freebsd kernel with SKQ
f068898e84
on SysV semaphores. The squeeze of the semaphore array in the kern_semctl() modifies sem_base for the semaphores with sem_base greater then sem_base of the removed semaphore, as well as the values of the semaphores, without locking their mutex. This can lead to (killable) hangs or unexpected behaviour of the processes performing any sem operations while other process does IPC_RMID. The semexit_myhook() eventhandler unlocks SEMUNDO_LOCK() while accessing *suptr. This allows for IPC_RMID for the sem id to be performed in parallel with undo hook referenced by the current undo structure. This leads to the panic("semexit - semid not allocated") [1]. The semaphore creation is protected by Giant, while IPC_RMID is done while only semaphore mutex is held. This seems to result in invalid values for semtot, causing random ENOSPC error returns [2]. Redo the locking of the semaphores lifetime cycle. Delegate the sem_mtx to the sole purpose of protecting semget() and semctl(IPC_RMID). Introduce new sem_undo_mtx to protect SEM_UNDO handling. Remove the Giant remnants from the code. Note that mac_sysvsem_check_semget() and mac_sysvsem_create() are now called while sem_mtx is held, as well as mac_sysvsem_cleanup() [3]. When semaphore is removed, acquire semaphore locks for all semaphores with sem_base that is going to be changed by squeeze of the sema array. The lock order is not important there, because the region is protected by sem_mtx. Organize both used and free sem_undo structures into the lists, protected by sem_undo_mtx. In semexit_myhook(), remove sem_undo structure that is being processed, from used list, without putting it onto the free to prevent modifications by other threads. This allows for sem_undo_lock to be dropped to acquire individial semaphore locks without violating lock order. Since IPC_RMID may no longer find this sem_undo, do tolerate references to unallocated semaphores in undo structure, and check sequential number to not undo unrelated semaphore with the same id. While there, convert functions definitions to ANSI C and fix small style(9) glitches. Reported by: Omer Faruk Sen <omerfsen gmail com> [1], pho [2] Reviewed by: rwatson [3] Tested by: pho MFC after: 1 month |
||
---|---|---|
bin | ||
cddl | ||
contrib | ||
crypto | ||
etc | ||
games | ||
gnu | ||
include | ||
kerberos5 | ||
lib | ||
libexec | ||
release | ||
rescue | ||
sbin | ||
secure | ||
share | ||
sys | ||
tools | ||
usr.bin | ||
usr.sbin | ||
COPYRIGHT | ||
LOCKS | ||
MAINTAINERS | ||
Makefile | ||
Makefile.inc1 | ||
ObsoleteFiles.inc | ||
README | ||
UPDATING |
This is the top level of the FreeBSD source directory. This file was last revised on: $FreeBSD$ For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information). The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree, the most commonly used one being ``world'', which rebuilds and installs everything in the FreeBSD system from the source tree except the kernel, the kernel-modules and the contents of /etc. The ``world'' target should only be used in cases where the source tree has not changed from the currently running version. See: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html for more information, including setting make(1) variables. The ``buildkernel'' and ``installkernel'' targets build and install the kernel and the modules (see below). Please see the top of the Makefile in this directory for more information on the standard build targets and compile-time flags. Building a kernel is a somewhat more involved process, documentation for which can be found at: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html And in the config(8) man page. Note: If you want to build and install the kernel with the ``buildkernel'' and ``installkernel'' targets, you might need to build world before. More information is available in the handbook. The sample kernel configuration files reside in the sys/<arch>/conf sub-directory (assuming that you've installed the kernel sources), the file named GENERIC being the one used to build your initial installation kernel. The file NOTES contains entries and documentation for all possible devices, not just those commonly used. It is the successor of the ancient LINT file, but in contrast to LINT, it is not buildable as a kernel but a pure reference and documentation file. Source Roadmap: --------------- bin System/user commands. contrib Packages contributed by 3rd parties. crypto Cryptography stuff (see crypto/README). etc Template files for /etc. games Amusements. gnu Various commands and libraries under the GNU Public License. Please see gnu/COPYING* for more information. include System include files. kerberos5 Kerberos5 (Heimdal) package. lib System libraries. libexec System daemons. release Release building Makefile & associated tools. rescue Build system for statically linked /rescue utilities. sbin System commands. secure Cryptographic libraries and commands. share Shared resources. sys Kernel sources. tools Utilities for regression testing and miscellaneous tasks. usr.bin User commands. usr.sbin System administration commands. For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html