freebsd-skq/sys/pc98/conf/NOTES
Ruslan Ermilov 824018495d Implemented "nooption" and "nomakeoption" config(8) tokens.
Fixed memory leak in the "nodevice" option implementation.

Use these instead of sed(1) in MD NOTES.

Use a single makefile (sys/conf/makeLINT.mk) to generate
LINT for all architectures.  (Previous versions missed
the LINT dependency on Makefile, and i386 version also
missed the dependency on ${NOTES}.)

Fixed bugs in the previous NOTES conversion using the
"nodevice" token and sed(1):

- i386 LINT lost "device pst".

- pc98 LINT lost SC_*, MAXCONS and KBD_DISABLE_KEYMAP_LOAD
  options, and got needless DPT_* options.

- Added nooptions PPC_DEBUG, PPC_PROBE_CHIPSET, KBD_INSTALL_CDEV
  to sparc64 LINT so that it has a chance to config(8).

This basically returns us to where we were before.
2003-02-26 23:36:59 +00:00

1004 lines
30 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# NOTES -- Lines that can be cut/pasted into kernel and hints configs.
#
# This file contains machine dependent kernel configuration notes. For
# machine independent notes, look in /sys/conf/NOTES.
#
# $FreeBSD$
#
#
# This directive is mandatory; it defines the architecture to be
# configured for; in this case, the 386 family based PC-98 and
# compatibles.
#
machine pc98
options PC98
#
# We want LINT to cover profiling as well
profile 2
#####################################################################
# SMP OPTIONS:
#
# APIC_IO enables the use of the IO APIC for Symmetric I/O.
#
# Notes:
#
# An SMP kernel will ONLY run on an Intel MP spec. qualified motherboard.
#
# Be sure to disable 'cpu I386_CPU' && 'cpu I486_CPU' for SMP kernels.
#
# Check the 'Rogue SMP hardware' section to see if additional options
# are required by your hardware.
#
# Mandatory:
options APIC_IO # Symmetric (APIC) I/O
#
# Rogue SMP hardware:
#
# Bridged PCI cards:
#
# The MP tables of most of the current generation MP motherboards
# do NOT properly support bridged PCI cards. To use one of these
# cards you should refer to ???
#####################################################################
# CPU OPTIONS
#
# You must specify at least one CPU (the one you intend to run on);
# deleting the specification for CPUs you don't need to use may make
# parts of the system run faster.
# I386_CPU is mutually exclusive with the other CPU types.
#
#cpu I386_CPU
cpu I486_CPU
cpu I586_CPU # aka Pentium(tm)
cpu I686_CPU # aka Pentium Pro(tm)
#
# Options for CPU features.
#
# CPU_ATHLON_SSE_HACK tries to enable SSE instructions when the BIOS has
# forgotten to enable them.
#
# CPU_BLUELIGHTNING_FPU_OP_CACHE enables FPU operand cache on IBM
# BlueLightning CPU. It works only with Cyrix FPU, and this option
# should not be used with Intel FPU.
#
# CPU_BLUELIGHTNING_3X enables triple-clock mode on IBM Blue Lightning
# CPU if CPU supports it. The default is double-clock mode on
# BlueLightning CPU box.
#
# CPU_BTB_EN enables branch target buffer on Cyrix 5x86 (NOTE 1).
#
# CPU_DIRECT_MAPPED_CACHE sets L1 cache of Cyrix 486DLC CPU in direct
# mapped mode. Default is 2-way set associative mode.
#
# CPU_CYRIX_NO_LOCK enables weak locking for the entire address space
# of Cyrix 6x86 and 6x86MX CPUs by setting the NO_LOCK bit of CCR1.
# Otherwise, the NO_LOCK bit of CCR1 is cleared. (NOTE 3)
#
# CPU_DISABLE_5X86_LSSER disables load store serialize (i.e. enables
# reorder). This option should not be used if you use memory mapped
# I/O device(s).
#
# CPU_ENABLE_SSE enables SSE/MMX2 instructions support. This is default
# on I686_CPU and above.
# CPU_DISABLE_SSE explicitly prevent I686_CPU from turning on SSE.
#
# CPU_FASTER_5X86_FPU enables faster FPU exception handler.
#
# CPU_I486_ON_386 enables CPU cache on i486 based CPU upgrade products
# for i386 machines.
#
# CPU_IORT defines I/O clock delay time (NOTE 1). Default values of
# I/O clock delay time on Cyrix 5x86 and 6x86 are 0 and 7,respectively
# (no clock delay).
#
# CPU_L2_LATENCY specifed the L2 cache latency value. This option is used
# only when CPU_PPRO2CELERON is defined and Mendocino Celeron is detected.
# The default value is 5.
#
# CPU_LOOP_EN prevents flushing the prefetch buffer if the destination
# of a jump is already present in the prefetch buffer on Cyrix 5x86(NOTE
# 1).
#
# CPU_PPRO2CELERON enables L2 cache of Mendocino Celeron CPUs. This option
# is useful when you use Socket 8 to Socket 370 converter, because most Pentium
# Pro BIOSs do not enable L2 cache of Mendocino Celeron CPUs.
#
# CPU_RSTK_EN enables return stack on Cyrix 5x86 (NOTE 1).
#
# CPU_SUSP_HLT enables suspend on HALT. If this option is set, CPU
# enters suspend mode following execution of HALT instruction.
#
# CPU_UPGRADE_HW_CACHE eliminates unneeded cache flush instruction(s).
#
# CPU_WT_ALLOC enables write allocation on Cyrix 6x86/6x86MX and AMD
# K5/K6/K6-2 cpus.
#
# CYRIX_CACHE_WORKS enables CPU cache on Cyrix 486 CPUs with cache
# flush at hold state.
#
# CYRIX_CACHE_REALLY_WORKS enables (1) CPU cache on Cyrix 486 CPUs
# without cache flush at hold state, and (2) write-back CPU cache on
# Cyrix 6x86 whose revision < 2.7 (NOTE 2).
#
# NO_F00F_HACK disables the hack that prevents Pentiums (and ONLY
# Pentiums) from locking up when a LOCK CMPXCHG8B instruction is
# executed. This option is only needed if I586_CPU is also defined,
# and should be included for any non-Pentium CPU that defines it.
#
# NO_MEMORY_HOLE is an optimisation for systems with AMD K6 processors
# which indicates that the 15-16MB range is *definitely* not being
# occupied by an ISA memory hole.
#
# CPU_DISABLE_CMPXCHG disables the CMPXCHG instruction on > i386 IA32
# machines. VmWare seems to emulate this instruction poorly, causing
# the guest OS to run very slowly. Enabling this with a SMP kernel
# will cause the kernel to be unusable.
#
# NOTE 1: The options, CPU_BTB_EN, CPU_LOOP_EN, CPU_IORT,
# CPU_LOOP_EN and CPU_RSTK_EN should not be used because of CPU bugs.
# These options may crash your system.
#
# NOTE 2: If CYRIX_CACHE_REALLY_WORKS is not set, CPU cache is enabled
# in write-through mode when revision < 2.7. If revision of Cyrix
# 6x86 >= 2.7, CPU cache is always enabled in write-back mode.
#
# NOTE 3: This option may cause failures for software that requires
# locked cycles in order to operate correctly.
#
options CPU_ATHLON_SSE_HACK
options CPU_BLUELIGHTNING_FPU_OP_CACHE
options CPU_BLUELIGHTNING_3X
options CPU_BTB_EN
options CPU_DIRECT_MAPPED_CACHE
options CPU_DISABLE_5X86_LSSER
options CPU_ENABLE_SSE
#options CPU_DISABLE_SSE
options CPU_FASTER_5X86_FPU
options CPU_I486_ON_386
options CPU_IORT
options CPU_L2_LATENCY=5
options CPU_LOOP_EN
options CPU_PPRO2CELERON
options CPU_RSTK_EN
options CPU_SUSP_HLT
options CPU_UPGRADE_HW_CACHE
options CPU_WT_ALLOC
options CYRIX_CACHE_WORKS
options CYRIX_CACHE_REALLY_WORKS
#options NO_F00F_HACK
options CPU_DISABLE_CMPXCHG
#
# A math emulator is mandatory if you wish to run on hardware which
# does not have a floating-point processor. Pick either the original,
# bogus (but freely-distributable) math emulator, or a much more
# fully-featured but GPL-licensed emulator taken from Linux.
#
options MATH_EMULATE #Support for x87 emulation
# Don't enable both of these in a real config.
options GPL_MATH_EMULATE #Support for x87 emulation via
# Debug options
options NPX_DEBUG # enable npx debugging (FPU/math emu)
#new math emulator
#
# PERFMON causes the driver for Pentium/Pentium Pro performance counters
# to be compiled. See perfmon(4) for more information.
#
options PERFMON
#####################################################################
# NETWORKING OPTIONS
#
# DEVICE_POLLING adds support for mixed interrupt-polling handling
# of network device drivers, which has significant benefits in terms
# of robustness to overloads and responsivity, as well as permitting
# accurate scheduling of the CPU time between kernel network processing
# and other activities. The drawback is a moderate (up to 1/HZ seconds)
# potential increase in response times.
# It is strongly recommended to use HZ=1000 or 2000 with DEVICE_POLLING
# to achieve smoother behaviour.
# Additionally, you can enable/disable polling at runtime with the
# sysctl variable kern.polling.enable (defaults off), and select
# the CPU fraction reserved to userland with the sysctl variable
# kern.polling.user_frac (default 50, range 0..100).
#
# Only the "dc" "fxp" and "sis" devices support this mode of operation at
# the time of this writing.
options DEVICE_POLLING
#####################################################################
# CLOCK OPTIONS
# The following options are used for debugging clock behavior only, and
# should not be used for production systems.
#
# CLK_CALIBRATION_LOOP will run the clock calibration loop at startup
# until the user presses a key.
options CLK_CALIBRATION_LOOP
# The following two options measure the frequency of the corresponding
# clock relative to the RTC (onboard mc146818a).
options CLK_USE_I8254_CALIBRATION
options CLK_USE_TSC_CALIBRATION
#####################################################################
# MISCELLANEOUS DEVICES AND OPTIONS
device speaker #Play IBM BASIC-style noises out your speaker
hint.speaker.0.at="isa"
hint.speaker.0.port="0x35"
device gzip #Exec gzipped a.out's. REQUIRES COMPAT_AOUT!
device apm_saver # Requires APM
#####################################################################
# HARDWARE BUS CONFIGURATION
#
# ISA bus
#
device isa
#
# Options for `isa':
#
# AUTO_EOI_1 enables the `automatic EOI' feature for the master 8259A
# interrupt controller. This saves about 0.7-1.25 usec for each interrupt.
# This option breaks suspend/resume on some portables.
#
# AUTO_EOI_2 enables the `automatic EOI' feature for the slave 8259A
# interrupt controller. This saves about 0.7-1.25 usec for each interrupt.
# Automatic EOI is documented not to work for for the slave with the
# original i8259A, but it works for some clones and some integrated
# versions.
#
# MAXMEM specifies the amount of RAM on the machine; if this is not
# specified, FreeBSD will first read the amount of memory from the CMOS
# RAM, so the amount of memory will initially be limited to 64MB or 16MB
# depending on the BIOS. If the BIOS reports 64MB, a memory probe will
# then attempt to detect the installed amount of RAM. If this probe
# fails to detect >64MB RAM you will have to use the MAXMEM option.
# The amount is in kilobytes, so for a machine with 128MB of RAM, it would
# be 131072 (128 * 1024).
#
# BROKEN_KEYBOARD_RESET disables the use of the keyboard controller to
# reset the CPU for reboot. This is needed on some systems with broken
# keyboard controllers.
options COMPAT_OLDISA #Use ISA shims and glue for old drivers
options AUTO_EOI_1
#options AUTO_EOI_2
options MAXMEM=(128*1024)
#options BROKEN_KEYBOARD_RESET
options EPSON_BOUNCEDMA
options EPSON_MEMWIN
#
# PCI bus & PCI options:
#
device pci
#
# AGP GART support
device agp
#####################################################################
# HARDWARE DEVICE CONFIGURATION
#
# Mandatory devices:
#
# PC98 keyboard
device pckbd
hint.pckbd.0.at="isa"
hint.pckbd.0.port="0x041"
hint.pckbd.0.irq="1"
# These options are valid for other keyboard drivers as well.
options KBD_DISABLE_KEYMAP_LOAD # refuse to load a keymap
options KBD_INSTALL_CDEV # install a CDEV entry in /dev
# GDC screen
device gdc
hint.gdc.0.at="isa"
options LINE30
#
# The Numeric Processing eXtension driver. In addition to this, you
# may configure a math emulator (see above). If your machine has a
# hardware FPU and the kernel configuration includes the npx device
# *and* a math emulator compiled into the kernel, the hardware FPU
# will be used, unless it is found to be broken or unless "flags" to
# npx0 includes "0x08", which requests preference for the emulator.
device npx
#
# `flags' for npx0:
# 0x01 don't use the npx registers to optimize bcopy.
# 0x02 don't use the npx registers to optimize bzero.
# 0x04 don't use the npx registers to optimize copyin or copyout.
# 0x08 use emulator even if hardware FPU is available.
# The npx registers are normally used to optimize copying and zeroing when
# all of the following conditions are satisfied:
# I586_CPU is an option
# the cpu is an i586 (perhaps not a Pentium)
# the probe for npx0 succeeds
# INT 16 exception handling works.
# Then copying and zeroing using the npx registers is normally 30-100% faster.
# The flags can be used to control cases where it doesn't work or is slower.
# Setting them at boot time using userconfig works right (the optimizations
# are not used until later in the bootstrap when npx0 is attached).
# Flag 0x08 automatically disables the i586 optimized routines.
#
#
# Optional devices:
#
# 3Dfx Voodoo Graphics, Voodoo II /dev/3dfx CDEV support. This will create
# the /dev/3dfx0 device to work with glide implementations. This should get
# linked to /dev/3dfx and /dev/voodoo. Note that this is not the same as
# the tdfx DRI module from XFree86 and is completely unrelated.
#
# To enable Linuxulator support, one must also include COMPAT_LINUX in the
# config as well, or you will not have the dependencies. The other option
# is to load both as modules.
device tdfx # Enable 3Dfx Voodoo support
options TDFX_LINUX # Enable Linuxulator support
# DRM options:
# gammadrm: 3Dlabs Oxygen GMX 2000
# mgadrm: AGP Matrox G200, G400, G450, G550
# tdfxdrm: 3dfx Voodoo 3/4/5 and Banshee
# r128drm: AGP ATI Rage 128
# radeondrm: AGP ATI Radeon, including 7200 and 7500
# DRM_LINUX: include linux compatibility, requires COMPAT_LINUX
# DRM_DEBUG: include debugging code, very slow
#
# mga, r128, and radeon require AGP in the kernel
device gammadrm
device mgadrm
device "r128drm"
device radeondrm
device tdfxdrm
options DRM_DEBUG
options DRM_LINUX
#
# Bus mouse
#
device mse
hint.mse.0.at="isa"
hint.mse.0.port="0x7fd9"
hint.mse.0.irq="13"
#
# Network interfaces:
#
# ar: Arnet SYNC/570i hdlc sync 2/4 port V.35/X.21 serial driver
# (requires sppp)
# cx: Cronyx/Sigma multiport sync/async (with Cisco or PPP framing)
# ed: Western Digital and SMC 80xx; Novell NE1000 and NE2000; 3Com 3C503
# HP PC Lan+, various PC Card devices (refer to etc/defauls/pccard.conf)
# (requires miibus)
# el: 3Com 3C501 (slow!)
# ie: AT&T StarLAN 10 and EN100; 3Com 3C507; unknown NI5210;
# Intel EtherExpress
# le: Digital Equipment EtherWorks 2 and EtherWorks 3 (DEPCA, DE100,
# DE101, DE200, DE201, DE202, DE203, DE204, DE205, DE422)
# lnc: Lance/PCnet cards (Isolan, Novell NE2100, NE32-VL, AMD Am7990 and
# Am79C960)
# oltr: Olicom ISA token-ring adapters OC-3115, OC-3117, OC-3118 and OC-3133
# (no hints needed).
# Olicom PCI token-ring adapters OC-3136, OC-3137, OC-3139, OC-3140,
# OC-3141, OC-3540, OC-3250
# rdp: RealTek RTL 8002-based pocket ethernet adapters
# sbni: Granch SBNI12-xx ISA and PCI adapters
# sr: RISCom/N2 hdlc sync 1/2 port V.35/X.21 serial driver (requires sppp)
# wl: Lucent Wavelan (ISA card only).
# Order for ISA/EISA devices is important here
device ar
hint.ar.0.at="isa"
hint.ar.0.port="0x300"
hint.ar.0.irq="10"
hint.ar.0.maddr="0xd0000"
device cx 1
hint.cx.0.at="isa"
hint.cx.0.port="0x240"
hint.cx.0.irq="15"
hint.cx.0.drq="7"
device ed
#options ED_NO_MIIBUS # Disable ed miibus support
hint.ed.0.at="isa"
hint.ed.0.port="0x280"
hint.ed.0.irq="5"
hint.ed.0.maddr="0xd8000"
device el 1
hint.el.0.at="isa"
hint.el.0.port="0x300"
hint.el.0.irq="9"
device ie 2
hint.ie.0.at="isa"
hint.ie.0.port="0x300"
hint.ie.0.irq="5"
hint.ie.0.maddr="0xd0000"
hint.ie.1.at="isa"
hint.ie.1.port="0x360"
hint.ie.1.irq="7"
hint.ie.1.maddr="0xd0000"
device le 1
hint.le.0.at="isa"
hint.le.0.port="0x300"
hint.le.0.irq="5"
hint.le.0.maddr="0xd0000"
device lnc
hint.lnc.0.at="isa"
hint.lnc.0.port="0x280"
hint.lnc.0.irq="10"
hint.lnc.0.drq="0"
device rdp 1
hint.rdp.0.at="isa"
hint.rdp.0.port="0x378"
hint.rdp.0.irq="7"
hint.rdp.0.flags="2"
device sbni
hint.sbni.0.at="isa"
hint.sbni.0.port="0x210"
hint.sbni.0.irq="0xefdead"
hint.sbni.0.flags="0"
device snc
hint.snc.0.at="isa"
hint.snc.0.port="0x888"
hint.snc.0.irq="6"
hint.snc.0.maddr="0xc0000"
device sr
hint.sr.0.at="isa"
hint.sr.0.port="0x300"
hint.sr.0.irq="5"
hint.sr.0.maddr="0xd0000"
device oltr
hint.oltr.0.at="isa"
device wl
hint.wl.0.at="isa"
hint.wl.0.port="0x300"
options WLCACHE # enables the signal-strength cache
options WLDEBUG # enables verbose debugging output
#
# Audio drivers: `pca'
#
# pca: PCM audio through your PC speaker
device pca
hint.pca.0.at="isa"
hint.pca.0.port="0x040"
#
# SCSI host adapters:
#
# ct: WD33C93[ABC] based SCSI host adapters.
# ncv: NCR 53C500 based SCSI host adapters.
# nsp: Workbit Ninja SCSI-3 based PC Card SCSI host adapters.
# stg: TMC 18C30, 18C50 based SCSI host adapters.
device ct
hint.ct.0.at="isa"
device ncv
device nsp
device stg
hint.stg.0.at="isa"
hint.stg.0.port="0x140"
hint.stg.0.port="11"
#
# Miscellaneous hardware:
#
# wt: Wangtek and Archive QIC-02/QIC-36 tape drives
# ctx: Cortex-I frame grabber
# apm: Laptop Advanced Power Management (experimental)
# pmtimer: Timer device driver for power management events (APM or ACPI)
# spigot: The Creative Labs Video Spigot video-acquisition board
# dgb: Digiboard PC/Xi and PC/Xe series driver (ALPHA QUALITY!)
# digi: Digiboard driver
# gp: National Instruments AT-GPIB and AT-GPIB/TNT board, PCMCIA-GPIB
# tw: TW-523 power line interface for use with X-10 home control products
# stl: Stallion EasyIO and EasyConnection 8/32 (cd1400 based)
# stli: Stallion EasyConnection 8/64, ONboard, Brumby (intelligent)
# Notes on APM
# The flags takes the following meaning for apm0:
# 0x0020 Statclock is broken.
# If apm is omitted, some systems require sysctl kern.timecounter.method=1
# for correct timekeeping.
# Notes on the spigot:
# The video spigot is at 0xad6. This port address can not be changed.
# The irq values may only be 10, 11, or 15
# I/O memory is an 8kb region. Possible values are:
# 0a0000, 0a2000, ..., 0fffff, f00000, f02000, ..., ffffff
# The start address must be on an even boundary.
# Add the following option if you want to allow non-root users to be able
# to access the spigot. This option is not secure because it allows users
# direct access to the I/O page.
# options SPIGOT_UNSECURE
# Notes on the Specialix SI/XIO driver:
# The host card is memory, not IO mapped.
# The Rev 1 host cards use a 64K chunk, on a 32K boundary.
# The Rev 2 host cards use a 32K chunk, on a 32K boundary.
# The cards can use an IRQ of 11, 12 or 15.
# Notes on the Sony Programmable I/O controller
# This is a temporary driver that should someday be replaced by something
# that hooks into the ACPI layer. The device is hooked to the PIIX4's
# General Device 10 decoder, which means you have to fiddle with PCI
# registers to map it in, even though it is otherwise treated here as
# an ISA device. At the moment, the driver polls, although the device
# is capable of generating interrupts. It largely undocumented.
# The port location in the hint is where you WANT the device to be
# mapped. 0x10a0 seems to be traditional. At the moment the jogdial
# is the only thing truly supported, but aparently a fair percentage
# of the Vaio extra features are controlled by this device.
# Notes on the Stallion stl and stli drivers:
# See src/i386/isa/README.stl for complete instructions.
# This is version 0.0.5alpha, unsupported by Stallion.
# The stl driver has a secondary IO port hard coded at 0x280. You need
# to change src/i386/isa/stallion.c if you reconfigure this on the boards.
# The "flags" and "msize" settings on the stli driver depend on the board:
# EasyConnection 8/64 ISA: flags 23 msize 0x1000
# EasyConnection 8/64 EISA: flags 24 msize 0x10000
# EasyConnection 8/64 MCA: flags 25 msize 0x1000
# ONboard ISA: flags 4 msize 0x10000
# ONboard EISA: flags 7 msize 0x10000
# ONboard MCA: flags 3 msize 0x10000
# Brumby: flags 2 msize 0x4000
# Stallion: flags 1 msize 0x10000
# Notes on the Digiboard PC/Xi and PC/Xe series driver
#
# The NDGBPORTS option specifies the number of ports controlled by the
# dgb(4) driver. The default value is 16 ports per device.
#
# The following flag values have special meanings in dgb:
# 0x01 - alternate layout of pins
# 0x02 - use the windowed PC/Xe in 64K mode
device wt 1
hint.wt.0.at="isa"
hint.wt.0.port="0x300"
hint.wt.0.irq="5"
hint.wt.0.drq="1"
device ctx 1
hint.ctx.0.at="isa"
hint.ctx.0.port="0x230"
hint.ctx.0.maddr="0xd0000"
device spigot 1
hint.spigot.0.at="isa"
hint.spigot.0.port="0xad6"
hint.spigot.0.irq="15"
hint.spigot.0.maddr="0xee000"
device apm
hint.apm.0.flags="0x20"
device pmc
device canbus
device canbepm
hint.pmc.0.at="isa"
hint.pmc.0.port="0x8f0"
device pmtimer # Adjust system timer at wakeup time
device gp
hint.gp.0.at="isa"
hint.gp.0.port="0x2c0"
device dgb 1
options NDGBPORTS=17
hint.dgb.0.at="isa"
hint.dgb.0.port="0x220"
hint.dgb.0.maddr="0xfc000"
device digi
hint.digi.0.at="isa"
hint.digi.0.port="0x104"
hint.digi.0.maddr="0xd0000"
# BIOS & FEP/OS components of device digi.
device digi_CX
device digi_CX_PCI
device digi_EPCX
device digi_EPCX_PCI
device digi_Xe
device digi_Xem
device digi_Xr
# the port and irq for tw0 are fictitious
device tw 1
hint.tw.0.at="isa"
hint.tw.0.port="0x380"
hint.tw.0.irq="11"
device stl
hint.stl.0.at="isa"
hint.stl.0.port="0x2a0"
hint.stl.0.irq="10"
device stli
hint.stli.0.at="isa"
hint.stli.0.port="0x2a0"
hint.stli.0.maddr="0xcc000"
hint.stli.0.flags="23"
hint.stli.0.msize="0x1000"
device olpt
hint.olpt.0.at="isa"
hint.olpt.0.port="0x040"
#
# Laptop/Notebook options:
#
# See also:
# apm under `Miscellaneous hardware'
# above.
# For older notebooks that signal a powerfail condition (external
# power supply dropped, or battery state low) by issuing an NMI:
options POWERFAIL_NMI # make it beep instead of panicing
#
# PC Card/PCMCIA
# (OLDCARD)
#
# card: pccard slots
# pcic: isa/pccard bridge
device pcic
hint.pcic.0.at="isa"
#hint.pcic.1.at="isa"
device card 1
#
# PC Card/PCMCIA and Cardbus
# (NEWCARD)
#
# Note that NEWCARD and OLDCARD are incompatible. Do not use both at the same
# time.
#
# pccbb: pci/cardbus bridge implementing YENTA interface
# pccard: pccard slots
# cardbus: cardbus slots
#device cbb
#device pccard
#device cardbus
#device pcic ISA attachment currently busted
#hint.pcic.0.at="isa"
#hint.pcic.1.at="isa"
#---------------------------------------------------------------------------
# ISDN4BSD
#
# See /usr/share/examples/isdn/ROADMAP for an introduction to isdn4bsd.
#
# i4b passive ISDN cards support contains the following hardware drivers:
#
# isic - Siemens/Infineon ISDN ISAC/HSCX/IPAC chipset driver
# iwic - Winbond W6692 PCI bus ISDN S/T interface controller
# ifpi - AVM Fritz!Card PCI driver
# ifpi2 - AVM Fritz!Card PCI version 2 driver
# ihfc - Cologne Chip HFC ISA/ISA-PnP chipset driver
# ifpnp - AVM Fritz!Card PnP driver
# itjc - Siemens ISAC / TJNet Tiger300/320 chipset
#
# i4b active ISDN cards support contains the following hardware drivers:
#
# iavc - AVM B1 PCI, AVM B1 ISA, AVM T1
#
# Note that the ``options'' (if given) and ``device'' lines must BOTH
# be uncommented to enable support for a given card !
#
# In addition to a hardware driver (and probably an option) the mandatory
# ISDN protocol stack devices and the mandatory support device must be
# enabled as well as one or more devices from the optional devices section.
#
#---------------------------------------------------------------------------
# isic driver (Siemens/Infineon chipsets)
#
device isic
#
# PCI bus Cards:
# --------------
#
# Cyclades Cyclom-Y PCI serial driver
device cy 1
options CY_PCI_FASTINTR # Use with cy_pci unless irq is shared
hint.cy.0.at="isa"
hint.cy.0.irq="10"
hint.cy.0.maddr="0xd4000"
hint.cy.0.msize="0x2000"
#
#---------------------------------------------------------------------------
# ELSA MicroLink ISDN/PCI (same as ELSA QuickStep 1000pro PCI)
options ELSA_QS1PCI
#
#
#---------------------------------------------------------------------------
# ifpnp driver for AVM Fritz!Card PnP
#
# AVM Fritz!Card PnP
device ifpnp
#
#---------------------------------------------------------------------------
# ihfc driver for Cologne Chip ISA chipsets (experimental!)
#
# Teles 16.3c ISA PnP
# AcerISDN P10 ISA PnP
# TELEINT ISDN SPEED No.1
device ihfc
#
#---------------------------------------------------------------------------
# ifpi driver for AVM Fritz!Card PCI
#
# AVM Fritz!Card PCI
device ifpi
#
#---------------------------------------------------------------------------
# ifpi2 driver for AVM Fritz!Card PCI version 2
#
# AVM Fritz!Card PCI version 2
device "ifpi2"
#
#---------------------------------------------------------------------------
# iwic driver for Winbond W6692 chipset
#
# ASUSCOM P-IN100-ST-D (and other Winbond W6692 based cards)
device iwic
#
#---------------------------------------------------------------------------
# itjc driver for Simens ISAC / TJNet Tiger300/320 chipset
#
# Traverse Technologies NETjet-S
# Teles PCI-TJ
device itjc
#
#---------------------------------------------------------------------------
# iavc driver (AVM active cards, needs i4bcapi driver!)
#
device iavc
#
# AVM B1 ISA bus (PnP mode not supported!)
# ----------------------------------------
hint.iavc.0.at="isa"
hint.iavc.0.port="0x150"
hint.iavc.0.irq="5"
#
#---------------------------------------------------------------------------
# ISDN Protocol Stack - mandatory for all hardware drivers
#
# Q.921 / layer 2 - i4b passive cards D channel handling
device "i4bq921"
#
# Q.931 / layer 3 - i4b passive cards D channel handling
device "i4bq931"
#
# layer 4 - i4b common passive and active card handling
device "i4b"
#
#---------------------------------------------------------------------------
# ISDN devices - mandatory for all hardware drivers
#
# userland driver to do ISDN tracing (for passive cards only)
device "i4btrc" 4
#
# userland driver to control the whole thing
device "i4bctl"
#
#---------------------------------------------------------------------------
# ISDN devices - optional
#
# userland driver for access to raw B channel
device "i4brbch" 4
#
# userland driver for telephony
device "i4btel" 2
#
# network driver for IP over raw HDLC ISDN
device "i4bipr" 4
# enable VJ header compression detection for ipr i/f
options IPR_VJ
# enable logging of the first n IP packets to isdnd (n=32 here)
options IPR_LOG=32
#
# network driver for sync PPP over ISDN; requires an equivalent
# number of sppp device to be configured
device "i4bisppp" 4
#
# B-channel interface to the netgraph subsystem
device "i4bing" 2
#
# CAPI driver needed for active ISDN cards (see iavc driver above)
device "i4bcapi"
#
#---------------------------------------------------------------------------
#
# Set the number of PV entries per process. Increasing this can
# stop panics related to heavy use of shared memory. However, that can
# (combined with large amounts of physical memory) cause panics at
# boot time due the kernel running out of VM space.
#
# If you're tweaking this, you might also want to increase the sysctls
# "vm.v_free_min", "vm.v_free_reserved", and "vm.v_free_target".
#
# The value below is the one more than the default.
#
options PMAP_SHPGPERPROC=201
#
# Change the size of the kernel virtual address space. Due to
# constraints in loader(8) on i386, this must be a multiple of 4.
# 256 = 1 GB of kernel address space. Increasing this also causes
# a reduction of the address space in user processes. 512 splits
# the 4GB cpu address space in half (2GB user, 2GB kernel).
#
options KVA_PAGES=260
#####################################################################
# ABI Emulation
# Enable iBCS2 runtime support for SCO and ISC binaries
options IBCS2
# Emulate spx device for client side of SVR3 local X interface
options SPX_HACK
# Enable Linux ABI emulation
options COMPAT_LINUX
# Enable i386 a.out binary support
options COMPAT_AOUT
# Enable the linux-like proc filesystem support (requires COMPAT_LINUX
# and PSEUDOFS)
options LINPROCFS
#
# SysVR4 ABI emulation
#
# The svr4 ABI emulator can be statically compiled into the kernel or loaded as
# a KLD module.
# The STREAMS network emulation code can also be compiled statically or as a
# module. If loaded as a module, it must be loaded before the svr4 module
# (the /usr/sbin/svr4 script does this for you). If compiling statically,
# the `streams' device must be configured into any kernel which also
# specifies COMPAT_SVR4. It is possible to have a statically-configured
# STREAMS device and a dynamically loadable svr4 emulator; the /usr/sbin/svr4
# script understands that it doesn't need to load the `streams' module under
# those circumstances.
# Caveat: At this time, `options KTRACE' is required for the svr4 emulator
# (whether static or dynamic).
#
options COMPAT_SVR4 # build emulator statically
options DEBUG_SVR4 # enable verbose debugging
device streams # STREAMS network driver (required for svr4).
#####################################################################
# VM OPTIONS
# Disable the 4 MByte page PSE CPU feature. The PSE feature allows the
# kernel to use a 4 MByte pages to map the kernel instead of 4k pages.
# This saves on the amount of memory needed for page tables needed to
# map the kernel. You should only disable this feature as a temporary
# workaround if you are having problems with it enabled.
#
#options DISABLE_PSE
# Disable the global pages PGE CPU feature. The PGE feature allows pages
# to be marked with the PG_G bit. TLB entries for these pages are not
# flushed from the cache when %cr3 is reloaded. This can make context
# switches less expensive. You should only disable this feature as a
# temporary workaround if you are having problems with it enabled.
#
#options DISABLE_PG_G
# KSTACK_PAGES is the number of memory pages to assign to the kernel
# stack of each thread.
options KSTACK_PAGES=3
#####################################################################
# More undocumented options for linting.
# Note that documenting these are not considered an affront.
options FB_INSTALL_CDEV # install a CDEV entry in /dev
# PECOFF module (Win32 Execution Format)
options PECOFF_SUPPORT
options PECOFF_DEBUG
options ENABLE_ALART
options I4B_SMP_WORKAROUND
options I586_PMC_GUPROF=0x70000
options KBDIO_DEBUG=2
options KBD_MAXRETRY=4
options KBD_MAXWAIT=6
options KBD_RESETDELAY=201
options TIMER_FREQ=((14318182+6)/12)
options VM_KMEM_SIZE
options VM_KMEM_SIZE_MAX
options VM_KMEM_SIZE_SCALE
# Yet more undocumented options for linting.
options COMPAT_SUNOS
#####################################################################
# Devices we don't want to deal with
nodevice atkbdc
nodevice atkbd
nodevice psm
nodevice vga
nodevice aha
nodevice bt
nodevice wds
nodevice asr
nodevice dpt
nodevice ciss
nodevice iir
nodevice mly
nodevice ida # Compaq Smart RAID
nodevice mlx # Mylex DAC960
nodevice amr # AMI MegaRAID
nodevice twe # 3ware ATA RAID
nodevice cbb
nodevice pccard
nodevice cardbus
#####################################################################
# Options we don't want to deal with
nooption VGA_DEBUG
nooption VGA_WIDTH90
nooption VGA_SLOW_IOACCESS
nooption VGA_ALT_SEQACCESS
nooption PSM_RESETAFTERSUSPEND
nooption PSM_HOOKRESUME
nooption ATKBD_DFLT_KEYMAP
nooption DPT_ALLOW_MEMIO
nooption DPT_LOST_IRQ
nooption DPT_RESET_HBA
nooption DPT_TIMEOUT_FACTOR
#####################################################################
# Make options we don't want to deal with
nomakeoption ATKBD_DFLT_KEYMAP