freebsd-skq/sys/net/mp_ring.c
Stephen Hurd fe51d4cdfe Add knob to control tx ring abdication.
r323954 changed the mp ring behaviour when 64-bit atomics were
available to abdicate the TX ring rather than having one become a
consumer thereby running to completion on TX. The consumer of the mp
ring was then triggered in the tx task rather than blocking the TX call.
While this significantly lowered the number of RX drops in small-packet
forwarding, it also negatively impacts TX performance.

With this change, the default behaviour is reverted, causing one TX ring
to become a consumer during the enqueue call. A new sysctl,
dev.X.Y.iflib.tx_abdicate is added to control this behaviour.

Reviewed by:	gallatin
Sponsored by:	Limelight Networks
Differential Revision:	https://reviews.freebsd.org/D16302
2018-07-20 17:45:26 +00:00

564 lines
14 KiB
C

/*-
* Copyright (c) 2014 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <machine/cpu.h>
#if defined(__powerpc__) || defined(__mips__) || defined(__i386__)
#define NO_64BIT_ATOMICS
#endif
#if defined(__i386__)
#define atomic_cmpset_acq_64 atomic_cmpset_64
#define atomic_cmpset_rel_64 atomic_cmpset_64
#endif
#include <net/mp_ring.h>
union ring_state {
struct {
uint16_t pidx_head;
uint16_t pidx_tail;
uint16_t cidx;
uint16_t flags;
};
uint64_t state;
};
enum {
IDLE = 0, /* consumer ran to completion, nothing more to do. */
BUSY, /* consumer is running already, or will be shortly. */
STALLED, /* consumer stopped due to lack of resources. */
ABDICATED, /* consumer stopped even though there was work to be
done because it wants another thread to take over. */
};
static inline uint16_t
space_available(struct ifmp_ring *r, union ring_state s)
{
uint16_t x = r->size - 1;
if (s.cidx == s.pidx_head)
return (x);
else if (s.cidx > s.pidx_head)
return (s.cidx - s.pidx_head - 1);
else
return (x - s.pidx_head + s.cidx);
}
static inline uint16_t
increment_idx(struct ifmp_ring *r, uint16_t idx, uint16_t n)
{
int x = r->size - idx;
MPASS(x > 0);
return (x > n ? idx + n : n - x);
}
/* Consumer is about to update the ring's state to s */
static inline uint16_t
state_to_flags(union ring_state s, int abdicate)
{
if (s.cidx == s.pidx_tail)
return (IDLE);
else if (abdicate && s.pidx_tail != s.pidx_head)
return (ABDICATED);
return (BUSY);
}
#ifdef NO_64BIT_ATOMICS
static void
drain_ring_locked(struct ifmp_ring *r, union ring_state os, uint16_t prev, int budget)
{
union ring_state ns;
int n, pending, total;
uint16_t cidx = os.cidx;
uint16_t pidx = os.pidx_tail;
MPASS(os.flags == BUSY);
MPASS(cidx != pidx);
if (prev == IDLE)
counter_u64_add(r->starts, 1);
pending = 0;
total = 0;
while (cidx != pidx) {
/* Items from cidx to pidx are available for consumption. */
n = r->drain(r, cidx, pidx);
if (n == 0) {
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = STALLED;
r->state = ns.state;
if (prev != STALLED)
counter_u64_add(r->stalls, 1);
else if (total > 0) {
counter_u64_add(r->restarts, 1);
counter_u64_add(r->stalls, 1);
}
break;
}
cidx = increment_idx(r, cidx, n);
pending += n;
total += n;
/*
* We update the cidx only if we've caught up with the pidx, the
* real cidx is getting too far ahead of the one visible to
* everyone else, or we have exceeded our budget.
*/
if (cidx != pidx && pending < 64 && total < budget)
continue;
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = state_to_flags(ns, total >= budget);
r->state = ns.state;
if (ns.flags == ABDICATED)
counter_u64_add(r->abdications, 1);
if (ns.flags != BUSY) {
/* Wrong loop exit if we're going to stall. */
MPASS(ns.flags != STALLED);
if (prev == STALLED) {
MPASS(total > 0);
counter_u64_add(r->restarts, 1);
}
break;
}
/*
* The acquire style atomic above guarantees visibility of items
* associated with any pidx change that we notice here.
*/
pidx = ns.pidx_tail;
pending = 0;
}
}
#else
/*
* Caller passes in a state, with a guarantee that there is work to do and that
* all items up to the pidx_tail in the state are visible.
*/
static void
drain_ring_lockless(struct ifmp_ring *r, union ring_state os, uint16_t prev, int budget)
{
union ring_state ns;
int n, pending, total;
uint16_t cidx = os.cidx;
uint16_t pidx = os.pidx_tail;
MPASS(os.flags == BUSY);
MPASS(cidx != pidx);
if (prev == IDLE)
counter_u64_add(r->starts, 1);
pending = 0;
total = 0;
while (cidx != pidx) {
/* Items from cidx to pidx are available for consumption. */
n = r->drain(r, cidx, pidx);
if (n == 0) {
critical_enter();
do {
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = STALLED;
} while (atomic_cmpset_64(&r->state, os.state,
ns.state) == 0);
critical_exit();
if (prev != STALLED)
counter_u64_add(r->stalls, 1);
else if (total > 0) {
counter_u64_add(r->restarts, 1);
counter_u64_add(r->stalls, 1);
}
break;
}
cidx = increment_idx(r, cidx, n);
pending += n;
total += n;
/*
* We update the cidx only if we've caught up with the pidx, the
* real cidx is getting too far ahead of the one visible to
* everyone else, or we have exceeded our budget.
*/
if (cidx != pidx && pending < 64 && total < budget)
continue;
critical_enter();
do {
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = state_to_flags(ns, total >= budget);
} while (atomic_cmpset_acq_64(&r->state, os.state, ns.state) == 0);
critical_exit();
if (ns.flags == ABDICATED)
counter_u64_add(r->abdications, 1);
if (ns.flags != BUSY) {
/* Wrong loop exit if we're going to stall. */
MPASS(ns.flags != STALLED);
if (prev == STALLED) {
MPASS(total > 0);
counter_u64_add(r->restarts, 1);
}
break;
}
/*
* The acquire style atomic above guarantees visibility of items
* associated with any pidx change that we notice here.
*/
pidx = ns.pidx_tail;
pending = 0;
}
}
#endif
int
ifmp_ring_alloc(struct ifmp_ring **pr, int size, void *cookie, mp_ring_drain_t drain,
mp_ring_can_drain_t can_drain, struct malloc_type *mt, int flags)
{
struct ifmp_ring *r;
/* All idx are 16b so size can be 65536 at most */
if (pr == NULL || size < 2 || size > 65536 || drain == NULL ||
can_drain == NULL)
return (EINVAL);
*pr = NULL;
flags &= M_NOWAIT | M_WAITOK;
MPASS(flags != 0);
r = malloc(__offsetof(struct ifmp_ring, items[size]), mt, flags | M_ZERO);
if (r == NULL)
return (ENOMEM);
r->size = size;
r->cookie = cookie;
r->mt = mt;
r->drain = drain;
r->can_drain = can_drain;
r->enqueues = counter_u64_alloc(flags);
r->drops = counter_u64_alloc(flags);
r->starts = counter_u64_alloc(flags);
r->stalls = counter_u64_alloc(flags);
r->restarts = counter_u64_alloc(flags);
r->abdications = counter_u64_alloc(flags);
if (r->enqueues == NULL || r->drops == NULL || r->starts == NULL ||
r->stalls == NULL || r->restarts == NULL ||
r->abdications == NULL) {
ifmp_ring_free(r);
return (ENOMEM);
}
*pr = r;
#ifdef NO_64BIT_ATOMICS
mtx_init(&r->lock, "mp_ring lock", NULL, MTX_DEF);
#endif
return (0);
}
void
ifmp_ring_free(struct ifmp_ring *r)
{
if (r == NULL)
return;
if (r->enqueues != NULL)
counter_u64_free(r->enqueues);
if (r->drops != NULL)
counter_u64_free(r->drops);
if (r->starts != NULL)
counter_u64_free(r->starts);
if (r->stalls != NULL)
counter_u64_free(r->stalls);
if (r->restarts != NULL)
counter_u64_free(r->restarts);
if (r->abdications != NULL)
counter_u64_free(r->abdications);
free(r, r->mt);
}
/*
* Enqueue n items and maybe drain the ring for some time.
*
* Returns an errno.
*/
#ifdef NO_64BIT_ATOMICS
int
ifmp_ring_enqueue(struct ifmp_ring *r, void **items, int n, int budget, int abdicate)
{
union ring_state os, ns;
uint16_t pidx_start, pidx_stop;
int i;
MPASS(items != NULL);
MPASS(n > 0);
mtx_lock(&r->lock);
/*
* Reserve room for the new items. Our reservation, if successful, is
* from 'pidx_start' to 'pidx_stop'.
*/
os.state = r->state;
if (n >= space_available(r, os)) {
counter_u64_add(r->drops, n);
MPASS(os.flags != IDLE);
mtx_unlock(&r->lock);
if (os.flags == STALLED)
ifmp_ring_check_drainage(r, 0);
return (ENOBUFS);
}
ns.state = os.state;
ns.pidx_head = increment_idx(r, os.pidx_head, n);
r->state = ns.state;
pidx_start = os.pidx_head;
pidx_stop = ns.pidx_head;
/*
* Wait for other producers who got in ahead of us to enqueue their
* items, one producer at a time. It is our turn when the ring's
* pidx_tail reaches the beginning of our reservation (pidx_start).
*/
while (ns.pidx_tail != pidx_start) {
cpu_spinwait();
ns.state = r->state;
}
/* Now it is our turn to fill up the area we reserved earlier. */
i = pidx_start;
do {
r->items[i] = *items++;
if (__predict_false(++i == r->size))
i = 0;
} while (i != pidx_stop);
/*
* Update the ring's pidx_tail. The release style atomic guarantees
* that the items are visible to any thread that sees the updated pidx.
*/
os.state = ns.state = r->state;
ns.pidx_tail = pidx_stop;
if (abdicate) {
if (os.flags == IDLE)
ns.flags = ABDICATED;
}
else {
ns.flags = BUSY;
}
r->state = ns.state;
counter_u64_add(r->enqueues, n);
if (!abdicate) {
/*
* Turn into a consumer if some other thread isn't active as a consumer
* already.
*/
if (os.flags != BUSY)
drain_ring_locked(r, ns, os.flags, budget);
}
mtx_unlock(&r->lock);
return (0);
}
#else
int
ifmp_ring_enqueue(struct ifmp_ring *r, void **items, int n, int budget, int abdicate)
{
union ring_state os, ns;
uint16_t pidx_start, pidx_stop;
int i;
MPASS(items != NULL);
MPASS(n > 0);
/*
* Reserve room for the new items. Our reservation, if successful, is
* from 'pidx_start' to 'pidx_stop'.
*/
for (;;) {
os.state = r->state;
if (n >= space_available(r, os)) {
counter_u64_add(r->drops, n);
MPASS(os.flags != IDLE);
if (os.flags == STALLED)
ifmp_ring_check_drainage(r, 0);
return (ENOBUFS);
}
ns.state = os.state;
ns.pidx_head = increment_idx(r, os.pidx_head, n);
critical_enter();
if (atomic_cmpset_64(&r->state, os.state, ns.state))
break;
critical_exit();
cpu_spinwait();
}
pidx_start = os.pidx_head;
pidx_stop = ns.pidx_head;
/*
* Wait for other producers who got in ahead of us to enqueue their
* items, one producer at a time. It is our turn when the ring's
* pidx_tail reaches the beginning of our reservation (pidx_start).
*/
while (ns.pidx_tail != pidx_start) {
cpu_spinwait();
ns.state = r->state;
}
/* Now it is our turn to fill up the area we reserved earlier. */
i = pidx_start;
do {
r->items[i] = *items++;
if (__predict_false(++i == r->size))
i = 0;
} while (i != pidx_stop);
/*
* Update the ring's pidx_tail. The release style atomic guarantees
* that the items are visible to any thread that sees the updated pidx.
*/
do {
os.state = ns.state = r->state;
ns.pidx_tail = pidx_stop;
if (abdicate) {
if (os.flags == IDLE)
ns.flags = ABDICATED;
}
else {
ns.flags = BUSY;
}
} while (atomic_cmpset_rel_64(&r->state, os.state, ns.state) == 0);
critical_exit();
counter_u64_add(r->enqueues, n);
if (!abdicate) {
/*
* Turn into a consumer if some other thread isn't active as a consumer
* already.
*/
if (os.flags != BUSY)
drain_ring_lockless(r, ns, os.flags, budget);
}
return (0);
}
#endif
void
ifmp_ring_check_drainage(struct ifmp_ring *r, int budget)
{
union ring_state os, ns;
os.state = r->state;
if ((os.flags != STALLED && os.flags != ABDICATED) || // Only continue in STALLED and ABDICATED
os.pidx_head != os.pidx_tail || // Require work to be available
(os.flags != ABDICATED && r->can_drain(r) == 0)) // Can either drain, or everyone left
return;
MPASS(os.cidx != os.pidx_tail); /* implied by STALLED */
ns.state = os.state;
ns.flags = BUSY;
#ifdef NO_64BIT_ATOMICS
mtx_lock(&r->lock);
if (r->state != os.state) {
mtx_unlock(&r->lock);
return;
}
r->state = ns.state;
drain_ring_locked(r, ns, os.flags, budget);
mtx_unlock(&r->lock);
#else
/*
* The acquire style atomic guarantees visibility of items associated
* with the pidx that we read here.
*/
if (!atomic_cmpset_acq_64(&r->state, os.state, ns.state))
return;
drain_ring_lockless(r, ns, os.flags, budget);
#endif
}
void
ifmp_ring_reset_stats(struct ifmp_ring *r)
{
counter_u64_zero(r->enqueues);
counter_u64_zero(r->drops);
counter_u64_zero(r->starts);
counter_u64_zero(r->stalls);
counter_u64_zero(r->restarts);
counter_u64_zero(r->abdications);
}
int
ifmp_ring_is_idle(struct ifmp_ring *r)
{
union ring_state s;
s.state = r->state;
if (s.pidx_head == s.pidx_tail && s.pidx_tail == s.cidx &&
s.flags == IDLE)
return (1);
return (0);
}
int
ifmp_ring_is_stalled(struct ifmp_ring *r)
{
union ring_state s;
s.state = r->state;
if (s.pidx_head == s.pidx_tail && s.flags == STALLED)
return (1);
return (0);
}