freebsd-skq/contrib/llvm/utils/TableGen/CodeGenTarget.cpp
dim 4ca88b0ec1 Upgrade our copy of llvm/clang to trunk r178860, in preparation of the
upcoming 3.3 release (branching and freezing expected in a few weeks).

Preliminary release notes can be found at the usual location:
<http://llvm.org/docs/ReleaseNotes.html>

An MFC is planned once the actual 3.3 release is finished.
2013-04-12 17:57:40 +00:00

562 lines
20 KiB
C++

//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class wraps target description classes used by the various code
// generation TableGen backends. This makes it easier to access the data and
// provides a single place that needs to check it for validity. All of these
// classes abort on error conditions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include "CodeGenSchedule.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
using namespace llvm;
static cl::opt<unsigned>
AsmParserNum("asmparsernum", cl::init(0),
cl::desc("Make -gen-asm-parser emit assembly parser #N"));
static cl::opt<unsigned>
AsmWriterNum("asmwriternum", cl::init(0),
cl::desc("Make -gen-asm-writer emit assembly writer #N"));
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
}
std::string llvm::getName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "UNKNOWN";
case MVT::iPTR: return "TLI.getPointerTy()";
case MVT::iPTRAny: return "TLI.getPointerTy()";
default: return getEnumName(T);
}
}
std::string llvm::getEnumName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "MVT::Other";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::vAny: return "MVT::vAny";
case MVT::f16: return "MVT::f16";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::x86mmx: return "MVT::x86mmx";
case MVT::Glue: return "MVT::Glue";
case MVT::isVoid: return "MVT::isVoid";
case MVT::v2i1: return "MVT::v2i1";
case MVT::v4i1: return "MVT::v4i1";
case MVT::v8i1: return "MVT::v8i1";
case MVT::v16i1: return "MVT::v16i1";
case MVT::v32i1: return "MVT::v32i1";
case MVT::v64i1: return "MVT::v64i1";
case MVT::v2i8: return "MVT::v2i8";
case MVT::v4i8: return "MVT::v4i8";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v32i8: return "MVT::v32i8";
case MVT::v64i8: return "MVT::v64i8";
case MVT::v1i16: return "MVT::v1i16";
case MVT::v2i16: return "MVT::v2i16";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v16i16: return "MVT::v16i16";
case MVT::v32i16: return "MVT::v32i16";
case MVT::v1i32: return "MVT::v1i32";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v8i32: return "MVT::v8i32";
case MVT::v16i32: return "MVT::v16i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v4i64: return "MVT::v4i64";
case MVT::v8i64: return "MVT::v8i64";
case MVT::v16i64: return "MVT::v16i64";
case MVT::v2f16: return "MVT::v2f16";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v8f32: return "MVT::v8f32";
case MVT::v16f32: return "MVT::v16f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v4f64: return "MVT::v4f64";
case MVT::v8f64: return "MVT::v8f64";
case MVT::Metadata: return "MVT::Metadata";
case MVT::iPTR: return "MVT::iPTR";
case MVT::iPTRAny: return "MVT::iPTRAny";
case MVT::Untyped: return "MVT::Untyped";
default: llvm_unreachable("ILLEGAL VALUE TYPE!");
}
}
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
///
std::string llvm::getQualifiedName(const Record *R) {
std::string Namespace;
if (R->getValue("Namespace"))
Namespace = R->getValueAsString("Namespace");
if (Namespace.empty()) return R->getName();
return Namespace + "::" + R->getName();
}
/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget(RecordKeeper &records)
: Records(records), RegBank(0), SchedModels(0) {
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
if (Targets.size() == 0)
PrintFatalError("ERROR: No 'Target' subclasses defined!");
if (Targets.size() != 1)
PrintFatalError("ERROR: Multiple subclasses of Target defined!");
TargetRec = Targets[0];
}
CodeGenTarget::~CodeGenTarget() {
delete RegBank;
delete SchedModels;
}
const std::string &CodeGenTarget::getName() const {
return TargetRec->getName();
}
std::string CodeGenTarget::getInstNamespace() const {
for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
// Make sure not to pick up "TargetOpcode" by accidentally getting
// the namespace off the PHI instruction or something.
if ((*i)->Namespace != "TargetOpcode")
return (*i)->Namespace;
}
return "";
}
Record *CodeGenTarget::getInstructionSet() const {
return TargetRec->getValueAsDef("InstructionSet");
}
/// getAsmParser - Return the AssemblyParser definition for this target.
///
Record *CodeGenTarget::getAsmParser() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
if (AsmParserNum >= LI.size())
PrintFatalError("Target does not have an AsmParser #" + utostr(AsmParserNum) + "!");
return LI[AsmParserNum];
}
/// getAsmParserVariant - Return the AssmblyParserVariant definition for
/// this target.
///
Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
std::vector<Record*> LI =
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
if (i >= LI.size())
PrintFatalError("Target does not have an AsmParserVariant #" + utostr(i) + "!");
return LI[i];
}
/// getAsmParserVariantCount - Return the AssmblyParserVariant definition
/// available for this target.
///
unsigned CodeGenTarget::getAsmParserVariantCount() const {
std::vector<Record*> LI =
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
return LI.size();
}
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
if (AsmWriterNum >= LI.size())
PrintFatalError("Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!");
return LI[AsmWriterNum];
}
CodeGenRegBank &CodeGenTarget::getRegBank() const {
if (!RegBank)
RegBank = new CodeGenRegBank(Records);
return *RegBank;
}
void CodeGenTarget::ReadRegAltNameIndices() const {
RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
}
/// getRegisterByName - If there is a register with the specific AsmName,
/// return it.
const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
if (I == Regs.end())
return 0;
return I->second;
}
std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record *R) const {
const CodeGenRegister *Reg = getRegBank().getReg(R);
std::vector<MVT::SimpleValueType> Result;
ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = *RCs[i];
if (RC.contains(Reg)) {
ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
Result.insert(Result.end(), InVTs.begin(), InVTs.end());
}
}
// Remove duplicates.
array_pod_sort(Result.begin(), Result.end());
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
return Result;
}
void CodeGenTarget::ReadLegalValueTypes() const {
ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
LegalValueTypes.push_back(RCs[i]->VTs[ri]);
// Remove duplicates.
std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
LegalValueTypes.end()),
LegalValueTypes.end());
}
CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
if (!SchedModels)
SchedModels = new CodeGenSchedModels(Records, *this);
return *SchedModels;
}
void CodeGenTarget::ReadInstructions() const {
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
if (Insts.size() <= 2)
PrintFatalError("No 'Instruction' subclasses defined!");
// Parse the instructions defined in the .td file.
for (unsigned i = 0, e = Insts.size(); i != e; ++i)
Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
}
static const CodeGenInstruction *
GetInstByName(const char *Name,
const DenseMap<const Record*, CodeGenInstruction*> &Insts,
RecordKeeper &Records) {
const Record *Rec = Records.getDef(Name);
DenseMap<const Record*, CodeGenInstruction*>::const_iterator
I = Insts.find(Rec);
if (Rec == 0 || I == Insts.end())
PrintFatalError(std::string("Could not find '") + Name + "' instruction!");
return I->second;
}
namespace {
/// SortInstByName - Sorting predicate to sort instructions by name.
///
struct SortInstByName {
bool operator()(const CodeGenInstruction *Rec1,
const CodeGenInstruction *Rec2) const {
return Rec1->TheDef->getName() < Rec2->TheDef->getName();
}
};
}
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
void CodeGenTarget::ComputeInstrsByEnum() const {
// The ordering here must match the ordering in TargetOpcodes.h.
const char *const FixedInstrs[] = {
"PHI",
"INLINEASM",
"PROLOG_LABEL",
"EH_LABEL",
"GC_LABEL",
"KILL",
"EXTRACT_SUBREG",
"INSERT_SUBREG",
"IMPLICIT_DEF",
"SUBREG_TO_REG",
"COPY_TO_REGCLASS",
"DBG_VALUE",
"REG_SEQUENCE",
"COPY",
"BUNDLE",
"LIFETIME_START",
"LIFETIME_END",
0
};
const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
for (const char *const *p = FixedInstrs; *p; ++p) {
const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
assert(Instr && "Missing target independent instruction");
assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
InstrsByEnum.push_back(Instr);
}
unsigned EndOfPredefines = InstrsByEnum.size();
for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
I = Insts.begin(), E = Insts.end(); I != E; ++I) {
const CodeGenInstruction *CGI = I->second;
if (CGI->Namespace != "TargetOpcode")
InstrsByEnum.push_back(CGI);
}
assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
// All of the instructions are now in random order based on the map iteration.
// Sort them by name.
std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
SortInstByName());
}
/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}
/// guessInstructionProperties - Return true if it's OK to guess instruction
/// properties instead of raising an error.
///
/// This is configurable as a temporary migration aid. It will eventually be
/// permanently false.
bool CodeGenTarget::guessInstructionProperties() const {
return getInstructionSet()->getValueAsBit("guessInstructionProperties");
}
//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
Ty = ::getValueType(R->getValueAsDef("Ty"));
NumOperands = R->getValueAsInt("NumOperands");
SelectFunc = R->getValueAsString("SelectFunc");
RootNodes = R->getValueAsListOfDefs("RootNodes");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOptInGlue") {
Properties |= 1 << SDNPOptInGlue;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (PropList[i]->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else if (PropList[i]->getName() == "SDNPWantRoot") {
Properties |= 1 << SDNPWantRoot;
} else if (PropList[i]->getName() == "SDNPWantParent") {
Properties |= 1 << SDNPWantParent;
} else {
errs() << "Unsupported SD Node property '" << PropList[i]->getName()
<< "' on ComplexPattern '" << R->getName() << "'!\n";
exit(1);
}
}
//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//
std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
bool TargetOnly) {
std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
std::vector<CodeGenIntrinsic> Result;
for (unsigned i = 0, e = I.size(); i != e; ++i) {
bool isTarget = I[i]->getValueAsBit("isTarget");
if (isTarget == TargetOnly)
Result.push_back(CodeGenIntrinsic(I[i]));
}
return Result;
}
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
TheDef = R;
std::string DefName = R->getName();
ModRef = ReadWriteMem;
isOverloaded = false;
isCommutative = false;
canThrow = false;
isNoReturn = false;
if (DefName.size() <= 4 ||
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
EnumName = std::string(DefName.begin()+4, DefName.end());
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
TargetPrefix = R->getValueAsString("TargetPrefix");
Name = R->getValueAsString("LLVMName");
if (Name == "") {
// If an explicit name isn't specified, derive one from the DefName.
Name = "llvm.";
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
} else {
// Verify it starts with "llvm.".
if (Name.size() <= 5 ||
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
}
// If TargetPrefix is specified, make sure that Name starts with
// "llvm.<targetprefix>.".
if (!TargetPrefix.empty()) {
if (Name.size() < 6+TargetPrefix.size() ||
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
!= (TargetPrefix + "."))
PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
TargetPrefix + ".'!");
}
// Parse the list of return types.
std::vector<MVT::SimpleValueType> OverloadedVTs;
ListInit *TypeList = R->getValueAsListInit("RetTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else {
VT = getValueType(TyEl->getValueAsDef("VT"));
}
if (EVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
// Reject invalid types.
if (VT == MVT::isVoid)
PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
IS.RetVTs.push_back(VT);
IS.RetTypeDefs.push_back(TyEl);
}
// Parse the list of parameter types.
TypeList = R->getValueAsListInit("ParamTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else
VT = getValueType(TyEl->getValueAsDef("VT"));
if (EVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
// Reject invalid types.
if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
IS.ParamVTs.push_back(VT);
IS.ParamTypeDefs.push_back(TyEl);
}
// Parse the intrinsic properties.
ListInit *PropList = R->getValueAsListInit("Properties");
for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
Record *Property = PropList->getElementAsRecord(i);
assert(Property->isSubClassOf("IntrinsicProperty") &&
"Expected a property!");
if (Property->getName() == "IntrNoMem")
ModRef = NoMem;
else if (Property->getName() == "IntrReadArgMem")
ModRef = ReadArgMem;
else if (Property->getName() == "IntrReadMem")
ModRef = ReadMem;
else if (Property->getName() == "IntrReadWriteArgMem")
ModRef = ReadWriteArgMem;
else if (Property->getName() == "Commutative")
isCommutative = true;
else if (Property->getName() == "Throws")
canThrow = true;
else if (Property->getName() == "IntrNoReturn")
isNoReturn = true;
else if (Property->isSubClassOf("NoCapture")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
} else
llvm_unreachable("Unknown property!");
}
// Sort the argument attributes for later benefit.
std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
}