;
|
|
|
|
cc[frames] = pc;
|
|
osp = sp;
|
|
sp = (uintptr_t *)*sp;
|
|
}
|
|
return (frames);
|
|
}
|
|
|
|
static int
|
|
powerpc_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
powerpc_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
|
|
{
|
|
int error;
|
|
struct pmc_hw *phw;
|
|
char powerpc_name[PMC_NAME_MAX];
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d], illegal CPU %d", __LINE__, cpu));
|
|
|
|
phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
|
|
snprintf(powerpc_name, sizeof(powerpc_name), "POWERPC-%d", ri);
|
|
if ((error = copystr(powerpc_name, pi->pm_name, PMC_NAME_MAX,
|
|
NULL)) != 0)
|
|
return error;
|
|
pi->pm_class = powerpc_pcpu[cpu]->pc_class;
|
|
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
|
|
pi->pm_enabled = TRUE;
|
|
*ppmc = phw->phw_pmc;
|
|
} else {
|
|
pi->pm_enabled = FALSE;
|
|
*ppmc = NULL;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_get_config(int cpu, int ri, struct pmc **ppm)
|
|
{
|
|
|
|
*ppm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_pcpu_init(struct pmc_mdep *md, int cpu)
|
|
{
|
|
struct pmc_cpu *pc;
|
|
struct powerpc_cpu *pac;
|
|
struct pmc_hw *phw;
|
|
int first_ri, i;
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] wrong cpu number %d", __LINE__, cpu));
|
|
PMCDBG1(MDP,INI,1,"powerpc-init cpu=%d", cpu);
|
|
|
|
powerpc_pcpu[cpu] = pac = malloc(sizeof(struct powerpc_cpu), M_PMC,
|
|
M_WAITOK|M_ZERO);
|
|
pac->pc_ppcpmcs = malloc(sizeof(struct pmc_hw) * ppc_max_pmcs,
|
|
M_PMC, M_WAITOK|M_ZERO);
|
|
pac->pc_class =
|
|
md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_class;
|
|
|
|
pc = pmc_pcpu[cpu];
|
|
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_ri;
|
|
KASSERT(pc != NULL, ("[powerpc,%d] NULL per-cpu pointer", __LINE__));
|
|
|
|
for (i = 0, phw = pac->pc_ppcpmcs; i < ppc_max_pmcs; i++, phw++) {
|
|
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
|
|
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
|
|
phw->phw_pmc = NULL;
|
|
pc->pc_hwpmcs[i + first_ri] = phw;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_pcpu_fini(struct pmc_mdep *md, int cpu)
|
|
{
|
|
PMCDBG1(MDP,INI,1,"powerpc-fini cpu=%d", cpu);
|
|
|
|
free(powerpc_pcpu[cpu]->pc_ppcpmcs, M_PMC);
|
|
free(powerpc_pcpu[cpu], M_PMC);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_allocate_pmc(int cpu, int ri, struct pmc *pm,
|
|
const struct pmc_op_pmcallocate *a)
|
|
{
|
|
enum pmc_event pe;
|
|
uint32_t caps, config = 0, counter = 0;
|
|
int i;
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
|
|
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
|
|
("[powerpc,%d] illegal row index %d", __LINE__, ri));
|
|
|
|
caps = a->pm_caps;
|
|
|
|
pe = a->pm_ev;
|
|
|
|
if (pe < ppc_event_first || pe > ppc_event_last)
|
|
return (EINVAL);
|
|
|
|
for (i = 0; i < ppc_event_codes_size; i++) {
|
|
if (ppc_event_codes[i].pe_event == pe) {
|
|
config = ppc_event_codes[i].pe_code;
|
|
counter = ppc_event_codes[i].pe_flags;
|
|
break;
|
|
}
|
|
}
|
|
if (i == ppc_event_codes_size)
|
|
return (EINVAL);
|
|
|
|
if ((counter & (1 << ri)) == 0)
|
|
return (EINVAL);
|
|
|
|
if (caps & PMC_CAP_SYSTEM)
|
|
config |= POWERPC_PMC_KERNEL_ENABLE;
|
|
if (caps & PMC_CAP_USER)
|
|
config |= POWERPC_PMC_USER_ENABLE;
|
|
if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
|
|
config |= POWERPC_PMC_ENABLE;
|
|
|
|
pm->pm_md.pm_powerpc.pm_powerpc_evsel = config;
|
|
|
|
PMCDBG3(MDP,ALL,1,"powerpc-allocate cpu=%d ri=%d -> config=0x%x",
|
|
cpu, ri, config);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_release_pmc(int cpu, int ri, struct pmc *pmc)
|
|
{
|
|
struct pmc_hw *phw;
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
|
|
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
|
|
("[powerpc,%d] illegal row-index %d", __LINE__, ri));
|
|
|
|
phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
|
|
KASSERT(phw->phw_pmc == NULL,
|
|
("[powerpc,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_start_pmc(int cpu, int ri)
|
|
{
|
|
struct pmc *pm;
|
|
|
|
PMCDBG2(MDP,STA,1,"powerpc-start cpu=%d ri=%d", cpu, ri);
|
|
pm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
|
|
powerpc_set_pmc(cpu, ri, pm->pm_md.pm_powerpc.pm_powerpc_evsel);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_stop_pmc(int cpu, int ri)
|
|
{
|
|
PMCDBG2(MDP,STO,1, "powerpc-stop cpu=%d ri=%d", cpu, ri);
|
|
powerpc_set_pmc(cpu, ri, PMCN_NONE);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_config_pmc(int cpu, int ri, struct pmc *pm)
|
|
{
|
|
struct pmc_hw *phw;
|
|
|
|
PMCDBG3(MDP,CFG,1, "powerpc-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
|
|
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
|
|
("[powerpc,%d] illegal row-index %d", __LINE__, ri));
|
|
|
|
phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
|
|
|
|
KASSERT(pm == NULL || phw->phw_pmc == NULL,
|
|
("[powerpc,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
|
|
__LINE__, pm, phw->phw_pmc));
|
|
|
|
phw->phw_pmc = pm;
|
|
|
|
return (0);
|
|
}
|
|
|
|
pmc_value_t
|
|
powerpc_pmcn_read_default(unsigned int pmc)
|
|
{
|
|
pmc_value_t val;
|
|
|
|
if (pmc > ppc_max_pmcs)
|
|
panic("Invalid PMC number: %d\n", pmc);
|
|
|
|
switch (pmc) {
|
|
case 0:
|
|
val = mfspr(SPR_PMC1);
|
|
break;
|
|
case 1:
|
|
val = mfspr(SPR_PMC2);
|
|
break;
|
|
case 2:
|
|
val = mfspr(SPR_PMC3);
|
|
break;
|
|
case 3:
|
|
val = mfspr(SPR_PMC4);
|
|
break;
|
|
case 4:
|
|
val = mfspr(SPR_PMC5);
|
|
break;
|
|
case 5:
|
|
val = mfspr(SPR_PMC6);
|
|
break;
|
|
case 6:
|
|
val = mfspr(SPR_PMC7);
|
|
break;
|
|
case 7:
|
|
val = mfspr(SPR_PMC8);
|
|
break;
|
|
}
|
|
|
|
return (val);
|
|
}
|
|
|
|
void
|
|
powerpc_pmcn_write_default(unsigned int pmc, uint32_t val)
|
|
{
|
|
if (pmc > ppc_max_pmcs)
|
|
panic("Invalid PMC number: %d\n", pmc);
|
|
|
|
switch (pmc) {
|
|
case 0:
|
|
mtspr(SPR_PMC1, val);
|
|
break;
|
|
case 1:
|
|
mtspr(SPR_PMC2, val);
|
|
break;
|
|
case 2:
|
|
mtspr(SPR_PMC3, val);
|
|
break;
|
|
case 3:
|
|
mtspr(SPR_PMC4, val);
|
|
break;
|
|
case 4:
|
|
mtspr(SPR_PMC5, val);
|
|
break;
|
|
case 5:
|
|
mtspr(SPR_PMC6, val);
|
|
break;
|
|
case 6:
|
|
mtspr(SPR_PMC7, val);
|
|
break;
|
|
case 7:
|
|
mtspr(SPR_PMC8, val);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
powerpc_read_pmc(int cpu, int ri, pmc_value_t *v)
|
|
{
|
|
struct pmc *pm;
|
|
pmc_value_t p, r, tmp;
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
|
|
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
|
|
("[powerpc,%d] illegal row index %d", __LINE__, ri));
|
|
|
|
pm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
|
|
KASSERT(pm,
|
|
("[core,%d] cpu %d ri %d pmc not configured", __LINE__, cpu,
|
|
ri));
|
|
|
|
/*
|
|
* After an interrupt occurs because of a PMC overflow, the PMC value
|
|
* is not always MAX_PMC_VALUE + 1, but may be a little above it.
|
|
* This may mess up calculations and frustrate machine independent
|
|
* layer expectations, such as that no value read should be greater
|
|
* than reload count in sampling mode.
|
|
* To avoid these issues, use MAX_PMC_VALUE as an upper limit.
|
|
*/
|
|
p = MIN(powerpc_pmcn_read(ri), POWERPC_MAX_PMC_VALUE);
|
|
r = pm->pm_sc.pm_reloadcount;
|
|
|
|
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
|
|
/*
|
|
* Special case 1: r is too big
|
|
* This usually happens when a PMC write fails, the PMC is
|
|
* stopped and then it is read.
|
|
*
|
|
* Special case 2: PMC was reseted or has a value
|
|
* that should not be possible with current r.
|
|
*
|
|
* In the above cases, just return 0 instead of an arbitrary
|
|
* value.
|
|
*/
|
|
if (r > POWERPC_MAX_PMC_VALUE || p + r <= POWERPC_MAX_PMC_VALUE)
|
|
tmp = 0;
|
|
else
|
|
tmp = POWERPC_PERFCTR_VALUE_TO_RELOAD_COUNT(p);
|
|
} else
|
|
tmp = p + (POWERPC_MAX_PMC_VALUE + 1) * PPC_OVERFLOWCNT(pm);
|
|
|
|
PMCDBG5(MDP,REA,1,"ppc-read cpu=%d ri=%d -> %jx (%jx,%jx)",
|
|
cpu, ri, (uintmax_t)tmp, (uintmax_t)PPC_OVERFLOWCNT(pm),
|
|
(uintmax_t)p);
|
|
*v = tmp;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_write_pmc(int cpu, int ri, pmc_value_t v)
|
|
{
|
|
struct pmc *pm;
|
|
pmc_value_t vlo;
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
|
|
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
|
|
("[powerpc,%d] illegal row-index %d", __LINE__, ri));
|
|
|
|
pm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
|
|
|
|
if (PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
|
|
PPC_OVERFLOWCNT(pm) = v / (POWERPC_MAX_PMC_VALUE + 1);
|
|
vlo = v % (POWERPC_MAX_PMC_VALUE + 1);
|
|
} else if (v > POWERPC_MAX_PMC_VALUE) {
|
|
PMCDBG3(MDP,WRI,2,
|
|
"powerpc-write cpu=%d ri=%d: PMC value is too big: %jx",
|
|
cpu, ri, (uintmax_t)v);
|
|
return (EINVAL);
|
|
} else
|
|
vlo = POWERPC_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
|
|
|
|
PMCDBG5(MDP,WRI,1,"powerpc-write cpu=%d ri=%d -> %jx (%jx,%jx)",
|
|
cpu, ri, (uintmax_t)v, (uintmax_t)PPC_OVERFLOWCNT(pm),
|
|
(uintmax_t)vlo);
|
|
|
|
powerpc_pmcn_write(ri, vlo);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
powerpc_pmc_intr(struct trapframe *tf)
|
|
{
|
|
struct pmc *pm;
|
|
struct powerpc_cpu *pc;
|
|
int cpu, error, i, retval;
|
|
|
|
cpu = curcpu;
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[powerpc,%d] out of range CPU %d", __LINE__, cpu));
|
|
|
|
PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
|
|
TRAPF_USERMODE(tf));
|
|
|
|
retval = 0;
|
|
pc = powerpc_pcpu[cpu];
|
|
|
|
/*
|
|
* Look for a running, sampling PMC which has overflowed
|
|
* and which has a valid 'struct pmc' association.
|
|
*/
|
|
for (i = 0; i < ppc_max_pmcs; i++) {
|
|
if (!POWERPC_PMC_HAS_OVERFLOWED(i))
|
|
continue;
|
|
retval = 1; /* Found an interrupting PMC. */
|
|
|
|
/*
|
|
* Always clear the PMC, to make it stop interrupting.
|
|
* If pm is available and in sampling mode, use reload
|
|
* count, to make PMC read after stop correct.
|
|
* Otherwise, just reset the PMC.
|
|
*/
|
|
if ((pm = pc->pc_ppcpmcs[i].phw_pmc) != NULL &&
|
|
PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
|
|
if (pm->pm_state != PMC_STATE_RUNNING) {
|
|
powerpc_write_pmc(cpu, i,
|
|
pm->pm_sc.pm_reloadcount);
|
|
continue;
|
|
}
|
|
} else {
|
|
if (pm != NULL) { /* !PMC_IS_SAMPLING_MODE */
|
|
PPC_OVERFLOWCNT(pm) = (PPC_OVERFLOWCNT(pm) +
|
|
1) % PPC_OVERFLOWCNT_MAX;
|
|
PMCDBG3(MDP,INT,2,
|
|
"cpu=%d ri=%d: overflowcnt=%d",
|
|
cpu, i, PPC_OVERFLOWCNT(pm));
|
|
}
|
|
|
|
powerpc_pmcn_write(i, 0);
|
|
continue;
|
|
}
|
|
|
|
error = pmc_process_interrupt(PMC_HR, pm, tf);
|
|
if (error != 0) {
|
|
PMCDBG3(MDP,INT,3,
|
|
"cpu=%d ri=%d: error %d processing interrupt",
|
|
cpu, i, error);
|
|
powerpc_stop_pmc(cpu, i);
|
|
}
|
|
|
|
/* Reload sampling count */
|
|
powerpc_write_pmc(cpu, i, pm->pm_sc.pm_reloadcount);
|
|
}
|
|
|
|
if (retval)
|
|
counter_u64_add(pmc_stats.pm_intr_processed, 1);
|
|
else
|
|
counter_u64_add(pmc_stats.pm_intr_ignored, 1);
|
|
|
|
/*
|
|
* Re-enable PERF exceptions if we were able to find the interrupt
|
|
* source and handle it. Otherwise, it's better to disable PERF
|
|
* interrupts, to avoid the risk of processing the same interrupt
|
|
* forever.
|
|
*/
|
|
powerpc_resume_pmc(retval != 0);
|
|
if (retval == 0)
|
|
log(LOG_WARNING,
|
|
"pmc_intr: couldn't find interrupting PMC on cpu %d - "
|
|
"disabling PERF interrupts\n", cpu);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
struct pmc_mdep *
|
|
pmc_md_initialize()
|
|
{
|
|
struct pmc_mdep *pmc_mdep;
|
|
int error;
|
|
uint16_t vers;
|
|
|
|
/*
|
|
* Allocate space for pointers to PMC HW descriptors and for
|
|
* the MDEP structure used by MI code.
|
|
*/
|
|
powerpc_pcpu = malloc(sizeof(struct powerpc_cpu *) * pmc_cpu_max(), M_PMC,
|
|
M_WAITOK|M_ZERO);
|
|
|
|
/* Just one class */
|
|
pmc_mdep = pmc_mdep_alloc(1);
|
|
|
|
vers = mfpvr() >> 16;
|
|
|
|
pmc_mdep->pmd_switch_in = powerpc_switch_in;
|
|
pmc_mdep->pmd_switch_out = powerpc_switch_out;
|
|
|
|
switch (vers) {
|
|
case MPC7447A:
|
|
case MPC7448:
|
|
case MPC7450:
|
|
case MPC7455:
|
|
case MPC7457:
|
|
error = pmc_mpc7xxx_initialize(pmc_mdep);
|
|
break;
|
|
case IBM970:
|
|
case IBM970FX:
|
|
case IBM970MP:
|
|
error = pmc_ppc970_initialize(pmc_mdep);
|
|
break;
|
|
case IBMPOWER8E:
|
|
case IBMPOWER8NVL:
|
|
case IBMPOWER8:
|
|
case IBMPOWER9:
|
|
error = pmc_power8_initialize(pmc_mdep);
|
|
break;
|
|
case FSL_E500v1:
|
|
case FSL_E500v2:
|
|
case FSL_E500mc:
|
|
case FSL_E5500:
|
|
error = pmc_e500_initialize(pmc_mdep);
|
|
break;
|
|
default:
|
|
error = -1;
|
|
break;
|
|
}
|
|
|
|
if (error != 0) {
|
|
pmc_mdep_free(pmc_mdep);
|
|
pmc_mdep = NULL;
|
|
}
|
|
|
|
return (pmc_mdep);
|
|
}
|
|
|
|
void
|
|
pmc_md_finalize(struct pmc_mdep *md)
|
|
{
|
|
|
|
free(powerpc_pcpu, M_PMC);
|
|
powerpc_pcpu = NULL;
|
|
}
|
|
|
|
int
|
|
pmc_save_user_callchain(uintptr_t *cc, int maxsamples,
|
|
struct trapframe *tf)
|
|
{
|
|
uintptr_t *osp, *sp;
|
|
int frames = 0;
|
|
|
|
cc[frames++] = PMC_TRAPFRAME_TO_PC(tf);
|
|
sp = (uintptr_t *)PMC_TRAPFRAME_TO_FP(tf);
|
|
osp = NULL;
|
|
|
|
for (; frames < maxsamples; frames++) {
|
|
if (sp <= osp)
|
|
break;
|
|
osp = sp;
|
|
#ifdef __powerpc64__
|
|
/* Check if 32-bit mode. */
|
|
if (!(tf->srr1 & PSL_SF)) {
|
|
cc[frames] = fuword32((uint32_t *)sp + 1);
|
|
sp = (uintptr_t *)(uintptr_t)fuword32(sp);
|
|
} else {
|
|
cc[frames] = fuword(sp + 2);
|
|
sp = (uintptr_t *)fuword(sp);
|
|
}
|
|
#else
|
|
cc[frames] = fuword32((uint32_t *)sp + 1);
|
|
sp = (uintptr_t *)fuword32(sp);
|
|
#endif
|
|
}
|
|
|
|
return (frames);
|
|
}
|