1996-09-07 16:18:32 +00:00

1834 lines
38 KiB
C++

// -*- C++ -*-
/* Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
Written by James Clark (jjc@jclark.com)
This file is part of groff.
groff is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
groff is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with groff; see the file COPYING. If not, write to the Free Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "pic.h"
#include "ptable.h"
#include "object.h"
void print_object_list(object *);
line_type::line_type()
: type(solid), thickness(1.0)
{
}
output::output() : desired_height(0.0), desired_width(0.0), args(0)
{
}
output::~output()
{
a_delete args;
}
void output::set_desired_width_height(double wid, double ht)
{
desired_width = wid;
desired_height = ht;
}
void output::set_args(const char *s)
{
a_delete args;
if (s == 0 || *s == '\0')
args = 0;
else
args = strsave(s);
}
void output::command(const char *, const char *, int)
{
}
void output::set_location(const char *, int)
{
}
int output::supports_filled_polygons()
{
return 0;
}
void output::begin_block(const position &, const position &)
{
}
void output::end_block()
{
}
double output::compute_scale(double sc, const position &ll, const position &ur)
{
distance dim = ur - ll;
if (desired_width != 0.0 || desired_height != 0.0) {
sc = 0.0;
if (desired_width != 0.0) {
if (dim.x == 0.0)
error("width specified for picture with zero width");
else
sc = dim.x/desired_width;
}
if (desired_height != 0.0) {
if (dim.y == 0.0)
error("height specified for picture with zero height");
else {
double tem = dim.y/desired_height;
if (tem > sc)
sc = tem;
}
}
return sc == 0.0 ? 1.0 : sc;
}
else {
if (sc <= 0.0)
sc = 1.0;
distance sdim = dim/sc;
double max_width = 0.0;
lookup_variable("maxpswid", &max_width);
double max_height = 0.0;
lookup_variable("maxpsht", &max_height);
if ((max_width > 0.0 && sdim.x > max_width)
|| (max_height > 0.0 && sdim.y > max_height)) {
double xscale = dim.x/max_width;
double yscale = dim.y/max_height;
return xscale > yscale ? xscale : yscale;
}
else
return sc;
}
}
position::position(const place &pl)
{
if (pl.obj != 0) {
// Use two statements to work around bug in SGI C++.
object *tem = pl.obj;
*this = tem->origin();
}
else {
x = pl.x;
y = pl.y;
}
}
position::position() : x(0.0), y(0.0)
{
}
position::position(double a, double b) : x(a), y(b)
{
}
int operator==(const position &a, const position &b)
{
return a.x == b.x && a.y == b.y;
}
int operator!=(const position &a, const position &b)
{
return a.x != b.x || a.y != b.y;
}
position &position::operator+=(const position &a)
{
x += a.x;
y += a.y;
return *this;
}
position &position::operator-=(const position &a)
{
x -= a.x;
y -= a.y;
return *this;
}
position &position::operator*=(double a)
{
x *= a;
y *= a;
return *this;
}
position &position::operator/=(double a)
{
x /= a;
y /= a;
return *this;
}
position operator-(const position &a)
{
return position(-a.x, -a.y);
}
position operator+(const position &a, const position &b)
{
return position(a.x + b.x, a.y + b.y);
}
position operator-(const position &a, const position &b)
{
return position(a.x - b.x, a.y - b.y);
}
position operator/(const position &a, double n)
{
return position(a.x/n, a.y/n);
}
position operator*(const position &a, double n)
{
return position(a.x*n, a.y*n);
}
// dot product
double operator*(const position &a, const position &b)
{
return a.x*b.x + a.y*b.y;
}
double hypot(const position &a)
{
return hypot(a.x, a.y);
}
struct arrow_head_type {
double height;
double width;
int solid;
};
void draw_arrow(const position &pos, const distance &dir,
const arrow_head_type &aht, const line_type &lt)
{
double hyp = hypot(dir);
if (hyp == 0.0) {
error("cannot draw arrow on object with zero length");
return;
}
position base = -dir;
base *= aht.height/hyp;
position n(dir.y, -dir.x);
n *= aht.width/(hyp*2.0);
line_type slt = lt;
slt.type = line_type::solid;
if (aht.solid && out->supports_filled_polygons()) {
position v[3];
v[0] = pos;
v[1] = pos + base + n;
v[2] = pos + base - n;
// A value > 1 means fill with the current color.
out->polygon(v, 3, slt, 2.0);
}
else {
position v[2];
v[0] = pos;
v[1] = pos + base + n;
out->line(pos + base - n, v, 2, slt);
}
}
object::object() : prev(0), next(0)
{
}
object::~object()
{
}
void object::move_by(const position &)
{
}
void object::print()
{
}
void object::print_text()
{
}
int object::blank()
{
return 0;
}
struct bounding_box {
int blank;
position ll;
position ur;
bounding_box();
void encompass(const position &);
};
bounding_box::bounding_box()
: blank(1)
{
}
void bounding_box::encompass(const position &pos)
{
if (blank) {
ll = pos;
ur = pos;
blank = 0;
}
else {
if (pos.x < ll.x)
ll.x = pos.x;
if (pos.y < ll.y)
ll.y = pos.y;
if (pos.x > ur.x)
ur.x = pos.x;
if (pos.y > ur.y)
ur.y = pos.y;
}
}
void object::update_bounding_box(bounding_box *)
{
}
position object::origin()
{
return position(0.0,0.0);
}
position object::north()
{
return origin();
}
position object::south()
{
return origin();
}
position object::east()
{
return origin();
}
position object::west()
{
return origin();
}
position object::north_east()
{
return origin();
}
position object::north_west()
{
return origin();
}
position object::south_east()
{
return origin();
}
position object::south_west()
{
return origin();
}
position object::start()
{
return origin();
}
position object::end()
{
return origin();
}
position object::center()
{
return origin();
}
double object::width()
{
return 0.0;
}
double object::radius()
{
return 0.0;
}
double object::height()
{
return 0.0;
}
place *object::find_label(const char *)
{
return 0;
}
segment::segment(const position &a, int n, segment *p)
: pos(a), is_absolute(n), next(p)
{
}
text_item::text_item(char *t, const char *fn, int ln)
: filename(fn), lineno(ln), text(t), next(0)
{
adj.h = CENTER_ADJUST;
adj.v = NONE_ADJUST;
}
text_item::~text_item()
{
a_delete text;
}
object_spec::object_spec(object_type t) : type(t)
{
flags = 0;
tbl = 0;
segment_list = 0;
segment_width = segment_height = 0.0;
segment_is_absolute = 0;
text = 0;
with = 0;
dir = RIGHT_DIRECTION;
}
object_spec::~object_spec()
{
delete tbl;
while (segment_list != 0) {
segment *tem = segment_list;
segment_list = segment_list->next;
delete tem;
}
object *p = oblist.head;
while (p != 0) {
object *tem = p;
p = p->next;
delete tem;
}
while (text != 0) {
text_item *tem = text;
text = text->next;
delete tem;
}
delete with;
}
class command_object : public object {
char *s;
const char *filename;
int lineno;
public:
command_object(char *, const char *, int);
~command_object();
object_type type() { return OTHER_OBJECT; }
void print();
};
command_object::command_object(char *p, const char *fn, int ln)
: s(p), filename(fn), lineno(ln)
{
}
command_object::~command_object()
{
a_delete s;
}
void command_object::print()
{
out->command(s, filename, lineno);
}
object *make_command_object(char *s, const char *fn, int ln)
{
return new command_object(s, fn, ln);
}
class mark_object : public object {
public:
mark_object();
object_type type();
};
object *make_mark_object()
{
return new mark_object();
}
mark_object::mark_object()
{
}
object_type mark_object::type()
{
return MARK_OBJECT;
}
object_list::object_list() : head(0), tail(0)
{
}
void object_list::append(object *obj)
{
if (tail == 0) {
obj->next = obj->prev = 0;
head = tail = obj;
}
else {
obj->prev = tail;
obj->next = 0;
tail->next = obj;
tail = obj;
}
}
void object_list::wrap_up_block(object_list *ol)
{
object *p;
for (p = tail; p && p->type() != MARK_OBJECT; p = p->prev)
;
assert(p != 0);
ol->head = p->next;
if (ol->head) {
ol->tail = tail;
ol->head->prev = 0;
}
else
ol->tail = 0;
tail = p->prev;
if (tail)
tail->next = 0;
else
head = 0;
delete p;
}
text_piece::text_piece()
: text(0), filename(0), lineno(-1)
{
adj.h = CENTER_ADJUST;
adj.v = NONE_ADJUST;
}
text_piece::~text_piece()
{
a_delete text;
}
class graphic_object : public object {
int ntext;
text_piece *text;
int aligned;
protected:
line_type lt;
public:
graphic_object();
~graphic_object();
object_type type() = 0;
void print_text();
void add_text(text_item *, int);
void set_dotted(double);
void set_dashed(double);
void set_thickness(double);
void set_invisible();
virtual void set_fill(double);
};
graphic_object::graphic_object() : ntext(0), text(0), aligned(0)
{
}
void graphic_object::set_dotted(double wid)
{
lt.type = line_type::dotted;
lt.dash_width = wid;
}
void graphic_object::set_dashed(double wid)
{
lt.type = line_type::dashed;
lt.dash_width = wid;
}
void graphic_object::set_thickness(double th)
{
lt.thickness = th;
}
void graphic_object::set_fill(double)
{
}
void graphic_object::set_invisible()
{
lt.type = line_type::invisible;
}
void graphic_object::add_text(text_item *t, int a)
{
aligned = a;
int len = 0;
text_item *p;
for (p = t; p; p = p->next)
len++;
if (len == 0)
text = 0;
else {
text = new text_piece[len];
for (p = t, len = 0; p; p = p->next, len++) {
text[len].text = p->text;
p->text = 0;
text[len].adj = p->adj;
text[len].filename = p->filename;
text[len].lineno = p->lineno;
}
}
ntext = len;
}
void graphic_object::print_text()
{
double angle = 0.0;
if (aligned) {
position d(end() - start());
if (d.x != 0.0 || d.y != 0.0)
angle = atan2(d.y, d.x);
}
if (text != 0)
out->text(center(), text, ntext, angle);
}
graphic_object::~graphic_object()
{
if (text)
ad_delete(ntext) text;
}
class rectangle_object : public graphic_object {
protected:
position cent;
position dim;
public:
rectangle_object(const position &);
double width() { return dim.x; }
double height() { return dim.y; }
position origin() { return cent; }
position center() { return cent; }
position north() { return position(cent.x, cent.y + dim.y/2.0); }
position south() { return position(cent.x, cent.y - dim.y/2.0); }
position east() { return position(cent.x + dim.x/2.0, cent.y); }
position west() { return position(cent.x - dim.x/2.0, cent.y); }
position north_east() { return position(cent.x + dim.x/2.0, cent.y + dim.y/2.0); }
position north_west() { return position(cent.x - dim.x/2.0, cent.y + dim.y/2.0); }
position south_east() { return position(cent.x + dim.x/2.0, cent.y - dim.y/2.0); }
position south_west() { return position(cent.x - dim.x/2.0, cent.y - dim.y/2.0); }
object_type type() = 0;
void update_bounding_box(bounding_box *);
void move_by(const position &);
};
rectangle_object::rectangle_object(const position &d)
: dim(d)
{
}
void rectangle_object::update_bounding_box(bounding_box *p)
{
p->encompass(cent - dim/2.0);
p->encompass(cent + dim/2.0);
}
void rectangle_object::move_by(const position &a)
{
cent += a;
}
class closed_object : public rectangle_object {
public:
closed_object(const position &);
object_type type() = 0;
void set_fill(double);
protected:
double fill; // < 0 if not filled
};
closed_object::closed_object(const position &pos)
: rectangle_object(pos), fill(-1.0)
{
}
void closed_object::set_fill(double f)
{
assert(f >= 0.0);
fill = f;
}
class box_object : public closed_object {
double xrad;
double yrad;
public:
box_object(const position &, double);
object_type type() { return BOX_OBJECT; }
void print();
position north_east();
position north_west();
position south_east();
position south_west();
};
box_object::box_object(const position &pos, double r)
: closed_object(pos), xrad(dim.x > 0 ? r : -r), yrad(dim.y > 0 ? r : -r)
{
}
const double CHOP_FACTOR = 1.0 - 1.0/M_SQRT2;
position box_object::north_east()
{
return position(cent.x + dim.x/2.0 - CHOP_FACTOR*xrad,
cent.y + dim.y/2.0 - CHOP_FACTOR*yrad);
}
position box_object::north_west()
{
return position(cent.x - dim.x/2.0 + CHOP_FACTOR*xrad,
cent.y + dim.y/2.0 - CHOP_FACTOR*yrad);
}
position box_object::south_east()
{
return position(cent.x + dim.x/2.0 - CHOP_FACTOR*xrad,
cent.y - dim.y/2.0 + CHOP_FACTOR*yrad);
}
position box_object::south_west()
{
return position(cent.x - dim.x/2.0 + CHOP_FACTOR*xrad,
cent.y - dim.y/2.0 + CHOP_FACTOR*yrad);
}
void box_object::print()
{
if (lt.type == line_type::invisible && fill < 0.0)
return;
if (xrad == 0.0) {
distance dim2 = dim/2.0;
position vec[4];
vec[0] = cent + position(dim2.x, -dim2.y);
vec[1] = cent + position(dim2.x, dim2.y);
vec[2] = cent + position(-dim2.x, dim2.y);
vec[3] = cent + position(-dim2.x, -dim2.y);
out->polygon(vec, 4, lt, fill);
}
else {
distance abs_dim(fabs(dim.x), fabs(dim.y));
out->rounded_box(cent, abs_dim, fabs(xrad), lt, fill);
}
}
graphic_object *object_spec::make_box(position *curpos, direction *dirp)
{
static double last_box_height;
static double last_box_width;
static double last_box_radius;
static int have_last_box = 0;
if (!(flags & HAS_HEIGHT)) {
if ((flags & IS_SAME) && have_last_box)
height = last_box_height;
else
lookup_variable("boxht", &height);
}
if (!(flags & HAS_WIDTH)) {
if ((flags & IS_SAME) && have_last_box)
width = last_box_width;
else
lookup_variable("boxwid", &width);
}
if (!(flags & HAS_RADIUS)) {
if ((flags & IS_SAME) && have_last_box)
radius = last_box_radius;
else
lookup_variable("boxrad", &radius);
}
last_box_width = width;
last_box_height = height;
last_box_radius = radius;
have_last_box = 1;
radius = fabs(radius);
if (radius*2.0 > fabs(width))
radius = fabs(width/2.0);
if (radius*2.0 > fabs(height))
radius = fabs(height/2.0);
box_object *p = new box_object(position(width, height), radius);
if (!position_rectangle(p, curpos, dirp)) {
delete p;
p = 0;
}
return p;
}
// return non-zero for success
int object_spec::position_rectangle(rectangle_object *p,
position *curpos, direction *dirp)
{
position pos;
dir = *dirp; // ignore any direction in attribute list
position motion;
switch (dir) {
case UP_DIRECTION:
motion.y = p->height()/2.0;
break;
case DOWN_DIRECTION:
motion.y = -p->height()/2.0;
break;
case LEFT_DIRECTION:
motion.x = -p->width()/2.0;
break;
case RIGHT_DIRECTION:
motion.x = p->width()/2.0;
break;
default:
assert(0);
}
if (flags & HAS_AT) {
pos = at;
if (flags & HAS_WITH) {
place offset;
place here;
here.obj = p;
if (!with->follow(here, &offset))
return 0;
pos -= offset;
}
}
else {
pos = *curpos;
pos += motion;
}
p->move_by(pos);
pos += motion;
*curpos = pos;
return 1;
}
class block_object : public rectangle_object {
object_list oblist;
PTABLE(place) *tbl;
public:
block_object(const position &, const object_list &ol, PTABLE(place) *t);
~block_object();
place *find_label(const char *);
object_type type();
void move_by(const position &);
void print();
};
block_object::block_object(const position &d, const object_list &ol,
PTABLE(place) *t)
: oblist(ol), tbl(t), rectangle_object(d)
{
}
block_object::~block_object()
{
delete tbl;
object *p = oblist.head;
while (p != 0) {
object *tem = p;
p = p->next;
delete tem;
}
}
void block_object::print()
{
out->begin_block(south_west(), north_east());
print_object_list(oblist.head);
out->end_block();
}
static void adjust_objectless_places(PTABLE(place) *tbl, const position &a)
{
// Adjust all the labels that aren't attached to objects.
PTABLE_ITERATOR(place) iter(tbl);
const char *key;
place *pl;
while (iter.next(&key, &pl))
if (key && csupper(key[0]) && pl->obj == 0) {
pl->x += a.x;
pl->y += a.y;
}
}
void block_object::move_by(const position &a)
{
cent += a;
for (object *p = oblist.head; p; p = p->next)
p->move_by(a);
adjust_objectless_places(tbl, a);
}
place *block_object::find_label(const char *name)
{
return tbl->lookup(name);
}
object_type block_object::type()
{
return BLOCK_OBJECT;
}
graphic_object *object_spec::make_block(position *curpos, direction *dirp)
{
bounding_box bb;
for (object *p = oblist.head; p; p = p->next)
p->update_bounding_box(&bb);
position dim;
if (!bb.blank) {
position m = -(bb.ll + bb.ur)/2.0;
for (object *p = oblist.head; p; p = p->next)
p->move_by(m);
adjust_objectless_places(tbl, m);
dim = bb.ur - bb.ll;
}
if (flags & HAS_WIDTH)
dim.x = width;
if (flags & HAS_HEIGHT)
dim.y = height;
block_object *block = new block_object(dim, oblist, tbl);
if (!position_rectangle(block, curpos, dirp)) {
delete block;
block = 0;
}
tbl = 0;
oblist.head = oblist.tail = 0;
return block;
}
class text_object : public rectangle_object {
public:
text_object(const position &);
object_type type() { return TEXT_OBJECT; }
};
text_object::text_object(const position &d)
: rectangle_object(d)
{
}
graphic_object *object_spec::make_text(position *curpos, direction *dirp)
{
if (!(flags & HAS_HEIGHT)) {
lookup_variable("textht", &height);
int nitems = 0;
for (text_item *t = text; t; t = t->next)
nitems++;
height *= nitems;
}
if (!(flags & HAS_WIDTH))
lookup_variable("textwid", &width);
text_object *p = new text_object(position(width, height));
if (!position_rectangle(p, curpos, dirp)) {
delete p;
p = 0;
}
return p;
}
class ellipse_object : public closed_object {
public:
ellipse_object(const position &);
position north_east() { return position(cent.x + dim.x/(M_SQRT2*2.0),
cent.y + dim.y/(M_SQRT2*2.0)); }
position north_west() { return position(cent.x - dim.x/(M_SQRT2*2.0),
cent.y + dim.y/(M_SQRT2*2.0)); }
position south_east() { return position(cent.x + dim.x/(M_SQRT2*2.0),
cent.y - dim.y/(M_SQRT2*2.0)); }
position south_west() { return position(cent.x - dim.x/(M_SQRT2*2.0),
cent.y - dim.y/(M_SQRT2*2.0)); }
double radius() { return dim.x/2.0; }
object_type type() { return ELLIPSE_OBJECT; }
void print();
};
ellipse_object::ellipse_object(const position &d)
: closed_object(d)
{
}
void ellipse_object::print()
{
if (lt.type == line_type::invisible && fill < 0.0)
return;
out->ellipse(cent, dim, lt, fill);
}
graphic_object *object_spec::make_ellipse(position *curpos, direction *dirp)
{
static double last_ellipse_height;
static double last_ellipse_width;
static int have_last_ellipse = 0;
if (!(flags & HAS_HEIGHT)) {
if ((flags & IS_SAME) && have_last_ellipse)
height = last_ellipse_height;
else
lookup_variable("ellipseht", &height);
}
if (!(flags & HAS_WIDTH)) {
if ((flags & IS_SAME) && have_last_ellipse)
width = last_ellipse_width;
else
lookup_variable("ellipsewid", &width);
}
last_ellipse_width = width;
last_ellipse_height = height;
have_last_ellipse = 1;
ellipse_object *p = new ellipse_object(position(width, height));
if (!position_rectangle(p, curpos, dirp)) {
delete p;
return 0;
}
return p;
}
class circle_object : public ellipse_object {
public:
circle_object(double);
object_type type() { return CIRCLE_OBJECT; }
void print();
};
circle_object::circle_object(double diam)
: ellipse_object(position(diam, diam))
{
}
void circle_object::print()
{
if (lt.type == line_type::invisible && fill < 0.0)
return;
out->circle(cent, dim.x/2.0, lt, fill);
}
graphic_object *object_spec::make_circle(position *curpos, direction *dirp)
{
static double last_circle_radius;
static int have_last_circle = 0;
if (!(flags & HAS_RADIUS)) {
if ((flags & IS_SAME) && have_last_circle)
radius = last_circle_radius;
else
lookup_variable("circlerad", &radius);
}
last_circle_radius = radius;
have_last_circle = 1;
circle_object *p = new circle_object(radius*2.0);
if (!position_rectangle(p, curpos, dirp)) {
delete p;
return 0;
}
return p;
}
class move_object : public graphic_object {
position strt;
position en;
public:
move_object(const position &s, const position &e);
position origin() { return en; }
object_type type() { return MOVE_OBJECT; }
void update_bounding_box(bounding_box *);
void move_by(const position &);
};
move_object::move_object(const position &s, const position &e)
: strt(s), en(e)
{
}
void move_object::update_bounding_box(bounding_box *p)
{
p->encompass(strt);
p->encompass(en);
}
void move_object::move_by(const position &a)
{
strt += a;
en += a;
}
graphic_object *object_spec::make_move(position *curpos, direction *dirp)
{
static position last_move;
static int have_last_move = 0;
*dirp = dir;
// No need to look at at since `at' attribute sets `from' attribute.
position startpos = (flags & HAS_FROM) ? from : *curpos;
if (!(flags & HAS_SEGMENT)) {
if ((flags && IS_SAME) && have_last_move)
segment_pos = last_move;
else {
switch (dir) {
case UP_DIRECTION:
segment_pos.y = segment_height;
break;
case DOWN_DIRECTION:
segment_pos.y = -segment_height;
break;
case LEFT_DIRECTION:
segment_pos.x = -segment_width;
break;
case RIGHT_DIRECTION:
segment_pos.x = segment_width;
break;
default:
assert(0);
}
}
}
segment_list = new segment(segment_pos, segment_is_absolute, segment_list);
// Reverse the segment_list so that it's in forward order.
segment *old = segment_list;
segment_list = 0;
while (old != 0) {
segment *tem = old->next;
old->next = segment_list;
segment_list = old;
old = tem;
}
// Compute the end position.
position endpos = startpos;
for (segment *s = segment_list; s; s = s->next)
if (s->is_absolute)
endpos = s->pos;
else
endpos += s->pos;
have_last_move = 1;
last_move = endpos - startpos;
move_object *p = new move_object(startpos, endpos);
*curpos = endpos;
return p;
}
class linear_object : public graphic_object {
protected:
char arrow_at_start;
char arrow_at_end;
arrow_head_type aht;
position strt;
position en;
public:
linear_object(const position &s, const position &e);
position start() { return strt; }
position end() { return en; }
void move_by(const position &);
void update_bounding_box(bounding_box *) = 0;
object_type type() = 0;
void add_arrows(int at_start, int at_end, const arrow_head_type &);
};
class line_object : public linear_object {
protected:
position *v;
int n;
public:
line_object(const position &s, const position &e, position *, int);
~line_object();
position origin() { return strt; }
position center() { return (strt + en)/2.0; }
position north() { return (en.y - strt.y) > 0 ? en : strt; }
position south() { return (en.y - strt.y) < 0 ? en : strt; }
position east() { return (en.x - strt.x) > 0 ? en : strt; }
position west() { return (en.x - strt.x) < 0 ? en : strt; }
object_type type() { return LINE_OBJECT; }
void update_bounding_box(bounding_box *);
void print();
void move_by(const position &);
};
class arrow_object : public line_object {
public:
arrow_object(const position &, const position &, position *, int);
object_type type() { return ARROW_OBJECT; }
};
class spline_object : public line_object {
public:
spline_object(const position &, const position &, position *, int);
object_type type() { return SPLINE_OBJECT; }
void print();
void update_bounding_box(bounding_box *);
};
linear_object::linear_object(const position &s, const position &e)
: strt(s), en(e), arrow_at_start(0), arrow_at_end(0)
{
}
void linear_object::move_by(const position &a)
{
strt += a;
en += a;
}
void linear_object::add_arrows(int at_start, int at_end,
const arrow_head_type &a)
{
arrow_at_start = at_start;
arrow_at_end = at_end;
aht = a;
}
line_object::line_object(const position &s, const position &e,
position *p, int i)
: v(p), n(i), linear_object(s, e)
{
}
void line_object::print()
{
if (lt.type == line_type::invisible)
return;
out->line(strt, v, n, lt);
if (arrow_at_start)
draw_arrow(strt, strt-v[0], aht, lt);
if (arrow_at_end)
draw_arrow(en, v[n-1] - (n > 1 ? v[n - 2] : strt), aht, lt);
}
void line_object::update_bounding_box(bounding_box *p)
{
p->encompass(strt);
for (int i = 0; i < n; i++)
p->encompass(v[i]);
}
void line_object::move_by(const position &pos)
{
linear_object::move_by(pos);
for (int i = 0; i < n; i++)
v[i] += pos;
}
void spline_object::update_bounding_box(bounding_box *p)
{
p->encompass(strt);
p->encompass(en);
/*
If
p1 = q1/2 + q2/2
p2 = q1/6 + q2*5/6
p3 = q2*5/6 + q3/6
p4 = q2/2 + q3/2
[ the points for the Bezier cubic ]
and
t = .5
then
(1-t)^3*p1 + 3*t*(t - 1)^2*p2 + 3*t^2*(1-t)*p3 + t^3*p4
[ the equation for the Bezier cubic ]
= .125*q1 + .75*q2 + .125*q3
*/
for (int i = 1; i < n; i++)
p->encompass((i == 1 ? strt : v[i-2])*.125 + v[i-1]*.75 + v[i]*.125);
}
arrow_object::arrow_object(const position &s, const position &e,
position *p, int i)
: line_object(s, e, p, i)
{
}
spline_object::spline_object(const position &s, const position &e,
position *p, int i)
: line_object(s, e, p, i)
{
}
void spline_object::print()
{
if (lt.type == line_type::invisible)
return;
out->spline(strt, v, n, lt);
if (arrow_at_start)
draw_arrow(strt, strt-v[0], aht, lt);
if (arrow_at_end)
draw_arrow(en, v[n-1] - (n > 1 ? v[n - 2] : strt), aht, lt);
}
line_object::~line_object()
{
a_delete v;
}
linear_object *object_spec::make_line(position *curpos, direction *dirp)
{
static position last_line;
static int have_last_line = 0;
*dirp = dir;
// No need to look at at since `at' attribute sets `from' attribute.
position startpos = (flags & HAS_FROM) ? from : *curpos;
if (!(flags & HAS_SEGMENT)) {
if ((flags & IS_SAME) && (type == LINE_OBJECT || type == ARROW_OBJECT)
&& have_last_line)
segment_pos = last_line;
else
switch (dir) {
case UP_DIRECTION:
segment_pos.y = segment_height;
break;
case DOWN_DIRECTION:
segment_pos.y = -segment_height;
break;
case LEFT_DIRECTION:
segment_pos.x = -segment_width;
break;
case RIGHT_DIRECTION:
segment_pos.x = segment_width;
break;
default:
assert(0);
}
}
segment_list = new segment(segment_pos, segment_is_absolute, segment_list);
// reverse the segment_list so that it's in forward order
segment *old = segment_list;
segment_list = 0;
while (old != 0) {
segment *tem = old->next;
old->next = segment_list;
segment_list = old;
old = tem;
}
// Absolutise all movements
position endpos = startpos;
int nsegments = 0;
segment *s;
for (s = segment_list; s; s = s->next, nsegments++)
if (s->is_absolute)
endpos = s->pos;
else {
endpos += s->pos;
s->pos = endpos;
s->is_absolute = 1; // to avoid confusion
}
// handle chop
line_object *p = 0;
position *v = new position[nsegments];
int i = 0;
for (s = segment_list; s; s = s->next, i++)
v[i] = s->pos;
if (flags & IS_DEFAULT_CHOPPED) {
lookup_variable("circlerad", &start_chop);
end_chop = start_chop;
flags |= IS_CHOPPED;
}
if (flags & IS_CHOPPED) {
position start_chop_vec, end_chop_vec;
if (start_chop != 0.0) {
start_chop_vec = v[0] - startpos;
start_chop_vec *= start_chop / hypot(start_chop_vec);
}
if (end_chop != 0.0) {
end_chop_vec = (v[nsegments - 1]
- (nsegments > 1 ? v[nsegments - 2] : startpos));
end_chop_vec *= end_chop / hypot(end_chop_vec);
}
startpos += start_chop_vec;
v[nsegments - 1] -= end_chop_vec;
endpos -= end_chop_vec;
}
switch (type) {
case SPLINE_OBJECT:
p = new spline_object(startpos, endpos, v, nsegments);
break;
case ARROW_OBJECT:
p = new arrow_object(startpos, endpos, v, nsegments);
break;
case LINE_OBJECT:
p = new line_object(startpos, endpos, v, nsegments);
break;
default:
assert(0);
}
have_last_line = 1;
last_line = endpos - startpos;
*curpos = endpos;
return p;
}
class arc_object : public linear_object {
int clockwise;
position cent;
double rad;
public:
arc_object(int, const position &, const position &, const position &);
position origin() { return cent; }
position center() { return cent; }
double radius() { return rad; }
position north();
position south();
position east();
position west();
position north_east();
position north_west();
position south_east();
position south_west();
void update_bounding_box(bounding_box *);
object_type type() { return ARC_OBJECT; }
void print();
void move_by(const position &pos);
};
arc_object::arc_object(int cw, const position &s, const position &e,
const position &c)
: linear_object(s, e), clockwise(cw), cent(c)
{
rad = hypot(c - s);
}
void arc_object::move_by(const position &pos)
{
linear_object::move_by(pos);
cent += pos;
}
// we get arc corners from the corresponding circle
position arc_object::north()
{
position result(cent);
result.y += rad;
return result;
}
position arc_object::south()
{
position result(cent);
result.y -= rad;
return result;
}
position arc_object::east()
{
position result(cent);
result.x += rad;
return result;
}
position arc_object::west()
{
position result(cent);
result.x -= rad;
return result;
}
position arc_object::north_east()
{
position result(cent);
result.x += rad/M_SQRT2;
result.y += rad/M_SQRT2;
return result;
}
position arc_object::north_west()
{
position result(cent);
result.x -= rad/M_SQRT2;
result.y += rad/M_SQRT2;
return result;
}
position arc_object::south_east()
{
position result(cent);
result.x += rad/M_SQRT2;
result.y -= rad/M_SQRT2;
return result;
}
position arc_object::south_west()
{
position result(cent);
result.x -= rad/M_SQRT2;
result.y -= rad/M_SQRT2;
return result;
}
void arc_object::print()
{
if (lt.type == line_type::invisible)
return;
if (clockwise)
out->arc(en, cent, strt, lt);
else
out->arc(strt, cent, en, lt);
if (arrow_at_start) {
position c = cent - strt;
draw_arrow(strt,
(clockwise ? position(c.y, -c.x) : position(-c.y, c.x)),
aht, lt);
}
if (arrow_at_end) {
position e = en - cent;
draw_arrow(en,
(clockwise ? position(e.y, -e.x) : position(-e.y, e.x)),
aht, lt);
}
}
inline double max(double a, double b)
{
return a > b ? a : b;
}
void arc_object::update_bounding_box(bounding_box *p)
{
p->encompass(strt);
p->encompass(en);
position start_offset = strt - cent;
if (start_offset.x == 0.0 && start_offset.y == 0.0)
return;
position end_offset = en - cent;
if (end_offset.x == 0.0 && end_offset.y == 0.0)
return;
double start_quad = atan2(start_offset.y, start_offset.x)/(M_PI/2.0);
double end_quad = atan2(end_offset.y, end_offset.x)/(M_PI/2.0);
if (clockwise) {
double temp = start_quad;
start_quad = end_quad;
end_quad = temp;
}
if (start_quad < 0.0)
start_quad += 4.0;
while (end_quad <= start_quad)
end_quad += 4.0;
double radius = max(hypot(start_offset), hypot(end_offset));
for (int q = int(start_quad) + 1; q < end_quad; q++) {
position offset;
switch (q % 4) {
case 0:
offset.x = radius;
break;
case 1:
offset.y = radius;
break;
case 2:
offset.x = -radius;
break;
case 3:
offset.y = -radius;
break;
}
p->encompass(cent + offset);
}
}
// We ignore the with attribute. The at attribute always refers to the center.
linear_object *object_spec::make_arc(position *curpos, direction *dirp)
{
*dirp = dir;
int cw = (flags & IS_CLOCKWISE) != 0;
// compute the start
position startpos;
if (flags & HAS_FROM)
startpos = from;
else
startpos = *curpos;
if (!(flags & HAS_RADIUS))
lookup_variable("arcrad", &radius);
// compute the end
position endpos;
if (flags & HAS_TO)
endpos = to;
else {
position m(radius, radius);
// Adjust the signs.
if (cw) {
if (dir == DOWN_DIRECTION || dir == LEFT_DIRECTION)
m.x = -m.x;
if (dir == DOWN_DIRECTION || dir == RIGHT_DIRECTION)
m.y = -m.y;
*dirp = direction((dir + 3) % 4);
}
else {
if (dir == UP_DIRECTION || dir == LEFT_DIRECTION)
m.x = -m.x;
if (dir == DOWN_DIRECTION || dir == LEFT_DIRECTION)
m.y = -m.y;
*dirp = direction((dir + 1) % 4);
}
endpos = startpos + m;
}
// compute the center
position centerpos;
if (flags & HAS_AT)
centerpos = at;
else if (startpos == endpos)
centerpos = startpos;
else {
position h = (endpos - startpos)/2.0;
double d = hypot(h);
if (radius <= 0)
radius = .25;
// make the radius big enough
while (radius < d)
radius *= 2.0;
double alpha = acos(d/radius);
double theta = atan2(h.y, h.x);
if (cw)
theta -= alpha;
else
theta += alpha;
centerpos = position(cos(theta), sin(theta))*radius + startpos;
}
arc_object *p = new arc_object(cw, startpos, endpos, centerpos);
*curpos = endpos;
return p;
}
graphic_object *object_spec::make_linear(position *curpos, direction *dirp)
{
linear_object *obj;
if (type == ARC_OBJECT)
obj = make_arc(curpos, dirp);
else
obj = make_line(curpos, dirp);
if (type == ARROW_OBJECT
&& (flags & (HAS_LEFT_ARROW_HEAD|HAS_RIGHT_ARROW_HEAD)) == 0)
flags |= HAS_RIGHT_ARROW_HEAD;
if (obj && (flags & (HAS_LEFT_ARROW_HEAD|HAS_RIGHT_ARROW_HEAD))) {
arrow_head_type a;
int at_start = (flags & HAS_LEFT_ARROW_HEAD) != 0;
int at_end = (flags & HAS_RIGHT_ARROW_HEAD) != 0;
if (flags & HAS_HEIGHT)
a.height = height;
else
lookup_variable("arrowht", &a.height);
if (flags & HAS_WIDTH)
a.width = width;
else
lookup_variable("arrowwid", &a.width);
double solid;
lookup_variable("arrowhead", &solid);
a.solid = solid != 0.0;
obj->add_arrows(at_start, at_end, a);
}
return obj;
}
object *object_spec::make_object(position *curpos, direction *dirp)
{
graphic_object *obj = 0;
switch (type) {
case BLOCK_OBJECT:
obj = make_block(curpos, dirp);
break;
case BOX_OBJECT:
obj = make_box(curpos, dirp);
break;
case TEXT_OBJECT:
obj = make_text(curpos, dirp);
break;
case ELLIPSE_OBJECT:
obj = make_ellipse(curpos, dirp);
break;
case CIRCLE_OBJECT:
obj = make_circle(curpos, dirp);
break;
case MOVE_OBJECT:
obj = make_move(curpos, dirp);
break;
case ARC_OBJECT:
case LINE_OBJECT:
case SPLINE_OBJECT:
case ARROW_OBJECT:
obj = make_linear(curpos, dirp);
break;
case MARK_OBJECT:
case OTHER_OBJECT:
default:
assert(0);
break;
}
if (obj) {
if (flags & IS_INVISIBLE)
obj->set_invisible();
if (text != 0)
obj->add_text(text, (flags & IS_ALIGNED) != 0);
if (flags & IS_DOTTED)
obj->set_dotted(dash_width);
else if (flags & IS_DASHED)
obj->set_dashed(dash_width);
double th;
if (flags & HAS_THICKNESS)
th = thickness;
else
lookup_variable("linethick", &th);
obj->set_thickness(th);
if (flags & (IS_DEFAULT_FILLED|IS_FILLED)) {
if (flags & IS_DEFAULT_FILLED)
lookup_variable("fillval", &fill);
if (fill < 0.0)
error("bad fill value %1", fill);
else
obj->set_fill(fill);
}
}
return obj;
}
struct string_list {
string_list *next;
char *str;
string_list(char *);
~string_list();
};
string_list::string_list(char *s)
: next(0), str(s)
{
}
string_list::~string_list()
{
a_delete str;
}
/* A path is used to hold the argument to the with attribute. For example,
`.nw' or `.A.s' or `.A'. The major operation on a path is to take a
place and follow the path through the place to place within the place.
Note that `.A.B.C.sw' will work. */
path::path(corner c)
: label_list(0), crn(c), ypath(0)
{
}
path::path(char *l, corner c)
: crn(c), ypath(0)
{
label_list = new string_list(l);
}
path::~path()
{
while (label_list) {
string_list *tem = label_list;
label_list = label_list->next;
delete tem;
}
delete ypath;
}
void path::append(corner c)
{
assert(crn == 0);
crn = c;
}
void path::append(char *s)
{
string_list **p;
for (p = &label_list; *p; p = &(*p)->next)
;
*p = new string_list(s);
}
void path::set_ypath(path *p)
{
ypath = p;
}
// return non-zero for success
int path::follow(const place &pl, place *result) const
{
const place *p = &pl;
for (string_list *lb = label_list; lb; lb = lb->next)
if (p->obj == 0 || (p = p->obj->find_label(lb->str)) == 0) {
lex_error("object does not contain a place `%1'", lb->str);
return 0;
}
if (crn == 0 || p->obj == 0)
*result = *p;
else {
position pos = ((p->obj)->*(crn))();
result->x = pos.x;
result->y = pos.y;
result->obj = 0;
}
if (ypath) {
place tem;
if (!ypath->follow(pl, &tem))
return 0;
result->y = tem.y;
if (result->obj != tem.obj)
result->obj = 0;
}
return 1;
}
void print_object_list(object *p)
{
for (; p; p = p->next) {
p->print();
p->print_text();
}
}
void print_picture(object *obj)
{
bounding_box bb;
for (object *p = obj; p; p = p->next)
p->update_bounding_box(&bb);
double scale;
lookup_variable("scale", &scale);
out->start_picture(scale, bb.ll, bb.ur);
print_object_list(obj);
out->finish_picture();
}