freebsd-skq/sys/dev/cfi/cfi_core.c
2009-06-10 17:41:24 +00:00

588 lines
14 KiB
C

/*-
* Copyright (c) 2007, Juniper Networks, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cfi.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <dev/cfi/cfi_reg.h>
#include <dev/cfi/cfi_var.h>
extern struct cdevsw cfi_cdevsw;
char cfi_driver_name[] = "cfi";
devclass_t cfi_devclass;
devclass_t cfi_diskclass;
uint32_t
cfi_read(struct cfi_softc *sc, u_int ofs)
{
uint32_t val;
ofs &= ~(sc->sc_width - 1);
switch (sc->sc_width) {
case 1:
val = bus_space_read_1(sc->sc_tag, sc->sc_handle, ofs);
break;
case 2:
val = bus_space_read_2(sc->sc_tag, sc->sc_handle, ofs);
break;
case 4:
val = bus_space_read_4(sc->sc_tag, sc->sc_handle, ofs);
break;
default:
val = ~0;
break;
}
return (val);
}
static void
cfi_write(struct cfi_softc *sc, u_int ofs, u_int val)
{
ofs &= ~(sc->sc_width - 1);
switch (sc->sc_width) {
case 1:
bus_space_write_1(sc->sc_tag, sc->sc_handle, ofs, val);
break;
case 2:
bus_space_write_2(sc->sc_tag, sc->sc_handle, ofs, val);
break;
case 4:
bus_space_write_4(sc->sc_tag, sc->sc_handle, ofs, val);
break;
}
}
uint8_t
cfi_read_qry(struct cfi_softc *sc, u_int ofs)
{
uint8_t val;
cfi_write(sc, CFI_QRY_CMD_ADDR * sc->sc_width, CFI_QRY_CMD_DATA);
val = cfi_read(sc, ofs * sc->sc_width);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return (val);
}
static void
cfi_amd_write(struct cfi_softc *sc, u_int ofs, u_int addr, u_int data)
{
cfi_write(sc, ofs + AMD_ADDR_START, CFI_AMD_UNLOCK);
cfi_write(sc, ofs + AMD_ADDR_ACK, CFI_AMD_UNLOCK_ACK);
cfi_write(sc, ofs + addr, data);
}
static char *
cfi_fmtsize(uint32_t sz)
{
static char buf[8];
static const char *sfx[] = { "", "K", "M", "G" };
int sfxidx;
sfxidx = 0;
while (sfxidx < 3 && sz > 1023) {
sz /= 1024;
sfxidx++;
}
sprintf(buf, "%u%sB", sz, sfx[sfxidx]);
return (buf);
}
int
cfi_probe(device_t dev)
{
char desc[80];
struct cfi_softc *sc;
char *vend_str;
int error;
uint16_t iface, vend;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_rid = 0;
sc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
RF_ACTIVE);
if (sc->sc_res == NULL)
return (ENXIO);
sc->sc_tag = rman_get_bustag(sc->sc_res);
sc->sc_handle = rman_get_bushandle(sc->sc_res);
if (sc->sc_width == 0) {
sc->sc_width = 1;
while (sc->sc_width <= 4) {
if (cfi_read_qry(sc, CFI_QRY_IDENT) == 'Q')
break;
sc->sc_width <<= 1;
}
} else if (cfi_read_qry(sc, CFI_QRY_IDENT) != 'Q') {
error = ENXIO;
goto out;
}
if (sc->sc_width > 4) {
error = ENXIO;
goto out;
}
/* We got a Q. Check if we also have the R and the Y. */
if (cfi_read_qry(sc, CFI_QRY_IDENT + 1) != 'R' ||
cfi_read_qry(sc, CFI_QRY_IDENT + 2) != 'Y') {
error = ENXIO;
goto out;
}
/* Get the vendor and command set. */
vend = cfi_read_qry(sc, CFI_QRY_VEND) |
(cfi_read_qry(sc, CFI_QRY_VEND + 1) << 8);
sc->sc_cmdset = vend;
switch (vend) {
case CFI_VEND_AMD_ECS:
case CFI_VEND_AMD_SCS:
vend_str = "AMD/Fujitsu";
break;
case CFI_VEND_INTEL_ECS:
vend_str = "Intel/Sharp";
break;
case CFI_VEND_INTEL_SCS:
vend_str = "Intel";
break;
case CFI_VEND_MITSUBISHI_ECS:
case CFI_VEND_MITSUBISHI_SCS:
vend_str = "Mitsubishi";
break;
default:
vend_str = "Unknown vendor";
break;
}
/* Get the device size. */
sc->sc_size = 1U << cfi_read_qry(sc, CFI_QRY_SIZE);
/* Sanity-check the I/F */
iface = cfi_read_qry(sc, CFI_QRY_IFACE) |
(cfi_read_qry(sc, CFI_QRY_IFACE + 1) << 8);
/*
* Adding 1 to iface will give us a bit-wise "switch"
* that allows us to test for the interface width by
* testing a single bit.
*/
iface++;
error = (iface & sc->sc_width) ? 0 : EINVAL;
if (error)
goto out;
snprintf(desc, sizeof(desc), "%s - %s", vend_str,
cfi_fmtsize(sc->sc_size));
device_set_desc_copy(dev, desc);
out:
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_res);
return (error);
}
int
cfi_attach(device_t dev)
{
struct cfi_softc *sc;
u_int blksz, blocks;
u_int r, u;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_rid = 0;
sc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
RF_ACTIVE);
if (sc->sc_res == NULL)
return (ENXIO);
sc->sc_tag = rman_get_bustag(sc->sc_res);
sc->sc_handle = rman_get_bushandle(sc->sc_res);
/* Get time-out values for erase and write. */
sc->sc_write_timeout = 1 << cfi_read_qry(sc, CFI_QRY_TTO_WRITE);
sc->sc_erase_timeout = 1 << cfi_read_qry(sc, CFI_QRY_TTO_ERASE);
sc->sc_write_timeout *= 1 << cfi_read_qry(sc, CFI_QRY_MTO_WRITE);
sc->sc_erase_timeout *= 1 << cfi_read_qry(sc, CFI_QRY_MTO_ERASE);
/* Get erase regions. */
sc->sc_regions = cfi_read_qry(sc, CFI_QRY_NREGIONS);
sc->sc_region = malloc(sc->sc_regions * sizeof(struct cfi_region),
M_TEMP, M_WAITOK | M_ZERO);
for (r = 0; r < sc->sc_regions; r++) {
blocks = cfi_read_qry(sc, CFI_QRY_REGION(r)) |
(cfi_read_qry(sc, CFI_QRY_REGION(r) + 1) << 8);
sc->sc_region[r].r_blocks = blocks + 1;
blksz = cfi_read_qry(sc, CFI_QRY_REGION(r) + 2) |
(cfi_read_qry(sc, CFI_QRY_REGION(r) + 3) << 8);
sc->sc_region[r].r_blksz = (blksz == 0) ? 128 :
blksz * 256;
}
/* Reset the device to a default state. */
cfi_write(sc, 0, CFI_BCS_CLEAR_STATUS);
if (bootverbose) {
device_printf(dev, "[");
for (r = 0; r < sc->sc_regions; r++) {
printf("%ux%s%s", sc->sc_region[r].r_blocks,
cfi_fmtsize(sc->sc_region[r].r_blksz),
(r == sc->sc_regions - 1) ? "]\n" : ",");
}
}
u = device_get_unit(dev);
sc->sc_nod = make_dev(&cfi_cdevsw, u, UID_ROOT, GID_WHEEL, 0600,
"%s%u", cfi_driver_name, u);
sc->sc_nod->si_drv1 = sc;
device_add_child(dev, "cfid", -1);
bus_generic_attach(dev);
return (0);
}
int
cfi_detach(device_t dev)
{
struct cfi_softc *sc;
sc = device_get_softc(dev);
destroy_dev(sc->sc_nod);
free(sc->sc_region, M_TEMP);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_res);
return (0);
}
static int
cfi_wait_ready(struct cfi_softc *sc, u_int ofs, u_int timeout)
{
int done, error;
uint32_t st0 = 0, st = 0;
done = 0;
error = 0;
timeout *= 10;
while (!done && !error && timeout) {
DELAY(100);
timeout--;
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
st = cfi_read(sc, ofs);
done = (st & CFI_INTEL_STATUS_WSMS);
if (done) {
/* NB: bit 0 is reserved */
st &= ~(CFI_INTEL_XSTATUS_RSVD |
CFI_INTEL_STATUS_WSMS |
CFI_INTEL_STATUS_RSVD);
if (st & CFI_INTEL_STATUS_DPS)
error = EPERM;
else if (st & CFI_INTEL_STATUS_PSLBS)
error = EIO;
else if (st & CFI_INTEL_STATUS_ECLBS)
error = ENXIO;
else if (st)
error = EACCES;
}
break;
case CFI_VEND_AMD_SCS:
case CFI_VEND_AMD_ECS:
st0 = cfi_read(sc, ofs);
st = cfi_read(sc, ofs);
done = ((st & 0x40) == (st0 & 0x40)) ? 1 : 0;
break;
}
}
if (!done && !error)
error = ETIMEDOUT;
if (error)
printf("\nerror=%d (st 0x%x st0 0x%x)\n", error, st, st0);
return (error);
}
int
cfi_write_block(struct cfi_softc *sc)
{
union {
uint8_t *x8;
uint16_t *x16;
uint32_t *x32;
} ptr;
register_t intr;
int error, i;
/* Erase the block. */
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
cfi_write(sc, sc->sc_wrofs, CFI_BCS_BLOCK_ERASE);
cfi_write(sc, sc->sc_wrofs, CFI_BCS_CONFIRM);
break;
case CFI_VEND_AMD_SCS:
case CFI_VEND_AMD_ECS:
cfi_amd_write(sc, sc->sc_wrofs, AMD_ADDR_START,
CFI_AMD_ERASE_SECTOR);
cfi_amd_write(sc, sc->sc_wrofs, 0, CFI_AMD_BLOCK_ERASE);
break;
default:
/* Better safe than sorry... */
return (ENODEV);
}
error = cfi_wait_ready(sc, sc->sc_wrofs, sc->sc_erase_timeout);
if (error)
goto out;
/* Write the block. */
ptr.x8 = sc->sc_wrbuf;
for (i = 0; i < sc->sc_wrbufsz; i += sc->sc_width) {
/*
* Make sure the command to start a write and the
* actual write happens back-to-back without any
* excessive delays.
*/
intr = intr_disable();
switch (sc->sc_cmdset) {
case CFI_VEND_INTEL_ECS:
case CFI_VEND_INTEL_SCS:
cfi_write(sc, sc->sc_wrofs + i, CFI_BCS_PROGRAM);
break;
case CFI_VEND_AMD_SCS:
case CFI_VEND_AMD_ECS:
cfi_amd_write(sc, 0, AMD_ADDR_START, CFI_AMD_PROGRAM);
break;
}
switch (sc->sc_width) {
case 1:
bus_space_write_1(sc->sc_tag, sc->sc_handle,
sc->sc_wrofs + i, *(ptr.x8)++);
break;
case 2:
bus_space_write_2(sc->sc_tag, sc->sc_handle,
sc->sc_wrofs + i, *(ptr.x16)++);
break;
case 4:
bus_space_write_4(sc->sc_tag, sc->sc_handle,
sc->sc_wrofs + i, *(ptr.x32)++);
break;
}
intr_restore(intr);
error = cfi_wait_ready(sc, sc->sc_wrofs, sc->sc_write_timeout);
if (error)
goto out;
}
/* error is 0. */
out:
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return (error);
}
#ifdef CFI_SUPPORT_STRATAFLASH
/*
* Intel StrataFlash Protection Register Support.
*
* The memory includes a 128-bit Protection Register that can be
* used for security. There are two 64-bit segments; one is programmed
* at the factory with a unique 64-bit number which is immutable.
* The other segment is left blank for User (OEM) programming.
* The User/OEM segment is One Time Programmable (OTP). It can also
* be locked to prevent any further writes by setting bit 0 of the
* Protection Lock Register (PLR). The PLR can written only once.
*/
static uint16_t
cfi_get16(struct cfi_softc *sc, int off)
{
uint16_t v = bus_space_read_2(sc->sc_tag, sc->sc_handle, off<<1);
return v;
}
#ifdef CFI_ARMEDANDDANGEROUS
static void
cfi_put16(struct cfi_softc *sc, int off, uint16_t v)
{
bus_space_write_2(sc->sc_tag, sc->sc_handle, off<<1, v);
}
#endif
/*
* Read the factory-defined 64-bit segment of the PR.
*/
int
cfi_intel_get_factory_pr(struct cfi_softc *sc, uint64_t *id)
{
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
cfi_write(sc, 0, CFI_INTEL_READ_ID);
*id = ((uint64_t)cfi_get16(sc, CFI_INTEL_PR(0)))<<48 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(1)))<<32 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(2)))<<16 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(3)));
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return 0;
}
/*
* Read the User/OEM 64-bit segment of the PR.
*/
int
cfi_intel_get_oem_pr(struct cfi_softc *sc, uint64_t *id)
{
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
cfi_write(sc, 0, CFI_INTEL_READ_ID);
*id = ((uint64_t)cfi_get16(sc, CFI_INTEL_PR(4)))<<48 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(5)))<<32 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(6)))<<16 |
((uint64_t)cfi_get16(sc, CFI_INTEL_PR(7)));
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return 0;
}
/*
* Write the User/OEM 64-bit segment of the PR.
* XXX should allow writing individual words/bytes
*/
int
cfi_intel_set_oem_pr(struct cfi_softc *sc, uint64_t id)
{
#ifdef CFI_ARMEDANDDANGEROUS
register_t intr;
int i, error;
#endif
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
#ifdef CFI_ARMEDANDDANGEROUS
for (i = 7; i >= 4; i--, id >>= 16) {
intr = intr_disable();
cfi_write(sc, 0, CFI_INTEL_PP_SETUP);
cfi_put16(sc, CFI_INTEL_PR(i), id&0xffff);
intr_restore(intr);
error = cfi_wait_ready(sc, CFI_BCS_READ_STATUS,
sc->sc_write_timeout);
if (error)
break;
}
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return error;
#else
device_printf(sc->sc_dev, "%s: OEM PR not set, "
"CFI_ARMEDANDDANGEROUS not configured\n", __func__);
return ENXIO;
#endif
}
/*
* Read the contents of the Protection Lock Register.
*/
int
cfi_intel_get_plr(struct cfi_softc *sc, uint32_t *plr)
{
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
cfi_write(sc, 0, CFI_INTEL_READ_ID);
*plr = cfi_get16(sc, CFI_INTEL_PLR);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return 0;
}
/*
* Write the Protection Lock Register to lock down the
* user-settable segment of the Protection Register.
* NOTE: this operation is not reversible.
*/
int
cfi_intel_set_plr(struct cfi_softc *sc)
{
#ifdef CFI_ARMEDANDDANGEROUS
register_t intr;
int error;
#endif
if (sc->sc_cmdset != CFI_VEND_INTEL_ECS)
return EOPNOTSUPP;
KASSERT(sc->sc_width == 2, ("sc_width %d", sc->sc_width));
#ifdef CFI_ARMEDANDDANGEROUS
/* worthy of console msg */
device_printf(sc->sc_dev, "set PLR\n");
intr = intr_disable();
cfi_write(sc, 0, CFI_INTEL_PP_SETUP);
cfi_put16(sc, CFI_INTEL_PLR, 0xFFFD);
intr_restore(intr);
error = cfi_wait_ready(sc, CFI_BCS_READ_STATUS, sc->sc_write_timeout);
cfi_write(sc, 0, CFI_BCS_READ_ARRAY);
return error;
#else
device_printf(sc->sc_dev, "%s: PLR not set, "
"CFI_ARMEDANDDANGEROUS not configured\n", __func__);
return ENXIO;
#endif
}
#endif /* CFI_SUPPORT_STRATAFLASH */