freebsd-skq/sys/dev/mrsas/mrsas_fp.c
Alfredo Dal'Ava Junior e34a057ca6 [POWERPC64BE] mrsas: add big-endian support
Add endiannes conversions in order to support big-endian platforms

Submitted by:	Andre Fernando da Silva <andre.silva@eldorado.org.br>
Reviewed by:	luporl, alfredo, kadesai (on email)
Sponsored by:	Eldorado Research Institute (eldorado.org.br)
Differential Revision:	https://reviews.freebsd.org/D26531
2021-02-03 22:06:21 -03:00

1779 lines
57 KiB
C

/*
* Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
* Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
* Support: freebsdraid@avagotech.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer. 2. Redistributions
* in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution. 3. Neither the name of the
* <ORGANIZATION> nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing
* official policies,either expressed or implied, of the FreeBSD Project.
*
* Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
* Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mrsas/mrsas.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
/*
* Function prototypes
*/
u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
u_int8_t
mrsas_get_best_arm_pd(struct mrsas_softc *sc,
PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
u_int8_t
MR_BuildRaidContext(struct mrsas_softc *sc,
struct IO_REQUEST_INFO *io_info,
RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
u_int8_t
MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
RAID_CONTEXT * pRAID_Context,
MR_DRV_RAID_MAP_ALL * map);
u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL *map);
u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
u_int16_t
mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
u_int32_t
MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
MR_DRV_RAID_MAP_ALL * map, int *div_error);
u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
void
mrsas_update_load_balance_params(struct mrsas_softc *sc,
MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
void
mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
u_int32_t ld_block_size);
static u_int16_t
MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
MR_DRV_RAID_MAP_ALL * map);
static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
static u_int16_t
MR_ArPdGet(u_int32_t ar, u_int32_t arm,
MR_DRV_RAID_MAP_ALL * map);
static MR_LD_SPAN *
MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
MR_DRV_RAID_MAP_ALL * map);
static u_int8_t
MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
MR_DRV_RAID_MAP_ALL * map);
static MR_SPAN_BLOCK_INFO *
MR_LdSpanInfoGet(u_int32_t ld,
MR_DRV_RAID_MAP_ALL * map);
MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
/*
* Spanset related function prototypes Added for PRL11 configuration (Uneven
* span support)
*/
void mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
static u_int8_t
mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
static u_int64_t
get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
static u_int32_t
mr_spanset_get_span_block(struct mrsas_softc *sc,
u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
MR_DRV_RAID_MAP_ALL * map, int *div_error);
static u_int8_t
get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
/*
* Spanset related defines Added for PRL11 configuration(Uneven span support)
*/
#define SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
#define SPAN_ROW_DATA_SIZE(map_, ld, index_) \
MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
#define SPAN_INVALID 0xff
#define SPAN_DEBUG 0
/*
* Related Defines
*/
typedef u_int64_t REGION_KEY;
typedef u_int32_t REGION_LEN;
#define MR_LD_STATE_OPTIMAL 3
#define FALSE 0
#define TRUE 1
#define LB_PENDING_CMDS_DEFAULT 4
/*
* Related Macros
*/
#define ABS_DIFF(a,b) ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
#define swap32(x) \
((unsigned int)( \
(((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
(((unsigned int)(x) & (unsigned int)0x0000ff00UL) << 8) | \
(((unsigned int)(x) & (unsigned int)0x00ff0000UL) >> 8) | \
(((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
/*
* In-line functions for mod and divide of 64-bit dividend and 32-bit
* divisor. Assumes a check for a divisor of zero is not possible.
*
* @param dividend: Dividend
* @param divisor: Divisor
* @return remainder
*/
#define mega_mod64(dividend, divisor) ({ \
int remainder; \
remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
remainder;})
#define mega_div64_32(dividend, divisor) ({ \
int quotient; \
quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
quotient;})
/*
* Various RAID map access functions. These functions access the various
* parts of the RAID map and returns the appropriate parameters.
*/
MR_LD_RAID *
MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
{
return (&map->raidMap.ldSpanMap[ld].ldRaid);
}
u_int16_t
MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
{
return le16toh(map->raidMap.ldSpanMap[ld].ldRaid.targetId);
}
static u_int16_t
MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
{
return le16toh(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef);
}
static u_int8_t
MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
{
return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
}
static u_int16_t
MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
{
return map->raidMap.devHndlInfo[pd].curDevHdl;
}
static u_int8_t MR_PdInterfaceTypeGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL *map)
{
return map->raidMap.devHndlInfo[pd].interfaceType;
}
static u_int16_t
MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
{
return le16toh(map->raidMap.arMapInfo[ar].pd[arm]);
}
static MR_LD_SPAN *
MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
{
return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
}
static MR_SPAN_BLOCK_INFO *
MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
{
return &map->raidMap.ldSpanMap[ld].spanBlock[0];
}
u_int8_t
MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
{
return map->raidMap.ldTgtIdToLd[ldTgtId];
}
u_int32_t
MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid;
u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
ld = MR_TargetIdToLdGet(ldTgtId, map);
/*
* Check if logical drive was removed.
*/
if (ld >= MAX_LOGICAL_DRIVES)
return ldBlockSize;
raid = MR_LdRaidGet(ld, map);
ldBlockSize = raid->logicalBlockLength;
if (!ldBlockSize)
ldBlockSize = MRSAS_SCSIBLOCKSIZE;
return ldBlockSize;
}
/*
* This function will Populate Driver Map using Dynamic firmware raid map
*/
static int
MR_PopulateDrvRaidMapVentura(struct mrsas_softc *sc)
{
unsigned int i, j;
u_int16_t ld_count;
MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
MR_RAID_MAP_DESC_TABLE *desc_table;
MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
void *raid_map_data = NULL;
fw_map_dyn = (MR_FW_RAID_MAP_DYNAMIC *) sc->raidmap_mem[(sc->map_id & 1)];
if (fw_map_dyn == NULL) {
device_printf(sc->mrsas_dev,
"from %s %d map0 %p map1 %p map size %d \n", __func__, __LINE__,
sc->raidmap_mem[0], sc->raidmap_mem[1], sc->maxRaidMapSize);
return 1;
}
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev,
" raidMapSize 0x%x, descTableOffset 0x%x, "
" descTableSize 0x%x, descTableNumElements 0x%x \n",
fw_map_dyn->raidMapSize, le32toh(fw_map_dyn->descTableOffset),
fw_map_dyn->descTableSize, fw_map_dyn->descTableNumElements);
#endif
desc_table = (MR_RAID_MAP_DESC_TABLE *) ((char *)fw_map_dyn +
le32toh(fw_map_dyn->descTableOffset));
if (desc_table != fw_map_dyn->raidMapDescTable) {
device_printf(sc->mrsas_dev,
"offsets of desc table are not matching returning "
" FW raid map has been changed: desc %p original %p\n",
desc_table, fw_map_dyn->raidMapDescTable);
}
memset(drv_map, 0, sc->drv_map_sz);
ld_count = le16toh(fw_map_dyn->ldCount);
pDrvRaidMap->ldCount = htole16(ld_count);
pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fpPdIoTimeoutSec;
pDrvRaidMap->totalSize = htole32(sizeof(MR_DRV_RAID_MAP_ALL));
/* point to actual data starting point */
raid_map_data = (char *)fw_map_dyn +
le32toh(fw_map_dyn->descTableOffset) +
le32toh(fw_map_dyn->descTableSize);
for (i = 0; i < le32toh(fw_map_dyn->descTableNumElements); ++i) {
if (!desc_table) {
device_printf(sc->mrsas_dev,
"desc table is null, coming out %p \n", desc_table);
return 1;
}
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev, "raid_map_data %p \n", raid_map_data);
device_printf(sc->mrsas_dev,
"desc table %p \n", desc_table);
device_printf(sc->mrsas_dev,
"raidmap type %d, raidmapOffset 0x%x, "
" raid map number of elements 0%x, raidmapsize 0x%x\n",
le32toh(desc_table->raidMapDescType), desc_table->raidMapDescOffset,
le32toh(desc_table->raidMapDescElements), desc_table->raidMapDescBufferSize);
#endif
switch (le32toh(desc_table->raidMapDescType)) {
case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo = (MR_DEV_HANDLE_INFO *)
((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset));
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev,
"devHndlInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo);
#endif
memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo,
sizeof(MR_DEV_HANDLE_INFO) * le32toh(desc_table->raidMapDescElements));
break;
case RAID_MAP_DESC_TYPE_TGTID_INFO:
fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd = (u_int16_t *)
((char *)raid_map_data +
le32toh(desc_table->raidMapDescOffset));
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev,
"ldTgtIdToLd address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd);
#endif
for (j = 0; j < le32toh(desc_table->raidMapDescElements); j++) {
pDrvRaidMap->ldTgtIdToLd[j] = fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd[j];
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev,
" %d drv ldTgtIdToLd %d\n", j, pDrvRaidMap->ldTgtIdToLd[j]);
#endif
}
break;
case RAID_MAP_DESC_TYPE_ARRAY_INFO:
fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo = (MR_ARRAY_INFO *) ((char *)raid_map_data +
le32toh(desc_table->raidMapDescOffset));
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev,
"arMapInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo);
#endif
memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo,
sizeof(MR_ARRAY_INFO) * le32toh(desc_table->raidMapDescElements));
break;
case RAID_MAP_DESC_TYPE_SPAN_INFO:
fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap = (MR_LD_SPAN_MAP *) ((char *)raid_map_data +
le32toh(desc_table->raidMapDescOffset));
memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap,
sizeof(MR_LD_SPAN_MAP) *
le32toh(desc_table->raidMapDescElements));
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev,
"ldSpanMap address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap);
device_printf(sc->mrsas_dev,
"MR_LD_SPAN_MAP size 0x%lx\n", sizeof(MR_LD_SPAN_MAP));
for (j = 0; j < ld_count; j++) {
printf("mrsas(%d) : fw_map_dyn->ldSpanMap[%d].ldRaid.targetId 0x%x "
"fw_map_dyn->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
j, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.targetId, j,
fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.seqNum,
(u_int32_t)fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.rowSize);
printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
"pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
j, j, pDrvRaidMap->ldSpanMap[j].ldRaid.targetId, j,
pDrvRaidMap->ldSpanMap[j].ldRaid.seqNum,
(u_int32_t)pDrvRaidMap->ldSpanMap[j].ldRaid.rowSize);
printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
drv_map, pDrvRaidMap, &fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid,
&pDrvRaidMap->ldSpanMap[j].ldRaid);
}
#endif
break;
default:
device_printf(sc->mrsas_dev,
"wrong number of desctableElements %d\n",
fw_map_dyn->descTableNumElements);
}
++desc_table;
}
return 0;
}
/*
* This function will Populate Driver Map using firmware raid map
*/
static int
MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
{
MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
MR_FW_RAID_MAP_EXT *fw_map_ext;
MR_FW_RAID_MAP *pFwRaidMap = NULL;
unsigned int i;
u_int16_t ld_count;
MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
if (sc->maxRaidMapSize) {
return MR_PopulateDrvRaidMapVentura(sc);
} else if (sc->max256vdSupport) {
fw_map_ext = (MR_FW_RAID_MAP_EXT *) sc->raidmap_mem[(sc->map_id & 1)];
ld_count = (u_int16_t)le16toh(fw_map_ext->ldCount);
if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
device_printf(sc->mrsas_dev,
"mrsas: LD count exposed in RAID map in not valid\n");
return 1;
}
#if VD_EXT_DEBUG
for (i = 0; i < ld_count; i++) {
printf("mrsas : Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n",
i, fw_map_ext->ldSpanMap[i].ldRaid.targetId,
fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
fw_map_ext->ldSpanMap[i].ldRaid.size);
}
#endif
memset(drv_map, 0, sc->drv_map_sz);
pDrvRaidMap->ldCount = htole16(ld_count);
pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) {
pDrvRaidMap->ldTgtIdToLd[i] = (u_int16_t)fw_map_ext->ldTgtIdToLd[i];
}
memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(MR_LD_SPAN_MAP) * ld_count);
#if VD_EXT_DEBUG
for (i = 0; i < ld_count; i++) {
printf("mrsas(%d) : fw_map_ext->ldSpanMap[%d].ldRaid.targetId 0x%x "
"fw_map_ext->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
i, i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, i,
fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
(u_int32_t)fw_map_ext->ldSpanMap[i].ldRaid.rowSize);
printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
"pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, i,
pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
(u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
drv_map, pDrvRaidMap, &fw_map_ext->ldSpanMap[i].ldRaid,
&pDrvRaidMap->ldSpanMap[i].ldRaid);
}
#endif
memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
sizeof(MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES);
pDrvRaidMap->totalSize = htole32(sizeof(MR_FW_RAID_MAP_EXT));
} else {
fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
pFwRaidMap = &fw_map_old->raidMap;
#if VD_EXT_DEBUG
for (i = 0; i < le32toh(pFwRaidMap->ldCount); i++) {
device_printf(sc->mrsas_dev,
"Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
}
#endif
memset(drv_map, 0, sc->drv_map_sz);
pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
pDrvRaidMap->fpPdIoTimeoutSec =
pFwRaidMap->fpPdIoTimeoutSec;
for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
pDrvRaidMap->ldTgtIdToLd[i] =
(u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
}
for (i = 0; i < pDrvRaidMap->ldCount; i++) {
pDrvRaidMap->ldSpanMap[i] =
pFwRaidMap->ldSpanMap[i];
#if VD_EXT_DEBUG
device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
"pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
(u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
"pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
(u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
drv_map, pDrvRaidMap,
&pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
#endif
}
memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
sizeof(MR_DEV_HANDLE_INFO) *
MAX_RAIDMAP_PHYSICAL_DEVICES);
}
return 0;
}
/*
* MR_ValidateMapInfo: Validate RAID map
* input: Adapter instance soft state
*
* This function checks and validates the loaded RAID map. It returns 0 if
* successful, and 1 otherwise.
*/
u_int8_t
MR_ValidateMapInfo(struct mrsas_softc *sc)
{
if (!sc) {
return 1;
}
if (MR_PopulateDrvRaidMap(sc))
return 0;
MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
u_int32_t expected_map_size;
drv_map = sc->ld_drv_map[(sc->map_id & 1)];
pDrvRaidMap = &drv_map->raidMap;
PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
if (sc->maxRaidMapSize)
expected_map_size = sizeof(MR_DRV_RAID_MAP_ALL);
else if (sc->max256vdSupport)
expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
else
expected_map_size =
(sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
(sizeof(MR_LD_SPAN_MAP) * le16toh(pDrvRaidMap->ldCount));
if (le32toh(pDrvRaidMap->totalSize) != expected_map_size) {
device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", le32toh(pDrvRaidMap->totalSize));
return 1;
}
if (sc->UnevenSpanSupport) {
mr_update_span_set(drv_map, ldSpanInfo);
}
mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
return 0;
}
/*
*
* Function to print info about span set created in driver from FW raid map
*
* Inputs: map
* ldSpanInfo: ld map span info per HBA instance
*
*
*/
#if SPAN_DEBUG
static int
getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
{
u_int8_t span;
u_int32_t element;
MR_LD_RAID *raid;
LD_SPAN_SET *span_set;
MR_QUAD_ELEMENT *quad;
int ldCount;
u_int16_t ld;
for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
ld = MR_TargetIdToLdGet(ldCount, map);
if (ld >= MAX_LOGICAL_DRIVES) {
continue;
}
raid = MR_LdRaidGet(ld, map);
printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
for (span = 0; span < raid->spanDepth; span++)
printf("Span=%x, number of quads=%x\n", span,
le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements));
for (element = 0; element < MAX_QUAD_DEPTH; element++) {
span_set = &(ldSpanInfo[ld].span_set[element]);
if (span_set->span_row_data_width == 0)
break;
printf("Span Set %x: width=%x, diff=%x\n", element,
(unsigned int)span_set->span_row_data_width,
(unsigned int)span_set->diff);
printf("logical LBA start=0x%08lx, end=0x%08lx\n",
(long unsigned int)span_set->log_start_lba,
(long unsigned int)span_set->log_end_lba);
printf("span row start=0x%08lx, end=0x%08lx\n",
(long unsigned int)span_set->span_row_start,
(long unsigned int)span_set->span_row_end);
printf("data row start=0x%08lx, end=0x%08lx\n",
(long unsigned int)span_set->data_row_start,
(long unsigned int)span_set->data_row_end);
printf("data strip start=0x%08lx, end=0x%08lx\n",
(long unsigned int)span_set->data_strip_start,
(long unsigned int)span_set->data_strip_end);
for (span = 0; span < raid->spanDepth; span++) {
if (map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements >= element + 1) {
quad = &map->raidMap.ldSpanMap[ld].
spanBlock[span].block_span_info.
quad[element];
printf("Span=%x, Quad=%x, diff=%x\n", span,
element, le32toh(quad->diff));
printf("offset_in_span=0x%08lx\n",
(long unsigned int)le64toh(quad->offsetInSpan));
printf("logical start=0x%08lx, end=0x%08lx\n",
(long unsigned int)le64toh(quad->logStart),
(long unsigned int)le64toh(quad->logEnd));
}
}
}
}
return 0;
}
#endif
/*
*
* This routine calculates the Span block for given row using spanset.
*
* Inputs : HBA instance
* ld: Logical drive number
* row: Row number
* map: LD map
*
* Outputs : span - Span number block
* - Absolute Block number in the physical disk
* div_error - Devide error code.
*/
u_int32_t
mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
LD_SPAN_SET *span_set;
MR_QUAD_ELEMENT *quad;
u_int32_t span, info;
PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
span_set = &(ldSpanInfo[ld].span_set[info]);
if (span_set->span_row_data_width == 0)
break;
if (row > span_set->data_row_end)
continue;
for (span = 0; span < raid->spanDepth; span++)
if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements) >= info + 1) {
quad = &map->raidMap.ldSpanMap[ld].
spanBlock[span].
block_span_info.quad[info];
if (quad->diff == 0) {
*div_error = 1;
return span;
}
if (le64toh(quad->logStart) <= row &&
row <= le64toh(quad->logEnd) &&
(mega_mod64(row - le64toh(quad->logStart),
le32toh(quad->diff))) == 0) {
if (span_blk != NULL) {
u_int64_t blk;
blk = mega_div64_32
((row - le64toh(quad->logStart)),
le32toh(quad->diff));
blk = (blk + le64toh(quad->offsetInSpan))
<< raid->stripeShift;
*span_blk = blk;
}
return span;
}
}
}
return SPAN_INVALID;
}
/*
*
* This routine calculates the row for given strip using spanset.
*
* Inputs : HBA instance
* ld: Logical drive number
* Strip: Strip
* map: LD map
*
* Outputs : row - row associated with strip
*/
static u_int64_t
get_row_from_strip(struct mrsas_softc *sc,
u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
LD_SPAN_SET *span_set;
PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
u_int32_t info, strip_offset, span, span_offset;
u_int64_t span_set_Strip, span_set_Row;
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
span_set = &(ldSpanInfo[ld].span_set[info]);
if (span_set->span_row_data_width == 0)
break;
if (strip > span_set->data_strip_end)
continue;
span_set_Strip = strip - span_set->data_strip_start;
strip_offset = mega_mod64(span_set_Strip,
span_set->span_row_data_width);
span_set_Row = mega_div64_32(span_set_Strip,
span_set->span_row_data_width) * span_set->diff;
for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements) >= info + 1) {
if (strip_offset >=
span_set->strip_offset[span])
span_offset++;
else
break;
}
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
"data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
(unsigned long long)span_set_Strip,
(unsigned long long)span_set_Row,
(unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
(unsigned long long)span_set->data_row_start +
(unsigned long long)span_set_Row + (span_offset - 1));
return (span_set->data_row_start + span_set_Row + (span_offset - 1));
}
return -1LLU;
}
/*
*
* This routine calculates the Start Strip for given row using spanset.
*
* Inputs: HBA instance
* ld: Logical drive number
* row: Row number
* map: LD map
*
* Outputs : Strip - Start strip associated with row
*/
static u_int64_t
get_strip_from_row(struct mrsas_softc *sc,
u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
LD_SPAN_SET *span_set;
MR_QUAD_ELEMENT *quad;
PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
u_int32_t span, info;
u_int64_t strip;
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
span_set = &(ldSpanInfo[ld].span_set[info]);
if (span_set->span_row_data_width == 0)
break;
if (row > span_set->data_row_end)
continue;
for (span = 0; span < raid->spanDepth; span++)
if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements) >= info + 1) {
quad = &map->raidMap.ldSpanMap[ld].
spanBlock[span].block_span_info.quad[info];
if (le64toh(quad->logStart) <= row &&
row <= le64toh(quad->logEnd) &&
mega_mod64((row - le64toh(quad->logStart)),
le32toh(quad->diff)) == 0) {
strip = mega_div64_32
(((row - span_set->data_row_start)
- le64toh(quad->logStart)),
le32toh(quad->diff));
strip *= span_set->span_row_data_width;
strip += span_set->data_strip_start;
strip += span_set->strip_offset[span];
return strip;
}
}
}
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
"strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
return -1;
}
/*
* *****************************************************************************
*
*
* This routine calculates the Physical Arm for given strip using spanset.
*
* Inputs : HBA instance
* Logical drive number
* Strip
* LD map
*
* Outputs : Phys Arm - Phys Arm associated with strip
*/
static u_int32_t
get_arm_from_strip(struct mrsas_softc *sc,
u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
LD_SPAN_SET *span_set;
PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
u_int32_t info, strip_offset, span, span_offset;
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
span_set = &(ldSpanInfo[ld].span_set[info]);
if (span_set->span_row_data_width == 0)
break;
if (strip > span_set->data_strip_end)
continue;
strip_offset = (u_int32_t)mega_mod64
((strip - span_set->data_strip_start),
span_set->span_row_data_width);
for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements) >= info + 1) {
if (strip_offset >= span_set->strip_offset[span])
span_offset = span_set->strip_offset[span];
else
break;
}
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
"for ld=0x%x strip=0x%lx arm is 0x%x\n", ld,
(long unsigned int)strip, (strip_offset - span_offset));
return (strip_offset - span_offset);
}
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
" for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
return -1;
}
/* This Function will return Phys arm */
u_int8_t
get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
/* Need to check correct default value */
u_int32_t arm = 0;
switch (raid->level) {
case 0:
case 5:
case 6:
arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
break;
case 1:
/* start with logical arm */
arm = get_arm_from_strip(sc, ld, stripe, map);
arm *= 2;
break;
}
return arm;
}
/*
*
* This routine calculates the arm, span and block for the specified stripe and
* reference in stripe using spanset
*
* Inputs :
* sc - HBA instance
* ld - Logical drive number
* stripRow: Stripe number
* stripRef: Reference in stripe
*
* Outputs : span - Span number block - Absolute Block
* number in the physical disk
*/
static u_int8_t
mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
u_int32_t pd, arRef, r1_alt_pd;
u_int8_t physArm, span;
u_int64_t row;
u_int8_t retval = TRUE;
u_int64_t *pdBlock = &io_info->pdBlock;
u_int16_t *pDevHandle = &io_info->devHandle;
u_int8_t *pPdInterface = &io_info->pdInterface;
u_int32_t logArm, rowMod, armQ, arm;
/* Get row and span from io_info for Uneven Span IO. */
row = io_info->start_row;
span = io_info->start_span;
if (raid->level == 6) {
logArm = get_arm_from_strip(sc, ld, stripRow, map);
rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
arm = armQ + 1 + logArm;
if (arm >= SPAN_ROW_SIZE(map, ld, span))
arm -= SPAN_ROW_SIZE(map, ld, span);
physArm = (u_int8_t)arm;
} else
/* Calculate the arm */
physArm = get_arm(sc, ld, span, stripRow, map);
arRef = MR_LdSpanArrayGet(ld, span, map);
pd = MR_ArPdGet(arRef, physArm, map);
if (pd != MR_PD_INVALID) {
*pDevHandle = MR_PdDevHandleGet(pd, map);
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
/* get second pd also for raid 1/10 fast path writes */
if ((raid->level == 1) && !io_info->isRead) {
r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
if (r1_alt_pd != MR_PD_INVALID)
io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
}
} else {
*pDevHandle = htole16(MR_DEVHANDLE_INVALID);
if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
(sc->mrsas_gen3_ctrl &&
raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
else if (raid->level == 1) {
pd = MR_ArPdGet(arRef, physArm + 1, map);
if (pd != MR_PD_INVALID) {
*pDevHandle = MR_PdDevHandleGet(pd, map);
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
}
}
}
*pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
if (sc->is_ventura || sc->is_aero) {
((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
} else {
pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
io_info->span_arm = pRAID_Context->spanArm;
}
return retval;
}
/*
* MR_BuildRaidContext: Set up Fast path RAID context
*
* This function will initiate command processing. The start/end row and strip
* information is calculated then the lock is acquired. This function will
* return 0 if region lock was acquired OR return num strips.
*/
u_int8_t
MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid;
u_int32_t ld, stripSize, stripe_mask;
u_int64_t endLba, endStrip, endRow, start_row, start_strip;
REGION_KEY regStart;
REGION_LEN regSize;
u_int8_t num_strips, numRows;
u_int16_t ref_in_start_stripe, ref_in_end_stripe;
u_int64_t ldStartBlock;
u_int32_t numBlocks, ldTgtId;
u_int8_t isRead, stripIdx;
u_int8_t retval = 0;
u_int8_t startlba_span = SPAN_INVALID;
u_int64_t *pdBlock = &io_info->pdBlock;
int error_code = 0;
ldStartBlock = io_info->ldStartBlock;
numBlocks = io_info->numBlocks;
ldTgtId = io_info->ldTgtId;
isRead = io_info->isRead;
io_info->IoforUnevenSpan = 0;
io_info->start_span = SPAN_INVALID;
ld = MR_TargetIdToLdGet(ldTgtId, map);
raid = MR_LdRaidGet(ld, map);
/* check read ahead bit */
io_info->raCapable = raid->capability.raCapable;
if (raid->rowDataSize == 0) {
if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
return FALSE;
else if (sc->UnevenSpanSupport) {
io_info->IoforUnevenSpan = 1;
} else {
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
" but there is _NO_ UnevenSpanSupport\n",
MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
return FALSE;
}
}
stripSize = 1 << raid->stripeShift;
stripe_mask = stripSize - 1;
/*
* calculate starting row and stripe, and number of strips and rows
*/
start_strip = ldStartBlock >> raid->stripeShift;
ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
endLba = ldStartBlock + numBlocks - 1;
ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
endStrip = endLba >> raid->stripeShift;
num_strips = (u_int8_t)(endStrip - start_strip + 1); /* End strip */
if (io_info->IoforUnevenSpan) {
start_row = get_row_from_strip(sc, ld, start_strip, map);
endRow = get_row_from_strip(sc, ld, endStrip, map);
if (raid->spanDepth == 1) {
startlba_span = 0;
*pdBlock = start_row << raid->stripeShift;
} else {
startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
pdBlock, map, &error_code);
if (error_code == 1) {
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
__func__, __LINE__);
return FALSE;
}
}
if (startlba_span == SPAN_INVALID) {
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
"start strip %llx endSrip %llx\n", __func__,
__LINE__, (unsigned long long)start_row,
(unsigned long long)start_strip,
(unsigned long long)endStrip);
return FALSE;
}
io_info->start_span = startlba_span;
io_info->start_row = start_row;
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
" start strip 0x%llx endSrip 0x%llx span 0x%x\n",
__func__, __LINE__, (unsigned long long)start_row,
(unsigned long long)start_strip,
(unsigned long long)endStrip, startlba_span);
mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
(unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
} else {
start_row = mega_div64_32(start_strip, raid->rowDataSize);
endRow = mega_div64_32(endStrip, raid->rowDataSize);
}
numRows = (u_int8_t)(endRow - start_row + 1); /* get the row count */
/*
* Calculate region info. (Assume region at start of first row, and
* assume this IO needs the full row - will adjust if not true.)
*/
regStart = start_row << raid->stripeShift;
regSize = stripSize;
/* Check if we can send this I/O via FastPath */
if (raid->capability.fpCapable) {
if (isRead)
io_info->fpOkForIo = (raid->capability.fpReadCapable &&
((num_strips == 1) ||
raid->capability.fpReadAcrossStripe));
else
io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
((num_strips == 1) ||
raid->capability.fpWriteAcrossStripe));
} else
io_info->fpOkForIo = FALSE;
if (numRows == 1) {
if (num_strips == 1) {
regStart += ref_in_start_stripe;
regSize = numBlocks;
}
} else if (io_info->IoforUnevenSpan == 0) {
/*
* For Even span region lock optimization. If the start strip
* is the last in the start row
*/
if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
regStart += ref_in_start_stripe;
/*
* initialize count to sectors from startRef to end
* of strip
*/
regSize = stripSize - ref_in_start_stripe;
}
/* add complete rows in the middle of the transfer */
if (numRows > 2)
regSize += (numRows - 2) << raid->stripeShift;
/* if IO ends within first strip of last row */
if (endStrip == endRow * raid->rowDataSize)
regSize += ref_in_end_stripe + 1;
else
regSize += stripSize;
} else {
if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
regStart += ref_in_start_stripe;
/*
* initialize count to sectors from startRef to end
* of strip
*/
regSize = stripSize - ref_in_start_stripe;
}
/* add complete rows in the middle of the transfer */
if (numRows > 2)
regSize += (numRows - 2) << raid->stripeShift;
/* if IO ends within first strip of last row */
if (endStrip == get_strip_from_row(sc, ld, endRow, map))
regSize += ref_in_end_stripe + 1;
else
regSize += stripSize;
}
pRAID_Context->timeoutValue = htole16(map->raidMap.fpPdIoTimeoutSec);
if (sc->mrsas_gen3_ctrl)
pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
else if (sc->device_id == MRSAS_TBOLT)
pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
pRAID_Context->VirtualDiskTgtId = raid->targetId;
pRAID_Context->regLockRowLBA = htole64(regStart);
pRAID_Context->regLockLength = htole32(regSize);
pRAID_Context->configSeqNum = raid->seqNum;
/*
* Get Phy Params only if FP capable, or else leave it to MR firmware
* to do the calculation.
*/
if (io_info->fpOkForIo) {
retval = io_info->IoforUnevenSpan ?
mr_spanset_get_phy_params(sc, ld, start_strip,
ref_in_start_stripe, io_info, pRAID_Context, map) :
MR_GetPhyParams(sc, ld, start_strip,
ref_in_start_stripe, io_info, pRAID_Context, map);
/* If IO on an invalid Pd, then FP is not possible */
if (io_info->devHandle == MR_DEVHANDLE_INVALID)
io_info->fpOkForIo = FALSE;
/*
* if FP possible, set the SLUD bit in regLockFlags for
* ventura
*/
else if ((sc->is_ventura || sc->is_aero) && !isRead &&
(raid->writeMode == MR_RL_WRITE_BACK_MODE) && (raid->level <= 1) &&
raid->capability.fpCacheBypassCapable) {
((RAID_CONTEXT_G35 *) pRAID_Context)->routingFlags.bits.sld = 1;
}
return retval;
} else if (isRead) {
for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
retval = io_info->IoforUnevenSpan ?
mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
ref_in_start_stripe, io_info, pRAID_Context, map) :
MR_GetPhyParams(sc, ld, start_strip + stripIdx,
ref_in_start_stripe, io_info, pRAID_Context, map);
if (!retval)
return TRUE;
}
}
#if SPAN_DEBUG
/* Just for testing what arm we get for strip. */
get_arm_from_strip(sc, ld, start_strip, map);
#endif
return TRUE;
}
/*
*
* This routine pepare spanset info from Valid Raid map and store it into local
* copy of ldSpanInfo per instance data structure.
*
* Inputs : LD map
* ldSpanInfo per HBA instance
*
*/
void
mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
{
u_int8_t span, count;
u_int32_t element, span_row_width;
u_int64_t span_row;
MR_LD_RAID *raid;
LD_SPAN_SET *span_set, *span_set_prev;
MR_QUAD_ELEMENT *quad;
int ldCount;
u_int16_t ld;
for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
ld = MR_TargetIdToLdGet(ldCount, map);
if (ld >= MAX_LOGICAL_DRIVES)
continue;
raid = MR_LdRaidGet(ld, map);
for (element = 0; element < MAX_QUAD_DEPTH; element++) {
for (span = 0; span < raid->spanDepth; span++) {
if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
block_span_info.noElements) < element + 1)
continue;
/* TO-DO */
span_set = &(ldSpanInfo[ld].span_set[element]);
quad = &map->raidMap.ldSpanMap[ld].
spanBlock[span].block_span_info.quad[element];
span_set->diff = le32toh(quad->diff);
for (count = 0, span_row_width = 0;
count < raid->spanDepth; count++) {
if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[count].
block_span_info.noElements) >= element + 1) {
span_set->strip_offset[count] = span_row_width;
span_row_width +=
MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
#if SPAN_DEBUG
printf("AVAGO Debug span %x rowDataSize %x\n", count,
MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
#endif
}
}
span_set->span_row_data_width = span_row_width;
span_row = mega_div64_32(((le64toh(quad->logEnd) -
le64toh(quad->logStart)) + le32toh(quad->diff)),
le32toh(quad->diff));
if (element == 0) {
span_set->log_start_lba = 0;
span_set->log_end_lba =
((span_row << raid->stripeShift) * span_row_width) - 1;
span_set->span_row_start = 0;
span_set->span_row_end = span_row - 1;
span_set->data_strip_start = 0;
span_set->data_strip_end = (span_row * span_row_width) - 1;
span_set->data_row_start = 0;
span_set->data_row_end =
(span_row * le32toh(quad->diff)) - 1;
} else {
span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
span_set->log_start_lba = span_set_prev->log_end_lba + 1;
span_set->log_end_lba = span_set->log_start_lba +
((span_row << raid->stripeShift) * span_row_width) - 1;
span_set->span_row_start = span_set_prev->span_row_end + 1;
span_set->span_row_end =
span_set->span_row_start + span_row - 1;
span_set->data_strip_start =
span_set_prev->data_strip_end + 1;
span_set->data_strip_end = span_set->data_strip_start +
(span_row * span_row_width) - 1;
span_set->data_row_start = span_set_prev->data_row_end + 1;
span_set->data_row_end = span_set->data_row_start +
(span_row * le32toh(quad->diff)) - 1;
}
break;
}
if (span == raid->spanDepth)
break; /* no quads remain */
}
}
#if SPAN_DEBUG
getSpanInfo(map, ldSpanInfo); /* to get span set info */
#endif
}
/*
* mrsas_update_load_balance_params: Update load balance parmas
* Inputs:
* sc - driver softc instance
* drv_map - driver RAID map
* lbInfo - Load balance info
*
* This function updates the load balance parameters for the LD config of a two
* drive optimal RAID-1.
*/
void
mrsas_update_load_balance_params(struct mrsas_softc *sc,
MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
{
int ldCount;
u_int16_t ld;
MR_LD_RAID *raid;
if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
ld = MR_TargetIdToLdGet(ldCount, drv_map);
if (ld >= MAX_LOGICAL_DRIVES_EXT) {
lbInfo[ldCount].loadBalanceFlag = 0;
continue;
}
raid = MR_LdRaidGet(ld, drv_map);
le32_to_cpus(&raid->capability);
if ((raid->level != 1) ||
(raid->ldState != MR_LD_STATE_OPTIMAL)) {
lbInfo[ldCount].loadBalanceFlag = 0;
continue;
}
lbInfo[ldCount].loadBalanceFlag = 1;
}
}
/*
* mrsas_set_pd_lba: Sets PD LBA
* input: io_request pointer
* CDB length
* io_info pointer
* Pointer to CCB
* Local RAID map pointer
* Start block of IO Block Size
*
* Used to set the PD logical block address in CDB for FP IOs.
*/
void
mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
struct IO_REQUEST_INFO *io_info, union ccb *ccb,
MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
u_int32_t ld_block_size)
{
MR_LD_RAID *raid;
u_int32_t ld;
u_int64_t start_blk = io_info->pdBlock;
u_int8_t *cdb = io_request->CDB.CDB32;
u_int32_t num_blocks = io_info->numBlocks;
u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
/* Check if T10 PI (DIF) is enabled for this LD */
ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
raid = MR_LdRaidGet(ld, local_map_ptr);
if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
if (ccb_h->flags == CAM_DIR_OUT)
cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
else
cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
/* LBA */
cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
cdb[19] = (u_int8_t)(start_blk & 0xff);
/* Logical block reference tag */
io_request->CDB.EEDP32.PrimaryReferenceTag = htobe32(ref_tag);
io_request->CDB.EEDP32.PrimaryApplicationTagMask = htobe16(0xffff);
io_request->IoFlags = htole16(32); /* Specify 32-byte cdb */
/* Transfer length */
cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
cdb[31] = (u_int8_t)(num_blocks & 0xff);
/* set SCSI IO EEDP Flags */
if (ccb_h->flags == CAM_DIR_OUT) {
io_request->EEDPFlags = htole16(
MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
} else {
io_request->EEDPFlags = htole16(
MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_INSERT_OP);
}
io_request->Control |= htole32(0x4 << 26);
io_request->EEDPBlockSize = htole32(ld_block_size);
} else {
/* Some drives don't support 16/12 byte CDB's, convert to 10 */
if (((cdb_len == 12) || (cdb_len == 16)) &&
(start_blk <= 0xffffffff)) {
if (cdb_len == 16) {
opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
flagvals = cdb[1];
groupnum = cdb[14];
control = cdb[15];
} else {
opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
flagvals = cdb[1];
groupnum = cdb[10];
control = cdb[11];
}
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = opcode;
cdb[1] = flagvals;
cdb[6] = groupnum;
cdb[9] = control;
/* Transfer length */
cdb[8] = (u_int8_t)(num_blocks & 0xff);
cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
io_request->IoFlags = htole16(10); /* Specify 10-byte cdb */
cdb_len = 10;
} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
/* Convert to 16 byte CDB for large LBA's */
switch (cdb_len) {
case 6:
opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
control = cdb[5];
break;
case 10:
opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
flagvals = cdb[1];
groupnum = cdb[6];
control = cdb[9];
break;
case 12:
opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
flagvals = cdb[1];
groupnum = cdb[10];
control = cdb[11];
break;
}
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = opcode;
cdb[1] = flagvals;
cdb[14] = groupnum;
cdb[15] = control;
/* Transfer length */
cdb[13] = (u_int8_t)(num_blocks & 0xff);
cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
io_request->IoFlags = htole16(16); /* Specify 16-byte cdb */
cdb_len = 16;
} else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
/* convert to 10 byte CDB */
opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
control = cdb[5];
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = opcode;
cdb[9] = control;
/* Set transfer length */
cdb[8] = (u_int8_t)(num_blocks & 0xff);
cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
/* Specify 10-byte cdb */
cdb_len = 10;
}
/* Fall through normal case, just load LBA here */
u_int8_t val = cdb[1] & 0xE0;
switch (cdb_len) {
case 6:
cdb[3] = (u_int8_t)(start_blk & 0xff);
cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
break;
case 10:
cdb[5] = (u_int8_t)(start_blk & 0xff);
cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
break;
case 16:
cdb[9] = (u_int8_t)(start_blk & 0xff);
cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
break;
}
}
}
/*
* mrsas_get_best_arm_pd: Determine the best spindle arm
* Inputs:
* sc - HBA instance
* lbInfo - Load balance info
* io_info - IO request info
*
* This function determines and returns the best arm by looking at the
* parameters of the last PD access.
*/
u_int8_t
mrsas_get_best_arm_pd(struct mrsas_softc *sc,
PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
{
MR_LD_RAID *raid;
MR_DRV_RAID_MAP_ALL *drv_map;
u_int16_t pd1_devHandle;
u_int16_t pend0, pend1, ld;
u_int64_t diff0, diff1;
u_int8_t bestArm, pd0, pd1, span, arm;
u_int32_t arRef, span_row_size;
u_int64_t block = io_info->ldStartBlock;
u_int32_t count = io_info->numBlocks;
span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
>> RAID_CTX_SPANARM_SPAN_SHIFT);
arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
drv_map = sc->ld_drv_map[(sc->map_id & 1)];
ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
raid = MR_LdRaidGet(ld, drv_map);
span_row_size = sc->UnevenSpanSupport ?
SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
arRef = MR_LdSpanArrayGet(ld, span, drv_map);
pd0 = MR_ArPdGet(arRef, arm, drv_map);
pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
(arm + 1 - span_row_size) : arm + 1, drv_map);
/* Get PD1 Dev Handle */
pd1_devHandle = MR_PdDevHandleGet(pd1, drv_map);
if (pd1_devHandle == MR_DEVHANDLE_INVALID) {
bestArm = arm;
} else {
/* get the pending cmds for the data and mirror arms */
pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
/* Determine the disk whose head is nearer to the req. block */
diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
(bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
bestArm ^= 1;
/* Update the last accessed block on the correct pd */
io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
}
lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
#if SPAN_DEBUG
if (arm != bestArm)
printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
"io_info->span_arm 0x%x\n",
span, arm, bestArm, io_info->span_arm);
#endif
return io_info->pd_after_lb;
}
/*
* mrsas_get_updated_dev_handle: Get the update dev handle
* Inputs:
* sc - Adapter instance soft state
* lbInfo - Load balance info
* io_info - io_info pointer
*
* This function determines and returns the updated dev handle.
*/
u_int16_t
mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
{
u_int8_t arm_pd;
u_int16_t devHandle;
MR_DRV_RAID_MAP_ALL *drv_map;
drv_map = sc->ld_drv_map[(sc->map_id & 1)];
/* get best new arm */
arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
io_info->pdInterface = MR_PdInterfaceTypeGet(arm_pd, drv_map);
mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
return devHandle;
}
/*
* MR_GetPhyParams: Calculates arm, span, and block
* Inputs: Adapter soft state
* Logical drive number (LD)
* Stripe number(stripRow)
* Reference in stripe (stripRef)
*
* Outputs: Absolute Block number in the physical disk
*
* This routine calculates the arm, span and block for the specified stripe and
* reference in stripe.
*/
u_int8_t
MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
u_int64_t stripRow,
u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
{
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
u_int32_t pd, arRef, r1_alt_pd;
u_int8_t physArm, span;
u_int64_t row;
u_int8_t retval = TRUE;
int error_code = 0;
u_int64_t *pdBlock = &io_info->pdBlock;
u_int16_t *pDevHandle = &io_info->devHandle;
u_int8_t *pPdInterface = &io_info->pdInterface;
u_int32_t rowMod, armQ, arm, logArm;
row = mega_div64_32(stripRow, raid->rowDataSize);
if (raid->level == 6) {
/* logical arm within row */
logArm = mega_mod64(stripRow, raid->rowDataSize);
if (raid->rowSize == 0)
return FALSE;
rowMod = mega_mod64(row, raid->rowSize); /* get logical row mod */
armQ = raid->rowSize - 1 - rowMod; /* index of Q drive */
arm = armQ + 1 + logArm;/* data always logically follows Q */
if (arm >= raid->rowSize) /* handle wrap condition */
arm -= raid->rowSize;
physArm = (u_int8_t)arm;
} else {
if (raid->modFactor == 0)
return FALSE;
physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
}
if (raid->spanDepth == 1) {
span = 0;
*pdBlock = row << raid->stripeShift;
} else {
span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
if (error_code == 1)
return FALSE;
}
/* Get the array on which this span is present */
arRef = MR_LdSpanArrayGet(ld, span, map);
pd = MR_ArPdGet(arRef, physArm, map); /* Get the Pd. */
if (pd != MR_PD_INVALID) {
/* Get dev handle from Pd */
*pDevHandle = MR_PdDevHandleGet(pd, map);
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
/* get second pd also for raid 1/10 fast path writes */
if ((raid->level == 1) && !io_info->isRead) {
r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
if (r1_alt_pd != MR_PD_INVALID)
io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
}
} else {
*pDevHandle = htole16(MR_DEVHANDLE_INVALID); /* set dev handle as invalid. */
if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
(sc->mrsas_gen3_ctrl &&
raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
else if (raid->level == 1) {
/* Get Alternate Pd. */
pd = MR_ArPdGet(arRef, physArm + 1, map);
if (pd != MR_PD_INVALID) {
/* Get dev handle from Pd. */
*pDevHandle = MR_PdDevHandleGet(pd, map);
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
}
}
}
*pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
if (sc->is_ventura || sc->is_aero) {
((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
} else {
pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
io_info->span_arm = pRAID_Context->spanArm;
}
return retval;
}
/*
* MR_GetSpanBlock: Calculates span block
* Inputs: LD
* row PD
* span block
* RAID map pointer
*
* Outputs: Span number Error code
*
* This routine calculates the span from the span block info.
*/
u_int32_t
MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
MR_DRV_RAID_MAP_ALL * map, int *div_error)
{
MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
MR_QUAD_ELEMENT *quad;
MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
u_int32_t span, j;
u_int64_t blk, debugBlk;
for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
quad = &pSpanBlock->block_span_info.quad[j];
if (quad->diff == 0) {
*div_error = 1;
return span;
}
if (quad->logStart <= row && row <= quad->logEnd &&
(mega_mod64(row - quad->logStart, quad->diff)) == 0) {
if (span_blk != NULL) {
blk = mega_div64_32((row - quad->logStart), quad->diff);
debugBlk = blk;
blk = (blk + quad->offsetInSpan) << raid->stripeShift;
*span_blk = blk;
}
return span;
}
}
}
return span;
}