d60fa5f434
Merge in the irq 0 detection. Add comment about why. If we have irq 0, ignore it like we do irq 255. Some BIOS writers aren't careful like they should be.
736 lines
18 KiB
C
736 lines
18 KiB
C
/*
|
|
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
|
|
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
|
|
* Copyright (c) 2000, BSDi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*/
|
|
|
|
#include <sys/param.h> /* XXX trim includes */
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/malloc.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <machine/md_var.h>
|
|
#include <pci/pcivar.h>
|
|
#include <pci/pcireg.h>
|
|
#include <isa/isavar.h>
|
|
#include <machine/nexusvar.h>
|
|
#include <machine/pci_cfgreg.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/pc/bios.h>
|
|
|
|
#ifdef APIC_IO
|
|
#include <machine/smp.h>
|
|
#endif /* APIC_IO */
|
|
|
|
#include "pcib_if.h"
|
|
|
|
#define PRVERB(a) printf a
|
|
|
|
static int cfgmech;
|
|
static int devmax;
|
|
static int usebios;
|
|
static int enable_pcibios = 0;
|
|
|
|
TUNABLE_INT("hw.pci.enable_pcibios", &enable_pcibios);
|
|
|
|
static int pci_cfgintr_unique(struct PIR_entry *pe, int pin);
|
|
static int pci_cfgintr_linked(struct PIR_entry *pe, int pin);
|
|
static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin);
|
|
static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin);
|
|
|
|
static int pcibios_cfgread(int bus, int slot, int func, int reg, int bytes);
|
|
static void pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
|
|
static int pcibios_cfgopen(void);
|
|
static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
|
|
static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
|
|
static int pcireg_cfgopen(void);
|
|
|
|
static struct PIR_table *pci_route_table;
|
|
static int pci_route_count;
|
|
|
|
int
|
|
pci_pcibios_active(void)
|
|
{
|
|
return usebios;
|
|
}
|
|
|
|
int
|
|
pci_kill_pcibios(void)
|
|
{
|
|
usebios = 0;
|
|
return pcireg_cfgopen() != 0;
|
|
}
|
|
|
|
static u_int16_t
|
|
pcibios_get_version(void)
|
|
{
|
|
struct bios_regs args;
|
|
|
|
if (PCIbios.entry == 0) {
|
|
PRVERB(("pcibios: No call entry point\n"));
|
|
return (0);
|
|
}
|
|
args.eax = PCIBIOS_BIOS_PRESENT;
|
|
if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) {
|
|
PRVERB(("pcibios: BIOS_PRESENT call failed\n"));
|
|
return (0);
|
|
}
|
|
if (args.edx != 0x20494350) {
|
|
PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n"));
|
|
return (0);
|
|
}
|
|
return (args.ebx & 0xffff);
|
|
}
|
|
|
|
/*
|
|
* Initialise access to PCI configuration space
|
|
*/
|
|
int
|
|
pci_cfgregopen(void)
|
|
{
|
|
static int opened = 0;
|
|
u_long sigaddr;
|
|
static struct PIR_table *pt;
|
|
u_int8_t ck, *cv;
|
|
int i;
|
|
|
|
if (opened)
|
|
return(1);
|
|
|
|
if (pcibios_cfgopen() != 0) {
|
|
usebios = 1;
|
|
} else if (pcireg_cfgopen() != 0) {
|
|
usebios = 0;
|
|
} else {
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Look for the interrupt routing table.
|
|
*/
|
|
/* We use PCI BIOS's PIR table if it's available */
|
|
if (pcibios_get_version() >= 0x0210 && pt == NULL &&
|
|
(sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0)) != 0) {
|
|
pt = (struct PIR_table *)(uintptr_t)BIOS_PADDRTOVADDR(sigaddr);
|
|
for (cv = (u_int8_t *)pt, ck = 0, i = 0; i < (pt->pt_header.ph_length); i++) {
|
|
ck += cv[i];
|
|
}
|
|
if (ck == 0) {
|
|
pci_route_table = pt;
|
|
pci_route_count = (pt->pt_header.ph_length - sizeof(struct PIR_header)) / sizeof(struct PIR_entry);
|
|
printf("Using $PIR table, %d entries at %p\n", pci_route_count, pci_route_table);
|
|
}
|
|
}
|
|
|
|
opened = 1;
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Read configuration space register
|
|
*/
|
|
static u_int32_t
|
|
pci_do_cfgregread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
return(usebios ?
|
|
pcibios_cfgread(bus, slot, func, reg, bytes) :
|
|
pcireg_cfgread(bus, slot, func, reg, bytes));
|
|
}
|
|
|
|
u_int32_t
|
|
pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
#ifdef APIC_IO
|
|
/*
|
|
* If we are using the APIC, the contents of the intline register will probably
|
|
* be wrong (since they are set up for use with the PIC.
|
|
* Rather than rewrite these registers (maybe that would be smarter) we trap
|
|
* attempts to read them and translate to our private vector numbers.
|
|
*/
|
|
if ((reg == PCIR_INTLINE) && (bytes == 1)) {
|
|
int pin, line;
|
|
|
|
pin = pci_do_cfgregread(bus, slot, func, PCIR_INTPIN, 1);
|
|
line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1);
|
|
|
|
if (pin != 0) {
|
|
int airq;
|
|
|
|
airq = pci_apic_irq(bus, slot, pin);
|
|
if (airq >= 0) {
|
|
/* PCI specific entry found in MP table */
|
|
if (airq != line)
|
|
undirect_pci_irq(line);
|
|
return(airq);
|
|
} else {
|
|
/*
|
|
* PCI interrupts might be redirected to the
|
|
* ISA bus according to some MP tables. Use the
|
|
* same methods as used by the ISA devices
|
|
* devices to find the proper IOAPIC int pin.
|
|
*/
|
|
airq = isa_apic_irq(line);
|
|
if ((airq >= 0) && (airq != line)) {
|
|
/* XXX: undirect_pci_irq() ? */
|
|
undirect_isa_irq(line);
|
|
return(airq);
|
|
}
|
|
}
|
|
}
|
|
return(line);
|
|
}
|
|
#endif /* APIC_IO */
|
|
return(pci_do_cfgregread(bus, slot, func, reg, bytes));
|
|
}
|
|
|
|
/*
|
|
* Write configuration space register
|
|
*/
|
|
void
|
|
pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
|
|
{
|
|
return(usebios ?
|
|
pcibios_cfgwrite(bus, slot, func, reg, data, bytes) :
|
|
pcireg_cfgwrite(bus, slot, func, reg, data, bytes));
|
|
}
|
|
|
|
/*
|
|
* Route a PCI interrupt
|
|
*
|
|
* XXX we don't do anything "right" with the function number in the PIR table
|
|
* (because the consumer isn't currently passing it in). We don't care
|
|
* anyway, due to the way PCI interrupts are assigned.
|
|
*/
|
|
int
|
|
pci_cfgintr(int bus, int device, int pin)
|
|
{
|
|
struct PIR_entry *pe;
|
|
int i, irq;
|
|
struct bios_regs args;
|
|
u_int16_t v;
|
|
int already = 0;
|
|
|
|
v = pcibios_get_version();
|
|
if (v < 0x0210) {
|
|
PRVERB((
|
|
"pci_cfgintr: BIOS %x.%02x doesn't support interrupt routing\n",
|
|
(v & 0xff00) >> 8, v & 0xff));
|
|
return (255);
|
|
}
|
|
if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) ||
|
|
(pin < 1) || (pin > 4))
|
|
return(255);
|
|
|
|
/*
|
|
* Scan the entry table for a contender
|
|
*/
|
|
for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count; i++, pe++) {
|
|
if ((bus != pe->pe_bus) || (device != pe->pe_device))
|
|
continue;
|
|
|
|
irq = pci_cfgintr_linked(pe, pin);
|
|
if (irq != 255)
|
|
already = 1;
|
|
if (irq == 255)
|
|
irq = pci_cfgintr_unique(pe, pin);
|
|
if (irq == 255)
|
|
irq = pci_cfgintr_virgin(pe, pin);
|
|
|
|
if (irq == 255)
|
|
break;
|
|
|
|
/*
|
|
* Ask the BIOS to route the interrupt
|
|
*/
|
|
args.eax = PCIBIOS_ROUTE_INTERRUPT;
|
|
args.ebx = (bus << 8) | (device << 3);
|
|
args.ecx = (irq << 8) | (0xa + pin - 1); /* pin value is 0xa - 0xd */
|
|
if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)) && !already) {
|
|
/*
|
|
* XXX if it fails, we should try to smack the router
|
|
* hardware directly.
|
|
* XXX Also, there may be other choices that we can try that
|
|
* will work.
|
|
*/
|
|
PRVERB(("pci_cfgintr: ROUTE_INTERRUPT failed.\n"));
|
|
return(255);
|
|
}
|
|
printf("pci_cfgintr: %d:%d INT%c routed to irq %d\n", bus, device, 'A' + pin - 1, irq);
|
|
return(irq);
|
|
}
|
|
|
|
PRVERB(("pci_cfgintr: can't route an interrupt to %d:%d INT%c\n", bus, device, 'A' + pin - 1));
|
|
return(255);
|
|
}
|
|
|
|
/*
|
|
* Look to see if the routing table claims this pin is uniquely routed.
|
|
*/
|
|
static int
|
|
pci_cfgintr_unique(struct PIR_entry *pe, int pin)
|
|
{
|
|
int irq;
|
|
|
|
if (powerof2(pe->pe_intpin[pin - 1].irqs)) {
|
|
irq = ffs(pe->pe_intpin[pin - 1].irqs) - 1;
|
|
PRVERB(("pci_cfgintr_unique: hard-routed to irq %d\n", irq));
|
|
return(irq);
|
|
}
|
|
return(255);
|
|
}
|
|
|
|
/*
|
|
* Look for another device which shares the same link byte and
|
|
* already has a unique IRQ, or which has had one routed already.
|
|
*/
|
|
static int
|
|
pci_cfgintr_linked(struct PIR_entry *pe, int pin)
|
|
{
|
|
struct PIR_entry *oe;
|
|
struct PIR_intpin *pi;
|
|
int i, j, irq;
|
|
|
|
/*
|
|
* Scan table slots.
|
|
*/
|
|
for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count; i++, oe++) {
|
|
|
|
/* scan interrupt pins */
|
|
for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) {
|
|
|
|
/* don't look at the entry we're trying to match with */
|
|
if ((pe == oe) && (i == (pin - 1)))
|
|
continue;
|
|
|
|
/* compare link bytes */
|
|
if (pi->link != pe->pe_intpin[pin - 1].link)
|
|
continue;
|
|
|
|
/* link destination mapped to a unique interrupt? */
|
|
if (powerof2(pi->irqs)) {
|
|
irq = ffs(pi->irqs) - 1;
|
|
PRVERB(("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n",
|
|
pi->link, irq));
|
|
return(irq);
|
|
}
|
|
|
|
/* look for the real PCI device that matches this table entry */
|
|
if ((irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device, j, pin)) != 255)
|
|
return(irq);
|
|
}
|
|
}
|
|
return(255);
|
|
}
|
|
|
|
/*
|
|
* Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and
|
|
* see if it has already been assigned an interrupt.
|
|
*/
|
|
static int
|
|
pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin)
|
|
{
|
|
devclass_t pci_devclass;
|
|
device_t *pci_devices;
|
|
int pci_count;
|
|
device_t *pci_children;
|
|
int pci_childcount;
|
|
device_t *busp, *childp;
|
|
int i, j, irq;
|
|
|
|
/*
|
|
* Find all the PCI busses.
|
|
*/
|
|
pci_count = 0;
|
|
if ((pci_devclass = devclass_find("pci")) != NULL)
|
|
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
|
|
|
|
/*
|
|
* Scan all the PCI busses/devices looking for this one.
|
|
*/
|
|
irq = 255;
|
|
for (i = 0, busp = pci_devices; (i < pci_count) && (irq == 255); i++, busp++) {
|
|
pci_childcount = 0;
|
|
device_get_children(*busp, &pci_children, &pci_childcount);
|
|
|
|
for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
|
|
if ((pci_get_bus(*childp) == bus) &&
|
|
(pci_get_slot(*childp) == device) &&
|
|
(pci_get_intpin(*childp) == matchpin)) {
|
|
irq = pci_get_irq(*childp);
|
|
/*
|
|
* Some BIOS writers seem to want to ignore the spec and put
|
|
* 0 in the intline rather than 255 to indicate none. Once
|
|
* we've found one that matches, we break because there can
|
|
* be no others (which is why test looks a little odd).
|
|
*/
|
|
if (irq == 0)
|
|
irq = 255;
|
|
if (irq != 255)
|
|
PRVERB(("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n",
|
|
pe->pe_intpin[pin - 1].link, irq,
|
|
pci_get_bus(*childp), pci_get_slot(*childp), pci_get_function(*childp)));
|
|
break;
|
|
}
|
|
}
|
|
if (pci_children != NULL)
|
|
free(pci_children, M_TEMP);
|
|
}
|
|
if (pci_devices != NULL)
|
|
free(pci_devices, M_TEMP);
|
|
return(irq);
|
|
}
|
|
|
|
/*
|
|
* Pick a suitable IRQ from those listed as routable to this device.
|
|
*/
|
|
static int
|
|
pci_cfgintr_virgin(struct PIR_entry *pe, int pin)
|
|
{
|
|
int irq, ibit;
|
|
|
|
/* first scan the set of PCI-only interrupts and see if any of these are routable */
|
|
for (irq = 0; irq < 16; irq++) {
|
|
ibit = (1 << irq);
|
|
|
|
/* can we use this interrupt? */
|
|
if ((pci_route_table->pt_header.ph_pci_irqs & ibit) &&
|
|
(pe->pe_intpin[pin - 1].irqs & ibit)) {
|
|
PRVERB(("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq));
|
|
return(irq);
|
|
}
|
|
}
|
|
|
|
/* life is tough, so just pick an interrupt */
|
|
for (irq = 0; irq < 16; irq++) {
|
|
ibit = (1 << irq);
|
|
|
|
if (pe->pe_intpin[pin - 1].irqs & ibit) {
|
|
PRVERB(("pci_cfgintr_virgin: using routable interrupt %d\n", irq));
|
|
return(irq);
|
|
}
|
|
}
|
|
return(255);
|
|
}
|
|
|
|
|
|
/*
|
|
* Config space access using BIOS functions
|
|
*/
|
|
static int
|
|
pcibios_cfgread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
struct bios_regs args;
|
|
u_int mask;
|
|
|
|
switch(bytes) {
|
|
case 1:
|
|
args.eax = PCIBIOS_READ_CONFIG_BYTE;
|
|
mask = 0xff;
|
|
break;
|
|
case 2:
|
|
args.eax = PCIBIOS_READ_CONFIG_WORD;
|
|
mask = 0xffff;
|
|
break;
|
|
case 4:
|
|
args.eax = PCIBIOS_READ_CONFIG_DWORD;
|
|
mask = 0xffffffff;
|
|
break;
|
|
default:
|
|
return(-1);
|
|
}
|
|
args.ebx = (bus << 8) | (slot << 3) | func;
|
|
args.edi = reg;
|
|
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
|
|
/* check call results? */
|
|
return(args.ecx & mask);
|
|
}
|
|
|
|
static void
|
|
pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
|
|
{
|
|
struct bios_regs args;
|
|
|
|
switch(bytes) {
|
|
case 1:
|
|
args.eax = PCIBIOS_WRITE_CONFIG_BYTE;
|
|
break;
|
|
case 2:
|
|
args.eax = PCIBIOS_WRITE_CONFIG_WORD;
|
|
break;
|
|
case 4:
|
|
args.eax = PCIBIOS_WRITE_CONFIG_DWORD;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
args.ebx = (bus << 8) | (slot << 3) | func;
|
|
args.ecx = data;
|
|
args.edi = reg;
|
|
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
|
|
}
|
|
|
|
/*
|
|
* Determine whether there is a PCI BIOS present
|
|
*/
|
|
static int
|
|
pcibios_cfgopen(void)
|
|
{
|
|
u_int16_t v = 0;
|
|
|
|
if (PCIbios.entry != 0 && enable_pcibios) {
|
|
v = pcibios_get_version();
|
|
if (v > 0)
|
|
printf("pcibios: BIOS version %x.%02x\n", (v & 0xff00) >> 8,
|
|
v & 0xff);
|
|
}
|
|
return (v > 0);
|
|
}
|
|
|
|
/*
|
|
* Configuration space access using direct register operations
|
|
*/
|
|
|
|
/* enable configuration space accesses and return data port address */
|
|
static int
|
|
pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
|
|
{
|
|
int dataport = 0;
|
|
|
|
if (bus <= PCI_BUSMAX
|
|
&& slot < devmax
|
|
&& func <= PCI_FUNCMAX
|
|
&& reg <= PCI_REGMAX
|
|
&& bytes != 3
|
|
&& (unsigned) bytes <= 4
|
|
&& (reg & (bytes -1)) == 0) {
|
|
switch (cfgmech) {
|
|
case 1:
|
|
outl(CONF1_ADDR_PORT, (1 << 31)
|
|
| (bus << 16) | (slot << 11)
|
|
| (func << 8) | (reg & ~0x03));
|
|
dataport = CONF1_DATA_PORT + (reg & 0x03);
|
|
break;
|
|
case 2:
|
|
outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1));
|
|
outb(CONF2_FORWARD_PORT, bus);
|
|
dataport = 0xc000 | (slot << 8) | reg;
|
|
break;
|
|
}
|
|
}
|
|
return (dataport);
|
|
}
|
|
|
|
/* disable configuration space accesses */
|
|
static void
|
|
pci_cfgdisable(void)
|
|
{
|
|
switch (cfgmech) {
|
|
case 1:
|
|
outl(CONF1_ADDR_PORT, 0);
|
|
break;
|
|
case 2:
|
|
outb(CONF2_ENABLE_PORT, 0);
|
|
outb(CONF2_FORWARD_PORT, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
int data = -1;
|
|
int port;
|
|
|
|
port = pci_cfgenable(bus, slot, func, reg, bytes);
|
|
|
|
if (port != 0) {
|
|
switch (bytes) {
|
|
case 1:
|
|
data = inb(port);
|
|
break;
|
|
case 2:
|
|
data = inw(port);
|
|
break;
|
|
case 4:
|
|
data = inl(port);
|
|
break;
|
|
}
|
|
pci_cfgdisable();
|
|
}
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
|
|
{
|
|
int port;
|
|
|
|
port = pci_cfgenable(bus, slot, func, reg, bytes);
|
|
if (port != 0) {
|
|
switch (bytes) {
|
|
case 1:
|
|
outb(port, data);
|
|
break;
|
|
case 2:
|
|
outw(port, data);
|
|
break;
|
|
case 4:
|
|
outl(port, data);
|
|
break;
|
|
}
|
|
pci_cfgdisable();
|
|
}
|
|
}
|
|
|
|
/* check whether the configuration mechanism has been correctly identified */
|
|
static int
|
|
pci_cfgcheck(int maxdev)
|
|
{
|
|
u_char device;
|
|
|
|
if (bootverbose)
|
|
printf("pci_cfgcheck:\tdevice ");
|
|
|
|
for (device = 0; device < maxdev; device++) {
|
|
unsigned id, class, header;
|
|
if (bootverbose)
|
|
printf("%d ", device);
|
|
|
|
id = inl(pci_cfgenable(0, device, 0, 0, 4));
|
|
if (id == 0 || id == -1)
|
|
continue;
|
|
|
|
class = inl(pci_cfgenable(0, device, 0, 8, 4)) >> 8;
|
|
if (bootverbose)
|
|
printf("[class=%06x] ", class);
|
|
if (class == 0 || (class & 0xf870ff) != 0)
|
|
continue;
|
|
|
|
header = inb(pci_cfgenable(0, device, 0, 14, 1));
|
|
if (bootverbose)
|
|
printf("[hdr=%02x] ", header);
|
|
if ((header & 0x7e) != 0)
|
|
continue;
|
|
|
|
if (bootverbose)
|
|
printf("is there (id=%08x)\n", id);
|
|
|
|
pci_cfgdisable();
|
|
return (1);
|
|
}
|
|
if (bootverbose)
|
|
printf("-- nothing found\n");
|
|
|
|
pci_cfgdisable();
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pcireg_cfgopen(void)
|
|
{
|
|
unsigned long mode1res,oldval1;
|
|
unsigned char mode2res,oldval2;
|
|
|
|
oldval1 = inl(CONF1_ADDR_PORT);
|
|
|
|
if (bootverbose) {
|
|
printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08lx\n",
|
|
oldval1);
|
|
}
|
|
|
|
if ((oldval1 & CONF1_ENABLE_MSK) == 0) {
|
|
|
|
cfgmech = 1;
|
|
devmax = 32;
|
|
|
|
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK);
|
|
outb(CONF1_ADDR_PORT +3, 0);
|
|
mode1res = inl(CONF1_ADDR_PORT);
|
|
outl(CONF1_ADDR_PORT, oldval1);
|
|
|
|
if (bootverbose)
|
|
printf("pci_open(1a):\tmode1res=0x%08lx (0x%08lx)\n",
|
|
mode1res, CONF1_ENABLE_CHK);
|
|
|
|
if (mode1res) {
|
|
if (pci_cfgcheck(32))
|
|
return (cfgmech);
|
|
}
|
|
|
|
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1);
|
|
mode1res = inl(CONF1_ADDR_PORT);
|
|
outl(CONF1_ADDR_PORT, oldval1);
|
|
|
|
if (bootverbose)
|
|
printf("pci_open(1b):\tmode1res=0x%08lx (0x%08lx)\n",
|
|
mode1res, CONF1_ENABLE_CHK1);
|
|
|
|
if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) {
|
|
if (pci_cfgcheck(32))
|
|
return (cfgmech);
|
|
}
|
|
}
|
|
|
|
oldval2 = inb(CONF2_ENABLE_PORT);
|
|
|
|
if (bootverbose) {
|
|
printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n",
|
|
oldval2);
|
|
}
|
|
|
|
if ((oldval2 & 0xf0) == 0) {
|
|
|
|
cfgmech = 2;
|
|
devmax = 16;
|
|
|
|
outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK);
|
|
mode2res = inb(CONF2_ENABLE_PORT);
|
|
outb(CONF2_ENABLE_PORT, oldval2);
|
|
|
|
if (bootverbose)
|
|
printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n",
|
|
mode2res, CONF2_ENABLE_CHK);
|
|
|
|
if (mode2res == CONF2_ENABLE_RES) {
|
|
if (bootverbose)
|
|
printf("pci_open(2a):\tnow trying mechanism 2\n");
|
|
|
|
if (pci_cfgcheck(16))
|
|
return (cfgmech);
|
|
}
|
|
}
|
|
|
|
cfgmech = 0;
|
|
devmax = 0;
|
|
return (cfgmech);
|
|
}
|
|
|