Luigi Rizzo 85233a7d39 - fix a bug in the previous commit that was dropping the last packet
from each batch flowing on the VALE switch

- feature: add glue for 'indirect' buffers on the sender side:
  if a slot has NS_INDIRECT set, the netmap buffer contains pointer(s)
  to the actual userspace buffers, which are accessed with copyin().
     The feature is not finalised yet, as it will likely need to deal
  with some iovec variant for proper scatter/gather support.
  This will save one copy for clients (e.g. qemu) that cannot
  use the netmap buffer directly.

A curiosity: on amd64 copyin() appears to be 10-15% faster than pkt_copy()
or bcopy() at least for sizes of 256 and greater.
2013-06-05 17:27:59 +00:00

3328 lines
91 KiB
C

/*
* Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define NM_BRIDGE
/*
* This module supports memory mapped access to network devices,
* see netmap(4).
*
* The module uses a large, memory pool allocated by the kernel
* and accessible as mmapped memory by multiple userspace threads/processes.
* The memory pool contains packet buffers and "netmap rings",
* i.e. user-accessible copies of the interface's queues.
*
* Access to the network card works like this:
* 1. a process/thread issues one or more open() on /dev/netmap, to create
* select()able file descriptor on which events are reported.
* 2. on each descriptor, the process issues an ioctl() to identify
* the interface that should report events to the file descriptor.
* 3. on each descriptor, the process issues an mmap() request to
* map the shared memory region within the process' address space.
* The list of interesting queues is indicated by a location in
* the shared memory region.
* 4. using the functions in the netmap(4) userspace API, a process
* can look up the occupation state of a queue, access memory buffers,
* and retrieve received packets or enqueue packets to transmit.
* 5. using some ioctl()s the process can synchronize the userspace view
* of the queue with the actual status in the kernel. This includes both
* receiving the notification of new packets, and transmitting new
* packets on the output interface.
* 6. select() or poll() can be used to wait for events on individual
* transmit or receive queues (or all queues for a given interface).
*/
#ifdef linux
#include "bsd_glue.h"
static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev);
#endif /* linux */
#ifdef __APPLE__
#include "osx_glue.h"
#endif /* __APPLE__ */
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/param.h> /* defines used in kernel.h */
#include <sys/jail.h>
#include <sys/kernel.h> /* types used in module initialization */
#include <sys/conf.h> /* cdevsw struct */
#include <sys/uio.h> /* uio struct */
#include <sys/sockio.h>
#include <sys/socketvar.h> /* struct socket */
#include <sys/malloc.h>
#include <sys/mman.h> /* PROT_EXEC */
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <sys/socket.h> /* sockaddrs */
#include <machine/bus.h>
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/bpf.h> /* BIOCIMMEDIATE */
#include <net/vnet.h>
#include <machine/bus.h> /* bus_dmamap_* */
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
#endif /* __FreeBSD__ */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
/* XXX the following variables must be deprecated and included in nm_mem */
u_int netmap_total_buffers;
u_int netmap_buf_size;
char *netmap_buffer_base; /* address of an invalid buffer */
/* user-controlled variables */
int netmap_verbose;
static int netmap_no_timestamp; /* don't timestamp on rxsync */
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
int netmap_mitigate = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
int netmap_no_pendintr = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
int netmap_txsync_retry = 2;
SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
&netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush.");
int netmap_drop = 0; /* debugging */
int netmap_flags = 0; /* debug flags */
int netmap_fwd = 0; /* force transparent mode */
SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , "");
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , "");
#ifdef NM_BRIDGE /* support for netmap virtual switch, called VALE */
/*
* system parameters (most of them in netmap_kern.h)
* NM_NAME prefix for switch port names, default "vale"
* NM_MAXPORTS number of ports
* NM_BRIDGES max number of switches in the system.
* XXX should become a sysctl or tunable
*
* Switch ports are named valeX:Y where X is the switch name and Y
* is the port. If Y matches a physical interface name, the port is
* connected to a physical device.
*
* Unlike physical interfaces, switch ports use their own memory region
* for rings and buffers.
* The virtual interfaces use per-queue lock instead of core lock.
* In the tx loop, we aggregate traffic in batches to make all operations
* faster. The batch size is NM_BDG_BATCH
*/
#define NM_BDG_MAXRINGS 16 /* XXX unclear how many. */
#define NM_BRIDGE_RINGSIZE 1024 /* in the device */
#define NM_BDG_HASH 1024 /* forwarding table entries */
#define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */
#define NM_BRIDGES 8 /* number of bridges */
int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */
SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , "");
#ifdef linux
#define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a)
#define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a)
#else /* !linux */
#ifdef __FreeBSD__
#include <sys/endian.h>
#include <sys/refcount.h>
#endif /* __FreeBSD__ */
#define prefetch(x) __builtin_prefetch(x)
#endif /* !linux */
/*
* These are used to handle reference counters for bridge ports.
*/
#define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount)
#define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount)
static void bdg_netmap_attach(struct netmap_adapter *);
static int bdg_netmap_reg(struct ifnet *ifp, int onoff);
static int kern_netmap_regif(struct nmreq *nmr);
/* per-tx-queue entry */
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *ft_buf;
uint16_t _ft_dst; /* dst port, unused */
uint16_t ft_flags; /* flags, e.g. indirect */
uint16_t ft_len; /* src len */
uint16_t ft_next; /* next packet to same destination */
};
/* We need to build a list of buffers going to each destination.
* Each buffer is in one entry of struct nm_bdg_fwd, we use ft_next
* to build the list, and struct nm_bdg_q below for the queue.
* The structure should compact because potentially we have a lot
* of destinations.
*/
struct nm_bdg_q {
uint16_t bq_head;
uint16_t bq_tail;
};
struct nm_hash_ent {
uint64_t mac; /* the top 2 bytes are the epoch */
uint64_t ports;
};
/*
* Interfaces for a bridge are all in bdg_ports[].
* The array has fixed size, an empty entry does not terminate
* the search. But lookups only occur on attach/detach so we
* don't mind if they are slow.
*
* The bridge is non blocking on the transmit ports.
*
* bdg_lock protects accesses to the bdg_ports array.
* This is a rw lock (or equivalent).
*/
struct nm_bridge {
int namelen; /* 0 means free */
/* XXX what is the proper alignment/layout ? */
NM_RWLOCK_T bdg_lock; /* protects bdg_ports */
struct netmap_adapter *bdg_ports[NM_BDG_MAXPORTS];
char basename[IFNAMSIZ];
/*
* The function to decide the destination port.
* It returns either of an index of the destination port,
* NM_BDG_BROADCAST to broadcast this packet, or NM_BDG_NOPORT not to
* forward this packet. ring_nr is the source ring index, and the
* function may overwrite this value to forward this packet to a
* different ring index.
* This function must be set by netmap_bdgctl().
*/
bdg_lookup_fn_t nm_bdg_lookup;
/* the forwarding table, MAC+ports */
struct nm_hash_ent ht[NM_BDG_HASH];
};
struct nm_bridge nm_bridges[NM_BRIDGES];
NM_LOCK_T netmap_bridge_mutex;
/* other OS will have these macros defined in their own glue code. */
#ifdef __FreeBSD__
#define BDG_LOCK() mtx_lock(&netmap_bridge_mutex)
#define BDG_UNLOCK() mtx_unlock(&netmap_bridge_mutex)
#define BDG_WLOCK(b) rw_wlock(&(b)->bdg_lock)
#define BDG_WUNLOCK(b) rw_wunlock(&(b)->bdg_lock)
#define BDG_RLOCK(b) rw_rlock(&(b)->bdg_lock)
#define BDG_RUNLOCK(b) rw_runlock(&(b)->bdg_lock)
/* set/get variables. OS-specific macros may wrap these
* assignments into read/write lock or similar
*/
#define BDG_SET_VAR(lval, p) (lval = p)
#define BDG_GET_VAR(lval) (lval)
#define BDG_FREE(p) free(p, M_DEVBUF)
#endif /* __FreeBSD__ */
static __inline int
nma_is_vp(struct netmap_adapter *na)
{
return na->nm_register == bdg_netmap_reg;
}
static __inline int
nma_is_host(struct netmap_adapter *na)
{
return na->nm_register == NULL;
}
static __inline int
nma_is_hw(struct netmap_adapter *na)
{
/* In case of sw adapter, nm_register is NULL */
return !nma_is_vp(na) && !nma_is_host(na);
}
/*
* Regarding holding a NIC, if the NIC is owned by the kernel
* (i.e., bridge), neither another bridge nor user can use it;
* if the NIC is owned by a user, only users can share it.
* Evaluation must be done under NMA_LOCK().
*/
#define NETMAP_OWNED_BY_KERN(ifp) (!nma_is_vp(NA(ifp)) && NA(ifp)->na_bdg)
#define NETMAP_OWNED_BY_ANY(ifp) \
(NETMAP_OWNED_BY_KERN(ifp) || (NA(ifp)->refcount > 0))
/*
* NA(ifp)->bdg_port port index
*/
// XXX only for multiples of 64 bytes, non overlapped.
static inline void
pkt_copy(void *_src, void *_dst, int l)
{
uint64_t *src = _src;
uint64_t *dst = _dst;
if (unlikely(l >= 1024)) {
bcopy(src, dst, l);
return;
}
for (; likely(l > 0); l-=64) {
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
}
}
/*
* locate a bridge among the existing ones.
* a ':' in the name terminates the bridge name. Otherwise, just NM_NAME.
* We assume that this is called with a name of at least NM_NAME chars.
*/
static struct nm_bridge *
nm_find_bridge(const char *name, int create)
{
int i, l, namelen;
struct nm_bridge *b = NULL;
namelen = strlen(NM_NAME); /* base length */
l = strlen(name); /* actual length */
for (i = namelen + 1; i < l; i++) {
if (name[i] == ':') {
namelen = i;
break;
}
}
if (namelen >= IFNAMSIZ)
namelen = IFNAMSIZ;
ND("--- prefix is '%.*s' ---", namelen, name);
BDG_LOCK();
/* lookup the name, remember empty slot if there is one */
for (i = 0; i < NM_BRIDGES; i++) {
struct nm_bridge *x = nm_bridges + i;
if (x->namelen == 0) {
if (create && b == NULL)
b = x; /* record empty slot */
} else if (x->namelen != namelen) {
continue;
} else if (strncmp(name, x->basename, namelen) == 0) {
ND("found '%.*s' at %d", namelen, name, i);
b = x;
break;
}
}
if (i == NM_BRIDGES && b) { /* name not found, can create entry */
strncpy(b->basename, name, namelen);
b->namelen = namelen;
/* set the default function */
b->nm_bdg_lookup = netmap_bdg_learning;
/* reset the MAC address table */
bzero(b->ht, sizeof(struct nm_hash_ent) * NM_BDG_HASH);
}
BDG_UNLOCK();
return b;
}
/*
* Free the forwarding tables for rings attached to switch ports.
*/
static void
nm_free_bdgfwd(struct netmap_adapter *na)
{
int nrings, i;
struct netmap_kring *kring;
nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings;
kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings;
for (i = 0; i < nrings; i++) {
if (kring[i].nkr_ft) {
free(kring[i].nkr_ft, M_DEVBUF);
kring[i].nkr_ft = NULL; /* protect from freeing twice */
}
}
if (nma_is_hw(na))
nm_free_bdgfwd(SWNA(na->ifp));
}
/*
* Allocate the forwarding tables for the rings attached to the bridge ports.
*/
static int
nm_alloc_bdgfwd(struct netmap_adapter *na)
{
int nrings, l, i, num_dstq;
struct netmap_kring *kring;
/* all port:rings + broadcast */
num_dstq = NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1;
l = sizeof(struct nm_bdg_fwd) * NM_BDG_BATCH;
l += sizeof(struct nm_bdg_q) * num_dstq;
l += sizeof(uint16_t) * NM_BDG_BATCH;
nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings;
kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings;
for (i = 0; i < nrings; i++) {
struct nm_bdg_fwd *ft;
struct nm_bdg_q *dstq;
int j;
ft = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO);
if (!ft) {
nm_free_bdgfwd(na);
return ENOMEM;
}
dstq = (struct nm_bdg_q *)(ft + NM_BDG_BATCH);
for (j = 0; j < num_dstq; j++)
dstq[j].bq_head = dstq[j].bq_tail = NM_BDG_BATCH;
kring[i].nkr_ft = ft;
}
if (nma_is_hw(na))
nm_alloc_bdgfwd(SWNA(na->ifp));
return 0;
}
#endif /* NM_BRIDGE */
/*
* Fetch configuration from the device, to cope with dynamic
* reconfigurations after loading the module.
*/
static int
netmap_update_config(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
u_int txr, txd, rxr, rxd;
txr = txd = rxr = rxd = 0;
if (na->nm_config) {
na->nm_config(ifp, &txr, &txd, &rxr, &rxd);
} else {
/* take whatever we had at init time */
txr = na->num_tx_rings;
txd = na->num_tx_desc;
rxr = na->num_rx_rings;
rxd = na->num_rx_desc;
}
if (na->num_tx_rings == txr && na->num_tx_desc == txd &&
na->num_rx_rings == rxr && na->num_rx_desc == rxd)
return 0; /* nothing changed */
if (netmap_verbose || na->refcount > 0) {
D("stored config %s: txring %d x %d, rxring %d x %d",
ifp->if_xname,
na->num_tx_rings, na->num_tx_desc,
na->num_rx_rings, na->num_rx_desc);
D("new config %s: txring %d x %d, rxring %d x %d",
ifp->if_xname, txr, txd, rxr, rxd);
}
if (na->refcount == 0) {
D("configuration changed (but fine)");
na->num_tx_rings = txr;
na->num_tx_desc = txd;
na->num_rx_rings = rxr;
na->num_rx_desc = rxd;
return 0;
}
D("configuration changed while active, this is bad...");
return 1;
}
/*------------- memory allocator -----------------*/
#include "netmap_mem2.c"
/*------------ end of memory allocator ----------*/
/* Structure associated to each thread which registered an interface.
*
* The first 4 fields of this structure are written by NIOCREGIF and
* read by poll() and NIOC?XSYNC.
* There is low contention among writers (actually, a correct user program
* should have no contention among writers) and among writers and readers,
* so we use a single global lock to protect the structure initialization.
* Since initialization involves the allocation of memory, we reuse the memory
* allocator lock.
* Read access to the structure is lock free. Readers must check that
* np_nifp is not NULL before using the other fields.
* If np_nifp is NULL initialization has not been performed, so they should
* return an error to userlevel.
*
* The ref_done field is used to regulate access to the refcount in the
* memory allocator. The refcount must be incremented at most once for
* each open("/dev/netmap"). The increment is performed by the first
* function that calls netmap_get_memory() (currently called by
* mmap(), NIOCGINFO and NIOCREGIF).
* If the refcount is incremented, it is then decremented when the
* private structure is destroyed.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */
struct ifnet *np_ifp; /* device for which we hold a reference */
int np_ringid; /* from the ioctl */
u_int np_qfirst, np_qlast; /* range of rings to scan */
uint16_t np_txpoll;
unsigned long ref_done; /* use with NMA_LOCK held */
};
static int
netmap_get_memory(struct netmap_priv_d* p)
{
int error = 0;
NMA_LOCK();
if (!p->ref_done) {
error = netmap_memory_finalize();
if (!error)
p->ref_done = 1;
}
NMA_UNLOCK();
return error;
}
/*
* File descriptor's private data destructor.
*
* Call nm_register(ifp,0) to stop netmap mode on the interface and
* revert to normal operation. We expect that np_ifp has not gone.
*/
/* call with NMA_LOCK held */
static void
netmap_dtor_locked(void *data)
{
struct netmap_priv_d *priv = data;
struct ifnet *ifp = priv->np_ifp;
struct netmap_adapter *na = NA(ifp);
struct netmap_if *nifp = priv->np_nifp;
na->refcount--;
if (na->refcount <= 0) { /* last instance */
u_int i, j, lim;
if (netmap_verbose)
D("deleting last instance for %s", ifp->if_xname);
/*
* (TO CHECK) This function is only called
* when the last reference to this file descriptor goes
* away. This means we cannot have any pending poll()
* or interrupt routine operating on the structure.
*/
na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
/* Wake up any sleeping threads. netmap_poll will
* then return POLLERR
*/
for (i = 0; i < na->num_tx_rings + 1; i++)
selwakeuppri(&na->tx_rings[i].si, PI_NET);
for (i = 0; i < na->num_rx_rings + 1; i++)
selwakeuppri(&na->rx_rings[i].si, PI_NET);
selwakeuppri(&na->tx_si, PI_NET);
selwakeuppri(&na->rx_si, PI_NET);
#ifdef NM_BRIDGE
nm_free_bdgfwd(na);
#endif /* NM_BRIDGE */
/* release all buffers */
for (i = 0; i < na->num_tx_rings + 1; i++) {
struct netmap_ring *ring = na->tx_rings[i].ring;
lim = na->tx_rings[i].nkr_num_slots;
for (j = 0; j < lim; j++)
netmap_free_buf(nifp, ring->slot[j].buf_idx);
/* knlist_destroy(&na->tx_rings[i].si.si_note); */
mtx_destroy(&na->tx_rings[i].q_lock);
}
for (i = 0; i < na->num_rx_rings + 1; i++) {
struct netmap_ring *ring = na->rx_rings[i].ring;
lim = na->rx_rings[i].nkr_num_slots;
for (j = 0; j < lim; j++)
netmap_free_buf(nifp, ring->slot[j].buf_idx);
/* knlist_destroy(&na->rx_rings[i].si.si_note); */
mtx_destroy(&na->rx_rings[i].q_lock);
}
/* XXX kqueue(9) needed; these will mirror knlist_init. */
/* knlist_destroy(&na->tx_si.si_note); */
/* knlist_destroy(&na->rx_si.si_note); */
netmap_free_rings(na);
if (nma_is_hw(na))
SWNA(ifp)->tx_rings = SWNA(ifp)->rx_rings = NULL;
}
netmap_if_free(nifp);
}
/* we assume netmap adapter exists */
static void
nm_if_rele(struct ifnet *ifp)
{
#ifndef NM_BRIDGE
if_rele(ifp);
#else /* NM_BRIDGE */
int i, full = 0, is_hw;
struct nm_bridge *b;
struct netmap_adapter *na;
/* I can be called not only for get_ifp()-ed references where netmap's
* capability is guaranteed, but also for non-netmap-capable NICs.
*/
if (!NETMAP_CAPABLE(ifp) || !NA(ifp)->na_bdg) {
if_rele(ifp);
return;
}
if (!DROP_BDG_REF(ifp))
return;
na = NA(ifp);
b = na->na_bdg;
is_hw = nma_is_hw(na);
BDG_WLOCK(b);
ND("want to disconnect %s from the bridge", ifp->if_xname);
full = 0;
/* remove the entry from the bridge, also check
* if there are any leftover interfaces
* XXX we should optimize this code, e.g. going directly
* to na->bdg_port, and having a counter of ports that
* are connected. But it is not in a critical path.
* In NIC's case, index of sw na is always higher than hw na
*/
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
struct netmap_adapter *tmp = BDG_GET_VAR(b->bdg_ports[i]);
if (tmp == na) {
/* disconnect from bridge */
BDG_SET_VAR(b->bdg_ports[i], NULL);
na->na_bdg = NULL;
if (is_hw && SWNA(ifp)->na_bdg) {
/* disconnect sw adapter too */
int j = SWNA(ifp)->bdg_port;
BDG_SET_VAR(b->bdg_ports[j], NULL);
SWNA(ifp)->na_bdg = NULL;
}
} else if (tmp != NULL) {
full = 1;
}
}
BDG_WUNLOCK(b);
if (full == 0) {
ND("marking bridge %d as free", b - nm_bridges);
b->namelen = 0;
b->nm_bdg_lookup = NULL;
}
if (na->na_bdg) { /* still attached to the bridge */
D("ouch, cannot find ifp to remove");
} else if (is_hw) {
if_rele(ifp);
} else {
bzero(na, sizeof(*na));
free(na, M_DEVBUF);
bzero(ifp, sizeof(*ifp));
free(ifp, M_DEVBUF);
}
#endif /* NM_BRIDGE */
}
static void
netmap_dtor(void *data)
{
struct netmap_priv_d *priv = data;
struct ifnet *ifp = priv->np_ifp;
NMA_LOCK();
if (ifp) {
struct netmap_adapter *na = NA(ifp);
if (na->na_bdg)
BDG_WLOCK(na->na_bdg);
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
netmap_dtor_locked(data);
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
if (na->na_bdg)
BDG_WUNLOCK(na->na_bdg);
nm_if_rele(ifp); /* might also destroy *na */
}
if (priv->ref_done) {
netmap_memory_deref();
}
NMA_UNLOCK();
bzero(priv, sizeof(*priv)); /* XXX for safety */
free(priv, M_DEVBUF);
}
#ifdef __FreeBSD__
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
/*
* In order to track whether pages are still mapped, we hook into
* the standard cdev_pager and intercept the constructor and
* destructor.
* XXX but then ? Do we really use the information ?
* Need to investigate.
*/
static struct cdev_pager_ops saved_cdev_pager_ops;
static int
netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
if (netmap_verbose)
D("first mmap for %p", handle);
return saved_cdev_pager_ops.cdev_pg_ctor(handle,
size, prot, foff, cred, color);
}
static void
netmap_dev_pager_dtor(void *handle)
{
saved_cdev_pager_ops.cdev_pg_dtor(handle);
ND("ready to release memory for %p", handle);
}
static struct cdev_pager_ops netmap_cdev_pager_ops = {
.cdev_pg_ctor = netmap_dev_pager_ctor,
.cdev_pg_dtor = netmap_dev_pager_dtor,
.cdev_pg_fault = NULL,
};
// XXX check whether we need netmap_mmap_single _and_ netmap_mmap
static int
netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
vm_size_t objsize, vm_object_t *objp, int prot)
{
vm_object_t obj;
ND("cdev %p foff %jd size %jd objp %p prot %d", cdev,
(intmax_t )*foff, (intmax_t )objsize, objp, prot);
obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff,
curthread->td_ucred);
ND("returns obj %p", obj);
if (obj == NULL)
return EINVAL;
if (saved_cdev_pager_ops.cdev_pg_fault == NULL) {
ND("initialize cdev_pager_ops");
saved_cdev_pager_ops = *(obj->un_pager.devp.ops);
netmap_cdev_pager_ops.cdev_pg_fault =
saved_cdev_pager_ops.cdev_pg_fault;
};
obj->un_pager.devp.ops = &netmap_cdev_pager_ops;
*objp = obj;
return 0;
}
#endif /* __FreeBSD__ */
/*
* mmap(2) support for the "netmap" device.
*
* Expose all the memory previously allocated by our custom memory
* allocator: this way the user has only to issue a single mmap(2), and
* can work on all the data structures flawlessly.
*
* Return 0 on success, -1 otherwise.
*/
#ifdef __FreeBSD__
static int
netmap_mmap(__unused struct cdev *dev,
#if __FreeBSD_version < 900000
vm_offset_t offset, vm_paddr_t *paddr, int nprot
#else
vm_ooffset_t offset, vm_paddr_t *paddr, int nprot,
__unused vm_memattr_t *memattr
#endif
)
{
int error = 0;
struct netmap_priv_d *priv;
if (nprot & PROT_EXEC)
return (-1); // XXX -1 or EINVAL ?
error = devfs_get_cdevpriv((void **)&priv);
if (error == EBADF) { /* called on fault, memory is initialized */
ND(5, "handling fault at ofs 0x%x", offset);
error = 0;
} else if (error == 0) /* make sure memory is set */
error = netmap_get_memory(priv);
if (error)
return (error);
ND("request for offset 0x%x", (uint32_t)offset);
*paddr = netmap_ofstophys(offset);
return (*paddr ? 0 : ENOMEM);
}
static int
netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
if (netmap_verbose)
D("dev %p fflag 0x%x devtype %d td %p",
dev, fflag, devtype, td);
return 0;
}
static int
netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct netmap_priv_d *priv;
int error;
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (priv == NULL)
return ENOMEM;
error = devfs_set_cdevpriv(priv, netmap_dtor);
if (error)
return error;
return 0;
}
#endif /* __FreeBSD__ */
/*
* Handlers for synchronization of the queues from/to the host.
* Netmap has two operating modes:
* - in the default mode, the rings connected to the host stack are
* just another ring pair managed by userspace;
* - in transparent mode (XXX to be defined) incoming packets
* (from the host or the NIC) are marked as NS_FORWARD upon
* arrival, and the user application has a chance to reset the
* flag for packets that should be dropped.
* On the RXSYNC or poll(), packets in RX rings between
* kring->nr_kcur and ring->cur with NS_FORWARD still set are moved
* to the other side.
* The transfer NIC --> host is relatively easy, just encapsulate
* into mbufs and we are done. The host --> NIC side is slightly
* harder because there might not be room in the tx ring so it
* might take a while before releasing the buffer.
*/
/*
* pass a chain of buffers to the host stack as coming from 'dst'
*/
static void
netmap_send_up(struct ifnet *dst, struct mbuf *head)
{
struct mbuf *m;
/* send packets up, outside the lock */
while ((m = head) != NULL) {
head = head->m_nextpkt;
m->m_nextpkt = NULL;
if (netmap_verbose & NM_VERB_HOST)
D("sending up pkt %p size %d", m, MBUF_LEN(m));
NM_SEND_UP(dst, m);
}
}
struct mbq {
struct mbuf *head;
struct mbuf *tail;
int count;
};
/*
* put a copy of the buffers marked NS_FORWARD into an mbuf chain.
* Run from hwcur to cur - reserved
*/
static void
netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
{
/* Take packets from hwcur to cur-reserved and pass them up.
* In case of no buffers we give up. At the end of the loop,
* the queue is drained in all cases.
* XXX handle reserved
*/
int k = kring->ring->cur - kring->ring->reserved;
u_int n, lim = kring->nkr_num_slots - 1;
struct mbuf *m, *tail = q->tail;
if (k < 0)
k = k + kring->nkr_num_slots;
for (n = kring->nr_hwcur; n != k;) {
struct netmap_slot *slot = &kring->ring->slot[n];
n = (n == lim) ? 0 : n + 1;
if ((slot->flags & NS_FORWARD) == 0 && !force)
continue;
if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
D("bad pkt at %d len %d", n, slot->len);
continue;
}
slot->flags &= ~NS_FORWARD; // XXX needed ?
m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL);
if (m == NULL)
break;
if (tail)
tail->m_nextpkt = m;
else
q->head = m;
tail = m;
q->count++;
m->m_nextpkt = NULL;
}
q->tail = tail;
}
/*
* called under main lock to send packets from the host to the NIC
* The host ring has packets from nr_hwcur to (cur - reserved)
* to be sent down. We scan the tx rings, which have just been
* flushed so nr_hwcur == cur. Pushing packets down means
* increment cur and decrement avail.
* XXX to be verified
*/
static void
netmap_sw_to_nic(struct netmap_adapter *na)
{
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
struct netmap_kring *k1 = &na->tx_rings[0];
int i, howmany, src_lim, dst_lim;
howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */
src_lim = kring->nkr_num_slots;
for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) {
ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail);
dst_lim = k1->nkr_num_slots;
while (howmany > 0 && k1->ring->avail > 0) {
struct netmap_slot *src, *dst, tmp;
src = &kring->ring->slot[kring->nr_hwcur];
dst = &k1->ring->slot[k1->ring->cur];
tmp = *src;
src->buf_idx = dst->buf_idx;
src->flags = NS_BUF_CHANGED;
dst->buf_idx = tmp.buf_idx;
dst->len = tmp.len;
dst->flags = NS_BUF_CHANGED;
ND("out len %d buf %d from %d to %d",
dst->len, dst->buf_idx,
kring->nr_hwcur, k1->ring->cur);
if (++kring->nr_hwcur >= src_lim)
kring->nr_hwcur = 0;
howmany--;
kring->nr_hwavail--;
if (++k1->ring->cur >= dst_lim)
k1->ring->cur = 0;
k1->ring->avail--;
}
kring->ring->cur = kring->nr_hwcur; // XXX
k1++;
}
}
/*
* netmap_sync_to_host() passes packets up. We are called from a
* system call in user process context, and the only contention
* can be among multiple user threads erroneously calling
* this routine concurrently.
*/
static void
netmap_sync_to_host(struct netmap_adapter *na)
{
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
struct netmap_ring *ring = kring->ring;
u_int k, lim = kring->nkr_num_slots - 1;
struct mbq q = { NULL, NULL };
k = ring->cur;
if (k > lim) {
netmap_ring_reinit(kring);
return;
}
// na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
/* Take packets from hwcur to cur and pass them up.
* In case of no buffers we give up. At the end of the loop,
* the queue is drained in all cases.
*/
netmap_grab_packets(kring, &q, 1);
kring->nr_hwcur = k;
kring->nr_hwavail = ring->avail = lim;
// na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
netmap_send_up(na->ifp, q.head);
}
/* SWNA(ifp)->txrings[0] is always NA(ifp)->txrings[NA(ifp)->num_txrings] */
static int
netmap_bdg_to_host(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
(void)ring_nr;
(void)do_lock;
netmap_sync_to_host(NA(ifp));
return 0;
}
/*
* rxsync backend for packets coming from the host stack.
* They have been put in the queue by netmap_start() so we
* need to protect access to the kring using a lock.
*
* This routine also does the selrecord if called from the poll handler
* (we know because td != NULL).
*
* NOTE: on linux, selrecord() is defined as a macro and uses pwait
* as an additional hidden argument.
*/
static void
netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
{
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
struct netmap_ring *ring = kring->ring;
u_int j, n, lim = kring->nkr_num_slots;
u_int k = ring->cur, resvd = ring->reserved;
(void)pwait; /* disable unused warnings */
na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
if (k >= lim) {
netmap_ring_reinit(kring);
return;
}
/* new packets are already set in nr_hwavail */
/* skip past packets that userspace has released */
j = kring->nr_hwcur;
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim - resvd;
}
if (j != k) {
n = k >= j ? k - j : k + lim - j;
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
k = ring->avail = kring->nr_hwavail - resvd;
if (k == 0 && td)
selrecord(td, &kring->si);
if (k && (netmap_verbose & NM_VERB_HOST))
D("%d pkts from stack", k);
na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
}
/*
* get a refcounted reference to an interface.
* Return ENXIO if the interface does not exist, EINVAL if netmap
* is not supported by the interface.
* If successful, hold a reference.
*
* During the NIC is attached to a bridge, reference is managed
* at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as
* virtual ports. Hence, on the final DROP_BDG_REF(), the NIC
* is detached from the bridge, then ifp's refcount is dropped (this
* is equivalent to that ifp is destroyed in case of virtual ports.
*
* This function uses if_rele() when we want to prevent the NIC from
* being detached from the bridge in error handling. But once refcount
* is acquired by this function, it must be released using nm_if_rele().
*/
static int
get_ifp(struct nmreq *nmr, struct ifnet **ifp)
{
const char *name = nmr->nr_name;
int namelen = strlen(name);
#ifdef NM_BRIDGE
struct ifnet *iter = NULL;
int no_prefix = 0;
do {
struct nm_bridge *b;
struct netmap_adapter *na;
int i, cand = -1, cand2 = -1;
if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) {
no_prefix = 1;
break;
}
b = nm_find_bridge(name, 1 /* create a new one if no exist */ );
if (b == NULL) {
D("no bridges available for '%s'", name);
return (ENXIO);
}
/* Now we are sure that name starts with the bridge's name */
BDG_WLOCK(b);
/* lookup in the local list of ports */
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
na = BDG_GET_VAR(b->bdg_ports[i]);
if (na == NULL) {
if (cand == -1)
cand = i; /* potential insert point */
else if (cand2 == -1)
cand2 = i; /* for host stack */
continue;
}
iter = na->ifp;
/* XXX make sure the name only contains one : */
if (!strcmp(iter->if_xname, name) /* virtual port */ ||
(namelen > b->namelen && !strcmp(iter->if_xname,
name + b->namelen + 1)) /* NIC */) {
ADD_BDG_REF(iter);
ND("found existing interface");
BDG_WUNLOCK(b);
break;
}
}
if (i < NM_BDG_MAXPORTS) /* already unlocked */
break;
if (cand == -1) {
D("bridge full, cannot create new port");
no_port:
BDG_WUNLOCK(b);
*ifp = NULL;
return EINVAL;
}
ND("create new bridge port %s", name);
/*
* create a struct ifnet for the new port.
* The forwarding table is attached to the kring(s).
*/
/*
* try see if there is a matching NIC with this name
* (after the bridge's name)
*/
iter = ifunit_ref(name + b->namelen + 1);
if (!iter) { /* this is a virtual port */
/* Create a temporary NA with arguments, then
* bdg_netmap_attach() will allocate the real one
* and attach it to the ifp
*/
struct netmap_adapter tmp_na;
if (nmr->nr_cmd) /* nr_cmd must be for a NIC */
goto no_port;
bzero(&tmp_na, sizeof(tmp_na));
/* bound checking */
if (nmr->nr_tx_rings < 1)
nmr->nr_tx_rings = 1;
if (nmr->nr_tx_rings > NM_BDG_MAXRINGS)
nmr->nr_tx_rings = NM_BDG_MAXRINGS;
tmp_na.num_tx_rings = nmr->nr_tx_rings;
if (nmr->nr_rx_rings < 1)
nmr->nr_rx_rings = 1;
if (nmr->nr_rx_rings > NM_BDG_MAXRINGS)
nmr->nr_rx_rings = NM_BDG_MAXRINGS;
tmp_na.num_rx_rings = nmr->nr_rx_rings;
iter = malloc(sizeof(*iter), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!iter)
goto no_port;
strcpy(iter->if_xname, name);
tmp_na.ifp = iter;
/* bdg_netmap_attach creates a struct netmap_adapter */
bdg_netmap_attach(&tmp_na);
} else if (NETMAP_CAPABLE(iter)) { /* this is a NIC */
/* cannot attach the NIC that any user or another
* bridge already holds.
*/
if (NETMAP_OWNED_BY_ANY(iter) || cand2 == -1) {
ifunit_rele:
if_rele(iter); /* don't detach from bridge */
goto no_port;
}
/* bind the host stack to the bridge */
if (nmr->nr_arg1 == NETMAP_BDG_HOST) {
BDG_SET_VAR(b->bdg_ports[cand2], SWNA(iter));
SWNA(iter)->bdg_port = cand2;
SWNA(iter)->na_bdg = b;
}
} else /* not a netmap-capable NIC */
goto ifunit_rele;
na = NA(iter);
na->bdg_port = cand;
/* bind the port to the bridge (virtual ports are not active) */
BDG_SET_VAR(b->bdg_ports[cand], na);
na->na_bdg = b;
ADD_BDG_REF(iter);
BDG_WUNLOCK(b);
ND("attaching virtual bridge %p", b);
} while (0);
*ifp = iter;
if (! *ifp)
#endif /* NM_BRIDGE */
*ifp = ifunit_ref(name);
if (*ifp == NULL)
return (ENXIO);
/* can do this if the capability exists and if_pspare[0]
* points to the netmap descriptor.
*/
if (NETMAP_CAPABLE(*ifp)) {
#ifdef NM_BRIDGE
/* Users cannot use the NIC attached to a bridge directly */
if (no_prefix && NETMAP_OWNED_BY_KERN(*ifp)) {
if_rele(*ifp); /* don't detach from bridge */
return EINVAL;
} else
#endif /* NM_BRIDGE */
return 0; /* valid pointer, we hold the refcount */
}
nm_if_rele(*ifp);
return EINVAL; // not NETMAP capable
}
/*
* Error routine called when txsync/rxsync detects an error.
* Can't do much more than resetting cur = hwcur, avail = hwavail.
* Return 1 on reinit.
*
* This routine is only called by the upper half of the kernel.
* It only reads hwcur (which is changed only by the upper half, too)
* and hwavail (which may be changed by the lower half, but only on
* a tx ring and only to increase it, so any error will be recovered
* on the next call). For the above, we don't strictly need to call
* it under lock.
*/
int
netmap_ring_reinit(struct netmap_kring *kring)
{
struct netmap_ring *ring = kring->ring;
u_int i, lim = kring->nkr_num_slots - 1;
int errors = 0;
RD(10, "called for %s", kring->na->ifp->if_xname);
if (ring->cur > lim)
errors++;
for (i = 0; i <= lim; i++) {
u_int idx = ring->slot[i].buf_idx;
u_int len = ring->slot[i].len;
if (idx < 2 || idx >= netmap_total_buffers) {
if (!errors++)
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
ring->slot[i].buf_idx = 0;
ring->slot[i].len = 0;
} else if (len > NETMAP_BUF_SIZE) {
ring->slot[i].len = 0;
if (!errors++)
D("bad len %d at slot %d idx %d",
len, i, idx);
}
}
if (errors) {
int pos = kring - kring->na->tx_rings;
int n = kring->na->num_tx_rings + 1;
RD(10, "total %d errors", errors);
errors++;
RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
kring->na->ifp->if_xname,
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
ring->cur, kring->nr_hwcur,
ring->avail, kring->nr_hwavail);
ring->cur = kring->nr_hwcur;
ring->avail = kring->nr_hwavail;
}
return (errors ? 1 : 0);
}
/*
* Set the ring ID. For devices with a single queue, a request
* for all rings is the same as a single ring.
*/
static int
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
{
struct ifnet *ifp = priv->np_ifp;
struct netmap_adapter *na = NA(ifp);
u_int i = ringid & NETMAP_RING_MASK;
/* initially (np_qfirst == np_qlast) we don't want to lock */
int need_lock = (priv->np_qfirst != priv->np_qlast);
int lim = na->num_rx_rings;
if (na->num_tx_rings > lim)
lim = na->num_tx_rings;
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
D("invalid ring id %d", i);
return (EINVAL);
}
if (need_lock)
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
priv->np_ringid = ringid;
if (ringid & NETMAP_SW_RING) {
priv->np_qfirst = NETMAP_SW_RING;
priv->np_qlast = 0;
} else if (ringid & NETMAP_HW_RING) {
priv->np_qfirst = i;
priv->np_qlast = i + 1;
} else {
priv->np_qfirst = 0;
priv->np_qlast = NETMAP_HW_RING ;
}
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
if (need_lock)
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
if (netmap_verbose) {
if (ringid & NETMAP_SW_RING)
D("ringid %s set to SW RING", ifp->if_xname);
else if (ringid & NETMAP_HW_RING)
D("ringid %s set to HW RING %d", ifp->if_xname,
priv->np_qfirst);
else
D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
}
return 0;
}
/*
* possibly move the interface to netmap-mode.
* If success it returns a pointer to netmap_if, otherwise NULL.
* This must be called with NMA_LOCK held.
*/
static struct netmap_if *
netmap_do_regif(struct netmap_priv_d *priv, struct ifnet *ifp,
uint16_t ringid, int *err)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_if *nifp = NULL;
int i, error;
if (na->na_bdg)
BDG_WLOCK(na->na_bdg);
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
/* ring configuration may have changed, fetch from the card */
netmap_update_config(na);
priv->np_ifp = ifp; /* store the reference */
error = netmap_set_ringid(priv, ringid);
if (error)
goto out;
nifp = netmap_if_new(ifp->if_xname, na);
if (nifp == NULL) { /* allocation failed */
error = ENOMEM;
} else if (ifp->if_capenable & IFCAP_NETMAP) {
/* was already set */
} else {
/* Otherwise set the card in netmap mode
* and make it use the shared buffers.
*/
for (i = 0 ; i < na->num_tx_rings + 1; i++)
mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock",
MTX_NETWORK_LOCK, MTX_DEF);
for (i = 0 ; i < na->num_rx_rings + 1; i++) {
mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock",
MTX_NETWORK_LOCK, MTX_DEF);
}
if (nma_is_hw(na)) {
SWNA(ifp)->tx_rings = &na->tx_rings[na->num_tx_rings];
SWNA(ifp)->rx_rings = &na->rx_rings[na->num_rx_rings];
}
error = na->nm_register(ifp, 1); /* mode on */
#ifdef NM_BRIDGE
if (!error)
error = nm_alloc_bdgfwd(na);
#endif /* NM_BRIDGE */
if (error) {
netmap_dtor_locked(priv);
/* nifp is not yet in priv, so free it separately */
netmap_if_free(nifp);
nifp = NULL;
}
}
out:
*err = error;
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
if (na->na_bdg)
BDG_WUNLOCK(na->na_bdg);
return nifp;
}
/* Process NETMAP_BDG_ATTACH and NETMAP_BDG_DETACH */
static int
kern_netmap_regif(struct nmreq *nmr)
{
struct ifnet *ifp;
struct netmap_if *nifp;
struct netmap_priv_d *npriv;
int error;
npriv = malloc(sizeof(*npriv), M_DEVBUF, M_NOWAIT|M_ZERO);
if (npriv == NULL)
return ENOMEM;
error = netmap_get_memory(npriv);
if (error) {
free_exit:
bzero(npriv, sizeof(*npriv));
free(npriv, M_DEVBUF);
return error;
}
NMA_LOCK();
error = get_ifp(nmr, &ifp);
if (error) { /* no device, or another bridge or user owns the device */
NMA_UNLOCK();
goto free_exit;
} else if (!NETMAP_OWNED_BY_KERN(ifp)) {
/* got reference to a virtual port or direct access to a NIC.
* perhaps specified no bridge's prefix or wrong NIC's name
*/
error = EINVAL;
unref_exit:
nm_if_rele(ifp);
NMA_UNLOCK();
goto free_exit;
}
if (nmr->nr_cmd == NETMAP_BDG_DETACH) {
if (NA(ifp)->refcount == 0) { /* not registered */
error = EINVAL;
goto unref_exit;
}
NMA_UNLOCK();
netmap_dtor(NA(ifp)->na_kpriv); /* unregister */
NA(ifp)->na_kpriv = NULL;
nm_if_rele(ifp); /* detach from the bridge */
goto free_exit;
} else if (NA(ifp)->refcount > 0) { /* already registered */
error = EINVAL;
goto unref_exit;
}
nifp = netmap_do_regif(npriv, ifp, nmr->nr_ringid, &error);
if (!nifp)
goto unref_exit;
wmb(); // XXX do we need it ?
npriv->np_nifp = nifp;
NA(ifp)->na_kpriv = npriv;
NMA_UNLOCK();
D("registered %s to netmap-mode", ifp->if_xname);
return 0;
}
/* CORE_LOCK is not necessary */
static void
netmap_swlock_wrapper(struct ifnet *dev, int what, u_int queueid)
{
struct netmap_adapter *na = SWNA(dev);
switch (what) {
case NETMAP_TX_LOCK:
mtx_lock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_TX_UNLOCK:
mtx_unlock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_RX_LOCK:
mtx_lock(&na->rx_rings[queueid].q_lock);
break;
case NETMAP_RX_UNLOCK:
mtx_unlock(&na->rx_rings[queueid].q_lock);
break;
}
}
/* Initialize necessary fields of sw adapter located in right after hw's
* one. sw adapter attaches a pair of sw rings of the netmap-mode NIC.
* It is always activated and deactivated at the same tie with the hw's one.
* Thus we don't need refcounting on the sw adapter.
* Regardless of NIC's feature we use separate lock so that anybody can lock
* me independently from the hw adapter.
* Make sure nm_register is NULL to be handled as FALSE in nma_is_hw
*/
static void
netmap_attach_sw(struct ifnet *ifp)
{
struct netmap_adapter *hw_na = NA(ifp);
struct netmap_adapter *na = SWNA(ifp);
na->ifp = ifp;
na->separate_locks = 1;
na->nm_lock = netmap_swlock_wrapper;
na->num_rx_rings = na->num_tx_rings = 1;
na->num_tx_desc = hw_na->num_tx_desc;
na->num_rx_desc = hw_na->num_rx_desc;
na->nm_txsync = netmap_bdg_to_host;
}
/* exported to kernel callers */
int
netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func)
{
struct nm_bridge *b;
struct netmap_adapter *na;
struct ifnet *iter;
char *name = nmr->nr_name;
int cmd = nmr->nr_cmd, namelen = strlen(name);
int error = 0, i, j;
switch (cmd) {
case NETMAP_BDG_ATTACH:
case NETMAP_BDG_DETACH:
error = kern_netmap_regif(nmr);
break;
case NETMAP_BDG_LIST:
/* this is used to enumerate bridges and ports */
if (namelen) { /* look up indexes of bridge and port */
if (strncmp(name, NM_NAME, strlen(NM_NAME))) {
error = EINVAL;
break;
}
b = nm_find_bridge(name, 0 /* don't create */);
if (!b) {
error = ENOENT;
break;
}
BDG_RLOCK(b);
error = ENOENT;
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
na = BDG_GET_VAR(b->bdg_ports[i]);
if (na == NULL)
continue;
iter = na->ifp;
/* the former and the latter identify a
* virtual port and a NIC, respectively
*/
if (!strcmp(iter->if_xname, name) ||
(namelen > b->namelen &&
!strcmp(iter->if_xname,
name + b->namelen + 1))) {
/* bridge index */
nmr->nr_arg1 = b - nm_bridges;
nmr->nr_arg2 = i; /* port index */
error = 0;
break;
}
}
BDG_RUNLOCK(b);
} else {
/* return the first non-empty entry starting from
* bridge nr_arg1 and port nr_arg2.
*
* Users can detect the end of the same bridge by
* seeing the new and old value of nr_arg1, and can
* detect the end of all the bridge by error != 0
*/
i = nmr->nr_arg1;
j = nmr->nr_arg2;
for (error = ENOENT; error && i < NM_BRIDGES; i++) {
b = nm_bridges + i;
BDG_RLOCK(b);
for (; j < NM_BDG_MAXPORTS; j++) {
na = BDG_GET_VAR(b->bdg_ports[j]);
if (na == NULL)
continue;
iter = na->ifp;
nmr->nr_arg1 = i;
nmr->nr_arg2 = j;
strncpy(name, iter->if_xname, IFNAMSIZ);
error = 0;
break;
}
BDG_RUNLOCK(b);
j = 0; /* following bridges scan from 0 */
}
}
break;
case NETMAP_BDG_LOOKUP_REG:
/* register a lookup function to the given bridge.
* nmr->nr_name may be just bridge's name (including ':'
* if it is not just NM_NAME).
*/
if (!func) {
error = EINVAL;
break;
}
b = nm_find_bridge(name, 0 /* don't create */);
if (!b) {
error = EINVAL;
break;
}
BDG_WLOCK(b);
b->nm_bdg_lookup = func;
BDG_WUNLOCK(b);
break;
default:
D("invalid cmd (nmr->nr_cmd) (0x%x)", cmd);
error = EINVAL;
break;
}
return error;
}
/*
* ioctl(2) support for the "netmap" device.
*
* Following a list of accepted commands:
* - NIOCGINFO
* - SIOCGIFADDR just for convenience
* - NIOCREGIF
* - NIOCUNREGIF
* - NIOCTXSYNC
* - NIOCRXSYNC
*
* Return 0 on success, errno otherwise.
*/
static int
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
int fflag, struct thread *td)
{
struct netmap_priv_d *priv = NULL;
struct ifnet *ifp;
struct nmreq *nmr = (struct nmreq *) data;
struct netmap_adapter *na;
int error;
u_int i, lim;
struct netmap_if *nifp;
(void)dev; /* UNUSED */
(void)fflag; /* UNUSED */
#ifdef linux
#define devfs_get_cdevpriv(pp) \
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
(*pp ? 0 : ENOENT); })
/* devfs_set_cdevpriv cannot fail on linux */
#define devfs_set_cdevpriv(p, fn) \
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
#define devfs_clear_cdevpriv() do { \
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
} while (0)
#endif /* linux */
CURVNET_SET(TD_TO_VNET(td));
error = devfs_get_cdevpriv((void **)&priv);
if (error) {
CURVNET_RESTORE();
/* XXX ENOENT should be impossible, since the priv
* is now created in the open */
return (error == ENOENT ? ENXIO : error);
}
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
switch (cmd) {
case NIOCGINFO: /* return capabilities etc */
if (nmr->nr_version != NETMAP_API) {
D("API mismatch got %d have %d",
nmr->nr_version, NETMAP_API);
nmr->nr_version = NETMAP_API;
error = EINVAL;
break;
}
if (nmr->nr_cmd == NETMAP_BDG_LIST) {
error = netmap_bdg_ctl(nmr, NULL);
break;
}
/* update configuration */
error = netmap_get_memory(priv);
ND("get_memory returned %d", error);
if (error)
break;
/* memsize is always valid */
nmr->nr_memsize = nm_mem.nm_totalsize;
nmr->nr_offset = 0;
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
if (nmr->nr_name[0] == '\0') /* just get memory info */
break;
/* lock because get_ifp and update_config see na->refcount */
NMA_LOCK();
error = get_ifp(nmr, &ifp); /* get a refcount */
if (error) {
NMA_UNLOCK();
break;
}
na = NA(ifp); /* retrieve netmap_adapter */
netmap_update_config(na);
NMA_UNLOCK();
nmr->nr_rx_rings = na->num_rx_rings;
nmr->nr_tx_rings = na->num_tx_rings;
nmr->nr_rx_slots = na->num_rx_desc;
nmr->nr_tx_slots = na->num_tx_desc;
nm_if_rele(ifp); /* return the refcount */
break;
case NIOCREGIF:
if (nmr->nr_version != NETMAP_API) {
nmr->nr_version = NETMAP_API;
error = EINVAL;
break;
}
/* possibly attach/detach NIC and VALE switch */
i = nmr->nr_cmd;
if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) {
error = netmap_bdg_ctl(nmr, NULL);
break;
} else if (i != 0) {
D("nr_cmd must be 0 not %d", i);
error = EINVAL;
break;
}
/* ensure allocators are ready */
error = netmap_get_memory(priv);
ND("get_memory returned %d", error);
if (error)
break;
/* protect access to priv from concurrent NIOCREGIF */
NMA_LOCK();
if (priv->np_ifp != NULL) { /* thread already registered */
error = netmap_set_ringid(priv, nmr->nr_ringid);
unlock_out:
NMA_UNLOCK();
break;
}
/* find the interface and a reference */
error = get_ifp(nmr, &ifp); /* keep reference */
if (error)
goto unlock_out;
else if (NETMAP_OWNED_BY_KERN(ifp)) {
nm_if_rele(ifp);
goto unlock_out;
}
nifp = netmap_do_regif(priv, ifp, nmr->nr_ringid, &error);
if (!nifp) { /* reg. failed, release priv and ref */
nm_if_rele(ifp); /* return the refcount */
priv->np_ifp = NULL;
priv->np_nifp = NULL;
goto unlock_out;
}
/* the following assignment is a commitment.
* Readers (i.e., poll and *SYNC) check for
* np_nifp != NULL without locking
*/
wmb(); /* make sure previous writes are visible to all CPUs */
priv->np_nifp = nifp;
NMA_UNLOCK();
/* return the offset of the netmap_if object */
na = NA(ifp); /* retrieve netmap adapter */
nmr->nr_rx_rings = na->num_rx_rings;
nmr->nr_tx_rings = na->num_tx_rings;
nmr->nr_rx_slots = na->num_rx_desc;
nmr->nr_tx_slots = na->num_tx_desc;
nmr->nr_memsize = nm_mem.nm_totalsize;
nmr->nr_offset = netmap_if_offset(nifp);
break;
case NIOCUNREGIF:
// XXX we have no data here ?
D("deprecated, data is %p", nmr);
error = EINVAL;
break;
case NIOCTXSYNC:
case NIOCRXSYNC:
nifp = priv->np_nifp;
if (nifp == NULL) {
error = ENXIO;
break;
}
rmb(); /* make sure following reads are not from cache */
ifp = priv->np_ifp; /* we have a reference */
if (ifp == NULL) {
D("Internal error: nifp != NULL && ifp == NULL");
error = ENXIO;
break;
}
na = NA(ifp); /* retrieve netmap adapter */
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
if (cmd == NIOCTXSYNC)
netmap_sync_to_host(na);
else
netmap_sync_from_host(na, NULL, NULL);
break;
}
/* find the last ring to scan */
lim = priv->np_qlast;
if (lim == NETMAP_HW_RING)
lim = (cmd == NIOCTXSYNC) ?
na->num_tx_rings : na->num_rx_rings;
for (i = priv->np_qfirst; i < lim; i++) {
if (cmd == NIOCTXSYNC) {
struct netmap_kring *kring = &na->tx_rings[i];
if (netmap_verbose & NM_VERB_TXSYNC)
D("pre txsync ring %d cur %d hwcur %d",
i, kring->ring->cur,
kring->nr_hwcur);
na->nm_txsync(ifp, i, 1 /* do lock */);
if (netmap_verbose & NM_VERB_TXSYNC)
D("post txsync ring %d cur %d hwcur %d",
i, kring->ring->cur,
kring->nr_hwcur);
} else {
na->nm_rxsync(ifp, i, 1 /* do lock */);
microtime(&na->rx_rings[i].ring->ts);
}
}
break;
#ifdef __FreeBSD__
case BIOCIMMEDIATE:
case BIOCGHDRCMPLT:
case BIOCSHDRCMPLT:
case BIOCSSEESENT:
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
break;
default: /* allow device-specific ioctls */
{
struct socket so;
bzero(&so, sizeof(so));
error = get_ifp(nmr, &ifp); /* keep reference */
if (error)
break;
so.so_vnet = ifp->if_vnet;
// so->so_proto not null.
error = ifioctl(&so, cmd, data, td);
nm_if_rele(ifp);
break;
}
#else /* linux */
default:
error = EOPNOTSUPP;
#endif /* linux */
}
CURVNET_RESTORE();
return (error);
}
/*
* select(2) and poll(2) handlers for the "netmap" device.
*
* Can be called for one or more queues.
* Return true the event mask corresponding to ready events.
* If there are no ready events, do a selrecord on either individual
* selfd or on the global one.
* Device-dependent parts (locking and sync of tx/rx rings)
* are done through callbacks.
*
* On linux, arguments are really pwait, the poll table, and 'td' is struct file *
* The first one is remapped to pwait as selrecord() uses the name as an
* hidden argument.
*/
static int
netmap_poll(struct cdev *dev, int events, struct thread *td)
{
struct netmap_priv_d *priv = NULL;
struct netmap_adapter *na;
struct ifnet *ifp;
struct netmap_kring *kring;
u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
u_int lim_tx, lim_rx, host_forwarded = 0;
struct mbq q = { NULL, NULL, 0 };
enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
void *pwait = dev; /* linux compatibility */
(void)pwait;
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
return POLLERR;
if (priv->np_nifp == NULL) {
D("No if registered");
return POLLERR;
}
rmb(); /* make sure following reads are not from cache */
ifp = priv->np_ifp;
// XXX check for deleting() ?
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
return POLLERR;
if (netmap_verbose & 0x8000)
D("device %s events 0x%x", ifp->if_xname, events);
want_tx = events & (POLLOUT | POLLWRNORM);
want_rx = events & (POLLIN | POLLRDNORM);
na = NA(ifp); /* retrieve netmap adapter */
lim_tx = na->num_tx_rings;
lim_rx = na->num_rx_rings;
/* how many queues we are scanning */
if (priv->np_qfirst == NETMAP_SW_RING) {
if (priv->np_txpoll || want_tx) {
/* push any packets up, then we are always ready */
netmap_sync_to_host(na);
revents |= want_tx;
}
if (want_rx) {
kring = &na->rx_rings[lim_rx];
if (kring->ring->avail == 0)
netmap_sync_from_host(na, td, dev);
if (kring->ring->avail > 0) {
revents |= want_rx;
}
}
return (revents);
}
/* if we are in transparent mode, check also the host rx ring */
kring = &na->rx_rings[lim_rx];
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
&& want_rx
&& (netmap_fwd || kring->ring->flags & NR_FORWARD) ) {
if (kring->ring->avail == 0)
netmap_sync_from_host(na, td, dev);
if (kring->ring->avail > 0)
revents |= want_rx;
}
/*
* check_all is set if the card has more than one queue and
* the client is polling all of them. If true, we sleep on
* the "global" selfd, otherwise we sleep on individual selfd
* (we can only sleep on one of them per direction).
* The interrupt routine in the driver should always wake on
* the individual selfd, and also on the global one if the card
* has more than one ring.
*
* If the card has only one lock, we just use that.
* If the card has separate ring locks, we just use those
* unless we are doing check_all, in which case the whole
* loop is wrapped by the global lock.
* We acquire locks only when necessary: if poll is called
* when buffers are available, we can just return without locks.
*
* rxsync() is only called if we run out of buffers on a POLLIN.
* txsync() is called if we run out of buffers on POLLOUT, or
* there are pending packets to send. The latter can be disabled
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
*/
check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1);
/*
* core_lock indicates what to do with the core lock.
* The core lock is used when either the card has no individual
* locks, or it has individual locks but we are cheking all
* rings so we need the core lock to avoid missing wakeup events.
*
* It has three possible states:
* NO_CL we don't need to use the core lock, e.g.
* because we are protected by individual locks.
* NEED_CL we need the core lock. In this case, when we
* call the lock routine, move to LOCKED_CL
* to remember to release the lock once done.
* LOCKED_CL core lock is set, so we need to release it.
*/
core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
#ifdef NM_BRIDGE
/* the bridge uses separate locks */
if (na->nm_register == bdg_netmap_reg) {
ND("not using core lock for %s", ifp->if_xname);
core_lock = NO_CL;
}
#endif /* NM_BRIDGE */
if (priv->np_qlast != NETMAP_HW_RING) {
lim_tx = lim_rx = priv->np_qlast;
}
/*
* We start with a lock free round which is good if we have
* data available. If this fails, then lock and call the sync
* routines.
*/
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
kring = &na->rx_rings[i];
if (kring->ring->avail > 0) {
revents |= want_rx;
want_rx = 0; /* also breaks the loop */
}
}
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
kring = &na->tx_rings[i];
if (kring->ring->avail > 0) {
revents |= want_tx;
want_tx = 0; /* also breaks the loop */
}
}
/*
* If we to push packets out (priv->np_txpoll) or want_tx is
* still set, we do need to run the txsync calls (on all rings,
* to avoid that the tx rings stall).
*/
if (priv->np_txpoll || want_tx) {
flush_tx:
for (i = priv->np_qfirst; i < lim_tx; i++) {
kring = &na->tx_rings[i];
/*
* Skip the current ring if want_tx == 0
* (we have already done a successful sync on
* a previous ring) AND kring->cur == kring->hwcur
* (there are no pending transmissions for this ring).
*/
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
continue;
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_TX_LOCK, i);
if (netmap_verbose & NM_VERB_TXSYNC)
D("send %d on %s %d",
kring->ring->cur,
ifp->if_xname, i);
if (na->nm_txsync(ifp, i, 0 /* no lock */))
revents |= POLLERR;
/* Check avail/call selrecord only if called with POLLOUT */
if (want_tx) {
if (kring->ring->avail > 0) {
/* stop at the first ring. We don't risk
* starvation.
*/
revents |= want_tx;
want_tx = 0;
} else if (!check_all)
selrecord(td, &kring->si);
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
}
}
/*
* now if want_rx is still set we need to lock and rxsync.
* Do it on all rings because otherwise we starve.
*/
if (want_rx) {
for (i = priv->np_qfirst; i < lim_rx; i++) {
kring = &na->rx_rings[i];
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_RX_LOCK, i);
if (netmap_fwd ||kring->ring->flags & NR_FORWARD) {
ND(10, "forwarding some buffers up %d to %d",
kring->nr_hwcur, kring->ring->cur);
netmap_grab_packets(kring, &q, netmap_fwd);
}
if (na->nm_rxsync(ifp, i, 0 /* no lock */))
revents |= POLLERR;
if (netmap_no_timestamp == 0 ||
kring->ring->flags & NR_TIMESTAMP) {
microtime(&kring->ring->ts);
}
if (kring->ring->avail > 0)
revents |= want_rx;
else if (!check_all)
selrecord(td, &kring->si);
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
}
}
if (check_all && revents == 0) { /* signal on the global queue */
if (want_tx)
selrecord(td, &na->tx_si);
if (want_rx)
selrecord(td, &na->rx_si);
}
/* forward host to the netmap ring */
kring = &na->rx_rings[lim_rx];
if (kring->nr_hwavail > 0)
ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail);
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
&& (netmap_fwd || kring->ring->flags & NR_FORWARD)
&& kring->nr_hwavail > 0 && !host_forwarded) {
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
netmap_sw_to_nic(na);
host_forwarded = 1; /* prevent another pass */
want_rx = 0;
goto flush_tx;
}
if (core_lock == LOCKED_CL)
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
if (q.head)
netmap_send_up(na->ifp, q.head);
return (revents);
}
/*------- driver support routines ------*/
/*
* default lock wrapper.
*/
static void
netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid)
{
struct netmap_adapter *na = NA(dev);
switch (what) {
#ifdef linux /* some system do not need lock on register */
case NETMAP_REG_LOCK:
case NETMAP_REG_UNLOCK:
break;
#endif /* linux */
case NETMAP_CORE_LOCK:
mtx_lock(&na->core_lock);
break;
case NETMAP_CORE_UNLOCK:
mtx_unlock(&na->core_lock);
break;
case NETMAP_TX_LOCK:
mtx_lock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_TX_UNLOCK:
mtx_unlock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_RX_LOCK:
mtx_lock(&na->rx_rings[queueid].q_lock);
break;
case NETMAP_RX_UNLOCK:
mtx_unlock(&na->rx_rings[queueid].q_lock);
break;
}
}
/*
* Initialize a ``netmap_adapter`` object created by driver on attach.
* We allocate a block of memory with room for a struct netmap_adapter
* plus two sets of N+2 struct netmap_kring (where N is the number
* of hardware rings):
* krings 0..N-1 are for the hardware queues.
* kring N is for the host stack queue
* kring N+1 is only used for the selinfo for all queues.
* Return 0 on success, ENOMEM otherwise.
*
* By default the receive and transmit adapter ring counts are both initialized
* to num_queues. na->num_tx_rings can be set for cards with different tx/rx
* setups.
*/
int
netmap_attach(struct netmap_adapter *arg, int num_queues)
{
struct netmap_adapter *na = NULL;
struct ifnet *ifp = arg ? arg->ifp : NULL;
int len;
if (arg == NULL || ifp == NULL)
goto fail;
len = nma_is_vp(arg) ? sizeof(*na) : sizeof(*na) * 2;
na = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (na == NULL)
goto fail;
WNA(ifp) = na;
*na = *arg; /* copy everything, trust the driver to not pass junk */
NETMAP_SET_CAPABLE(ifp);
if (na->num_tx_rings == 0)
na->num_tx_rings = num_queues;
na->num_rx_rings = num_queues;
na->refcount = na->na_single = na->na_multi = 0;
/* Core lock initialized here, others after netmap_if_new. */
mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF);
if (na->nm_lock == NULL) {
ND("using default locks for %s", ifp->if_xname);
na->nm_lock = netmap_lock_wrapper;
}
#ifdef linux
if (ifp->netdev_ops) {
ND("netdev_ops %p", ifp->netdev_ops);
/* prepare a clone of the netdev ops */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28)
na->nm_ndo.ndo_start_xmit = ifp->netdev_ops;
#else
na->nm_ndo = *ifp->netdev_ops;
#endif
}
na->nm_ndo.ndo_start_xmit = linux_netmap_start;
#endif
if (!nma_is_vp(arg))
netmap_attach_sw(ifp);
D("success for %s", ifp->if_xname);
return 0;
fail:
D("fail, arg %p ifp %p na %p", arg, ifp, na);
netmap_detach(ifp);
return (na ? EINVAL : ENOMEM);
}
/*
* Free the allocated memory linked to the given ``netmap_adapter``
* object.
*/
void
netmap_detach(struct ifnet *ifp)
{
struct netmap_adapter *na = NA(ifp);
if (!na)
return;
mtx_destroy(&na->core_lock);
if (na->tx_rings) { /* XXX should not happen */
D("freeing leftover tx_rings");
free(na->tx_rings, M_DEVBUF);
}
bzero(na, sizeof(*na));
WNA(ifp) = NULL;
free(na, M_DEVBUF);
}
int
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, u_int ring_nr);
/* we don't need to lock myself */
static int
bdg_netmap_start(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = SWNA(ifp);
struct nm_bdg_fwd *ft = na->rx_rings[0].nkr_ft;
char *buf = NMB(&na->rx_rings[0].ring->slot[0]);
u_int len = MBUF_LEN(m);
if (!na->na_bdg) /* SWNA is not configured to be attached */
return EBUSY;
m_copydata(m, 0, len, buf);
ft->ft_flags = 0; // XXX could be indirect ?
ft->ft_len = len;
ft->ft_buf = buf;
ft->ft_next = NM_BDG_BATCH; // XXX is it needed ?
nm_bdg_flush(ft, 1, na, 0);
/* release the mbuf in either cases of success or failure. As an
* alternative, put the mbuf in a free list and free the list
* only when really necessary.
*/
m_freem(m);
return (0);
}
/*
* Intercept packets from the network stack and pass them
* to netmap as incoming packets on the 'software' ring.
* We are not locked when called.
*/
int
netmap_start(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
u_int i, len = MBUF_LEN(m);
u_int error = EBUSY, lim = kring->nkr_num_slots - 1;
struct netmap_slot *slot;
if (netmap_verbose & NM_VERB_HOST)
D("%s packet %d len %d from the stack", ifp->if_xname,
kring->nr_hwcur + kring->nr_hwavail, len);
if (len > NETMAP_BUF_SIZE) { /* too long for us */
D("%s from_host, drop packet size %d > %d", ifp->if_xname,
len, NETMAP_BUF_SIZE);
m_freem(m);
return EINVAL;
}
if (na->na_bdg)
return bdg_netmap_start(ifp, m);
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
if (kring->nr_hwavail >= lim) {
if (netmap_verbose)
D("stack ring %s full\n", ifp->if_xname);
goto done; /* no space */
}
/* compute the insert position */
i = kring->nr_hwcur + kring->nr_hwavail;
if (i > lim)
i -= lim + 1;
slot = &kring->ring->slot[i];
m_copydata(m, 0, len, NMB(slot));
slot->len = len;
slot->flags = kring->nkr_slot_flags;
kring->nr_hwavail++;
if (netmap_verbose & NM_VERB_HOST)
D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings);
selwakeuppri(&kring->si, PI_NET);
error = 0;
done:
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
/* release the mbuf in either cases of success or failure. As an
* alternative, put the mbuf in a free list and free the list
* only when really necessary.
*/
m_freem(m);
return (error);
}
/*
* netmap_reset() is called by the driver routines when reinitializing
* a ring. The driver is in charge of locking to protect the kring.
* If netmap mode is not set just return NULL.
*/
struct netmap_slot *
netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
u_int new_cur)
{
struct netmap_kring *kring;
int new_hwofs, lim;
if (na == NULL)
return NULL; /* no netmap support here */
if (!(na->ifp->if_capenable & IFCAP_NETMAP))
return NULL; /* nothing to reinitialize */
if (tx == NR_TX) {
if (n >= na->num_tx_rings)
return NULL;
kring = na->tx_rings + n;
new_hwofs = kring->nr_hwcur - new_cur;
} else {
if (n >= na->num_rx_rings)
return NULL;
kring = na->rx_rings + n;
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
}
lim = kring->nkr_num_slots - 1;
if (new_hwofs > lim)
new_hwofs -= lim + 1;
/* Alwayws set the new offset value and realign the ring. */
kring->nkr_hwofs = new_hwofs;
if (tx == NR_TX)
kring->nr_hwavail = kring->nkr_num_slots - 1;
ND(10, "new hwofs %d on %s %s[%d]",
kring->nkr_hwofs, na->ifp->if_xname,
tx == NR_TX ? "TX" : "RX", n);
#if 0 // def linux
/* XXX check that the mappings are correct */
/* need ring_nr, adapter->pdev, direction */
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
D("error mapping rx netmap buffer %d", i);
// XXX fix error handling
}
#endif /* linux */
/*
* Wakeup on the individual and global lock
* We do the wakeup here, but the ring is not yet reconfigured.
* However, we are under lock so there are no races.
*/
selwakeuppri(&kring->si, PI_NET);
selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET);
return kring->ring->slot;
}
/* returns the next position in the ring */
static int
nm_bdg_preflush(struct netmap_adapter *na, u_int ring_nr,
struct netmap_kring *kring, u_int end)
{
struct netmap_ring *ring = kring->ring;
struct nm_bdg_fwd *ft = kring->nkr_ft;
u_int j = kring->nr_hwcur, lim = kring->nkr_num_slots - 1;
u_int ft_i = 0; /* start from 0 */
for (; likely(j != end); j = unlikely(j == lim) ? 0 : j+1) {
struct netmap_slot *slot = &ring->slot[j];
char *buf = NMB(slot);
int len = ft[ft_i].ft_len = slot->len;
ft[ft_i].ft_flags = slot->flags;
ND("flags is 0x%x", slot->flags);
/* this slot goes into a list so initialize the link field */
ft[ft_i].ft_next = NM_BDG_BATCH; /* equivalent to NULL */
if (unlikely(len < 14))
continue;
buf = ft[ft_i].ft_buf = (slot->flags & NS_INDIRECT) ?
*((void **)buf) : buf;
prefetch(buf);
if (unlikely(++ft_i == netmap_bridge))
ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr);
}
if (ft_i)
ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr);
return j;
}
/*
* Pass packets from nic to the bridge. Must be called with
* proper locks on the source interface.
* Note, no user process can access this NIC so we can ignore
* the info in the 'ring'.
*/
static void
netmap_nic_to_bdg(struct ifnet *ifp, u_int ring_nr)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
int j, k, lim = kring->nkr_num_slots - 1;
/* fetch packets that have arrived */
na->nm_rxsync(ifp, ring_nr, 0);
/* XXX we don't count reserved, but it should be 0 */
j = kring->nr_hwcur;
k = j + kring->nr_hwavail;
if (k > lim)
k -= lim + 1;
if (k == j && netmap_verbose) {
D("how strange, interrupt with no packets on %s",
ifp->if_xname);
return;
}
j = nm_bdg_preflush(na, ring_nr, kring, k);
/* we consume everything, but we cannot update kring directly
* because the nic may have destroyed the info in the NIC ring.
* So we need to call rxsync again to restore it.
*/
ring->cur = j;
ring->avail = 0;
na->nm_rxsync(ifp, ring_nr, 0);
return;
}
/*
* Default functions to handle rx/tx interrupts
* we have 4 cases:
* 1 ring, single lock:
* lock(core); wake(i=0); unlock(core)
* N rings, single lock:
* lock(core); wake(i); wake(N+1) unlock(core)
* 1 ring, separate locks: (i=0)
* lock(i); wake(i); unlock(i)
* N rings, separate locks:
* lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
* work_done is non-null on the RX path.
*
* The 'q' argument also includes flag to tell whether the queue is
* already locked on enter, and whether it should remain locked on exit.
* This helps adapting to different defaults in drivers and OSes.
*/
int
netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
{
struct netmap_adapter *na;
struct netmap_kring *r;
NM_SELINFO_T *main_wq;
int locktype, unlocktype, nic_to_bridge, lock;
if (!(ifp->if_capenable & IFCAP_NETMAP))
return 0;
lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT);
q = q & NETMAP_RING_MASK;
ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
na = NA(ifp);
if (na->na_flags & NAF_SKIP_INTR) {
ND("use regular interrupt");
return 0;
}
if (work_done) { /* RX path */
if (q >= na->num_rx_rings)
return 0; // not a physical queue
r = na->rx_rings + q;
r->nr_kflags |= NKR_PENDINTR;
main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
/* set a flag if the NIC is attached to a VALE switch */
nic_to_bridge = (na->na_bdg != NULL);
locktype = NETMAP_RX_LOCK;
unlocktype = NETMAP_RX_UNLOCK;
} else { /* TX path */
if (q >= na->num_tx_rings)
return 0; // not a physical queue
r = na->tx_rings + q;
main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
work_done = &q; /* dummy */
nic_to_bridge = 0;
locktype = NETMAP_TX_LOCK;
unlocktype = NETMAP_TX_UNLOCK;
}
if (na->separate_locks) {
if (!(lock & NETMAP_LOCKED_ENTER))
na->nm_lock(ifp, locktype, q);
/* If a NIC is attached to a bridge, flush packets
* (and no need to wakeup anyone). Otherwise, wakeup
* possible processes waiting for packets.
*/
if (nic_to_bridge)
netmap_nic_to_bdg(ifp, q);
else
selwakeuppri(&r->si, PI_NET);
na->nm_lock(ifp, unlocktype, q);
if (main_wq && !nic_to_bridge) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
selwakeuppri(main_wq, PI_NET);
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
}
/* lock the queue again if requested */
if (lock & NETMAP_LOCKED_EXIT)
na->nm_lock(ifp, locktype, q);
} else {
if (!(lock & NETMAP_LOCKED_ENTER))
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
if (nic_to_bridge)
netmap_nic_to_bdg(ifp, q);
else {
selwakeuppri(&r->si, PI_NET);
if (main_wq)
selwakeuppri(main_wq, PI_NET);
}
if (!(lock & NETMAP_LOCKED_EXIT))
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
}
*work_done = 1; /* do not fire napi again */
return 1;
}
#ifdef linux /* linux-specific routines */
/*
* Remap linux arguments into the FreeBSD call.
* - pwait is the poll table, passed as 'dev';
* If pwait == NULL someone else already woke up before. We can report
* events but they are filtered upstream.
* If pwait != NULL, then pwait->key contains the list of events.
* - events is computed from pwait as above.
* - file is passed as 'td';
*/
static u_int
linux_netmap_poll(struct file * file, struct poll_table_struct *pwait)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
int events = POLLIN | POLLOUT; /* XXX maybe... */
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0)
int events = pwait ? pwait->key : POLLIN | POLLOUT;
#else /* in 3.4.0 field 'key' was renamed to '_key' */
int events = pwait ? pwait->_key : POLLIN | POLLOUT;
#endif
return netmap_poll((void *)pwait, events, (void *)file);
}
static int
linux_netmap_mmap(struct file *f, struct vm_area_struct *vma)
{
int lut_skip, i, j;
int user_skip = 0;
struct lut_entry *l_entry;
int error = 0;
unsigned long off, tomap;
/*
* vma->vm_start: start of mapping user address space
* vma->vm_end: end of the mapping user address space
* vma->vm_pfoff: offset of first page in the device
*/
// XXX security checks
error = netmap_get_memory(f->private_data);
ND("get_memory returned %d", error);
if (error)
return -error;
off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */
tomap = vma->vm_end - vma->vm_start;
for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */
const struct netmap_obj_pool *p = &nm_mem.pools[i];
/*
* In each pool memory is allocated in clusters
* of size _clustsize, each containing clustentries
* entries. For each object k we already store the
* vtophys mapping in lut[k] so we use that, scanning
* the lut[] array in steps of clustentries,
* and we map each cluster (not individual pages,
* it would be overkill -- XXX slow ? 20130415).
*/
/*
* We interpret vm_pgoff as an offset into the whole
* netmap memory, as if all clusters where contiguous.
*/
for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) {
unsigned long paddr, mapsize;
if (p->_clustsize <= off) {
off -= p->_clustsize;
continue;
}
l_entry = &p->lut[lut_skip]; /* first obj in the cluster */
paddr = l_entry->paddr + off;
mapsize = p->_clustsize - off;
off = 0;
if (mapsize > tomap)
mapsize = tomap;
ND("remap_pfn_range(%lx, %lx, %lx)",
vma->vm_start + user_skip,
paddr >> PAGE_SHIFT, mapsize);
if (remap_pfn_range(vma, vma->vm_start + user_skip,
paddr >> PAGE_SHIFT, mapsize,
vma->vm_page_prot))
return -EAGAIN; // XXX check return value
user_skip += mapsize;
tomap -= mapsize;
if (tomap == 0)
goto done;
}
}
done:
return 0;
}
static netdev_tx_t
linux_netmap_start(struct sk_buff *skb, struct net_device *dev)
{
netmap_start(dev, skb);
return (NETDEV_TX_OK);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38
#define LIN_IOCTL_NAME .ioctl
int
linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */)
#else
#define LIN_IOCTL_NAME .unlocked_ioctl
long
linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */)
#endif
{
int ret;
struct nmreq nmr;
bzero(&nmr, sizeof(nmr));
if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0)
return -EFAULT;
ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file);
if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0)
return -EFAULT;
return -ret;
}
static int
netmap_release(struct inode *inode, struct file *file)
{
(void)inode; /* UNUSED */
if (file->private_data)
netmap_dtor(file->private_data);
return (0);
}
static int
linux_netmap_open(struct inode *inode, struct file *file)
{
struct netmap_priv_d *priv;
(void)inode; /* UNUSED */
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (priv == NULL)
return -ENOMEM;
file->private_data = priv;
return (0);
}
static struct file_operations netmap_fops = {
.owner = THIS_MODULE,
.open = linux_netmap_open,
.mmap = linux_netmap_mmap,
LIN_IOCTL_NAME = linux_netmap_ioctl,
.poll = linux_netmap_poll,
.release = netmap_release,
};
static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */
MISC_DYNAMIC_MINOR,
"netmap",
&netmap_fops,
};
static int netmap_init(void);
static void netmap_fini(void);
/* Errors have negative values on linux */
static int linux_netmap_init(void)
{
return -netmap_init();
}
module_init(linux_netmap_init);
module_exit(netmap_fini);
/* export certain symbols to other modules */
EXPORT_SYMBOL(netmap_attach); // driver attach routines
EXPORT_SYMBOL(netmap_detach); // driver detach routines
EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error
EXPORT_SYMBOL(netmap_buffer_lut);
EXPORT_SYMBOL(netmap_total_buffers); // index check
EXPORT_SYMBOL(netmap_buffer_base);
EXPORT_SYMBOL(netmap_reset); // ring init routines
EXPORT_SYMBOL(netmap_buf_size);
EXPORT_SYMBOL(netmap_rx_irq); // default irq handler
EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away
EXPORT_SYMBOL(netmap_bdg_ctl); // bridge configuration routine
EXPORT_SYMBOL(netmap_bdg_learning); // the default lookup function
MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/");
MODULE_DESCRIPTION("The netmap packet I/O framework");
MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */
#else /* __FreeBSD__ */
static struct cdevsw netmap_cdevsw = {
.d_version = D_VERSION,
.d_name = "netmap",
.d_open = netmap_open,
.d_mmap = netmap_mmap,
.d_mmap_single = netmap_mmap_single,
.d_ioctl = netmap_ioctl,
.d_poll = netmap_poll,
.d_close = netmap_close,
};
#endif /* __FreeBSD__ */
#ifdef NM_BRIDGE
/*
*---- support for virtual bridge -----
*/
/* ----- FreeBSD if_bridge hash function ------- */
/*
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
*
* http://www.burtleburtle.net/bob/hash/spooky.html
*/
#define mix(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while (/*CONSTCOND*/0)
static __inline uint32_t
nm_bridge_rthash(const uint8_t *addr)
{
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key
b += addr[5] << 8;
b += addr[4];
a += addr[3] << 24;
a += addr[2] << 16;
a += addr[1] << 8;
a += addr[0];
mix(a, b, c);
#define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1)
return (c & BRIDGE_RTHASH_MASK);
}
#undef mix
static int
bdg_netmap_reg(struct ifnet *ifp, int onoff)
{
// struct nm_bridge *b = NA(ifp)->na_bdg;
/* the interface is already attached to the bridge,
* so we only need to toggle IFCAP_NETMAP.
* Locking is not necessary (we are already under
* NMA_LOCK, and the port is not in use during this call).
*/
/* BDG_WLOCK(b); */
if (onoff) {
ifp->if_capenable |= IFCAP_NETMAP;
} else {
ifp->if_capenable &= ~IFCAP_NETMAP;
}
/* BDG_WUNLOCK(b); */
return 0;
}
/*
* Lookup function for a learning bridge.
* Update the hash table with the source address,
* and then returns the destination port index, and the
* ring in *dst_ring (at the moment, always use ring 0)
*/
u_int
netmap_bdg_learning(char *buf, u_int len, uint8_t *dst_ring,
struct netmap_adapter *na)
{
struct nm_hash_ent *ht = na->na_bdg->ht;
uint32_t sh, dh;
u_int dst, mysrc = na->bdg_port;
uint64_t smac, dmac;
dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff;
smac = le64toh(*(uint64_t *)(buf + 4));
smac >>= 16;
/*
* The hash is somewhat expensive, there might be some
* worthwhile optimizations here.
*/
if ((buf[6] & 1) == 0) { /* valid src */
uint8_t *s = buf+6;
sh = nm_bridge_rthash(buf+6); // XXX hash of source
/* update source port forwarding entry */
ht[sh].mac = smac; /* XXX expire ? */
ht[sh].ports = mysrc;
if (netmap_verbose)
D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d",
s[0], s[1], s[2], s[3], s[4], s[5], mysrc);
}
dst = NM_BDG_BROADCAST;
if ((buf[0] & 1) == 0) { /* unicast */
dh = nm_bridge_rthash(buf); // XXX hash of dst
if (ht[dh].mac == dmac) { /* found dst */
dst = ht[dh].ports;
}
/* XXX otherwise return NM_BDG_UNKNOWN ? */
}
*dst_ring = 0;
return dst;
}
/*
* This flush routine supports only unicast and broadcast but a large
* number of ports, and lets us replace the learn and dispatch functions.
*/
int
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na,
u_int ring_nr)
{
struct nm_bdg_q *dst_ents, *brddst;
uint16_t num_dsts = 0, *dsts;
struct nm_bridge *b = na->na_bdg;
u_int i, me = na->bdg_port;
dst_ents = (struct nm_bdg_q *)(ft + NM_BDG_BATCH);
dsts = (uint16_t *)(dst_ents + NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1);
BDG_RLOCK(b);
/* first pass: find a destination */
for (i = 0; likely(i < n); i++) {
uint8_t *buf = ft[i].ft_buf;
uint8_t dst_ring = ring_nr;
uint16_t dst_port, d_i;
struct nm_bdg_q *d;
dst_port = b->nm_bdg_lookup(buf, ft[i].ft_len, &dst_ring, na);
if (dst_port == NM_BDG_NOPORT) {
continue; /* this packet is identified to be dropped */
} else if (unlikely(dst_port > NM_BDG_MAXPORTS)) {
continue;
} else if (dst_port == NM_BDG_BROADCAST) {
dst_ring = 0; /* broadcasts always go to ring 0 */
} else if (unlikely(dst_port == me ||
!BDG_GET_VAR(b->bdg_ports[dst_port]))) {
continue;
}
/* get a position in the scratch pad */
d_i = dst_port * NM_BDG_MAXRINGS + dst_ring;
d = dst_ents + d_i;
if (d->bq_head == NM_BDG_BATCH) { /* new destination */
d->bq_head = d->bq_tail = i;
/* remember this position to be scanned later */
if (dst_port != NM_BDG_BROADCAST)
dsts[num_dsts++] = d_i;
} else {
ft[d->bq_tail].ft_next = i;
d->bq_tail = i;
}
}
/* if there is a broadcast, set ring 0 of all ports to be scanned
* XXX This would be optimized by recording the highest index of active
* ports.
*/
brddst = dst_ents + NM_BDG_BROADCAST * NM_BDG_MAXRINGS;
if (brddst->bq_head != NM_BDG_BATCH) {
for (i = 0; likely(i < NM_BDG_MAXPORTS); i++) {
uint16_t d_i = i * NM_BDG_MAXRINGS;
if (unlikely(i == me) || !BDG_GET_VAR(b->bdg_ports[i]))
continue;
else if (dst_ents[d_i].bq_head == NM_BDG_BATCH)
dsts[num_dsts++] = d_i;
}
}
/* second pass: scan destinations (XXX will be modular somehow) */
for (i = 0; i < num_dsts; i++) {
struct ifnet *dst_ifp;
struct netmap_adapter *dst_na;
struct netmap_kring *kring;
struct netmap_ring *ring;
u_int dst_nr, is_vp, lim, j, sent = 0, d_i, next, brd_next;
int howmany, retry = netmap_txsync_retry;
struct nm_bdg_q *d;
d_i = dsts[i];
d = dst_ents + d_i;
dst_na = BDG_GET_VAR(b->bdg_ports[d_i/NM_BDG_MAXRINGS]);
/* protect from the lookup function returning an inactive
* destination port
*/
if (unlikely(dst_na == NULL))
continue;
else if (dst_na->na_flags & NAF_SW_ONLY)
continue;
dst_ifp = dst_na->ifp;
/*
* The interface may be in !netmap mode in two cases:
* - when na is attached but not activated yet;
* - when na is being deactivated but is still attached.
*/
if (unlikely(!(dst_ifp->if_capenable & IFCAP_NETMAP)))
continue;
/* there is at least one either unicast or broadcast packet */
brd_next = brddst->bq_head;
next = d->bq_head;
is_vp = nma_is_vp(dst_na);
dst_nr = d_i & (NM_BDG_MAXRINGS-1);
if (is_vp) { /* virtual port */
if (dst_nr >= dst_na->num_rx_rings)
dst_nr = dst_nr % dst_na->num_rx_rings;
kring = &dst_na->rx_rings[dst_nr];
ring = kring->ring;
lim = kring->nkr_num_slots - 1;
dst_na->nm_lock(dst_ifp, NETMAP_RX_LOCK, dst_nr);
j = kring->nr_hwcur + kring->nr_hwavail;
if (j > lim)
j -= kring->nkr_num_slots;
howmany = lim - kring->nr_hwavail;
} else { /* hw or sw adapter */
if (dst_nr >= dst_na->num_tx_rings)
dst_nr = dst_nr % dst_na->num_tx_rings;
kring = &dst_na->tx_rings[dst_nr];
ring = kring->ring;
lim = kring->nkr_num_slots - 1;
dst_na->nm_lock(dst_ifp, NETMAP_TX_LOCK, dst_nr);
retry:
dst_na->nm_txsync(dst_ifp, dst_nr, 0);
/* see nm_bdg_flush() */
j = kring->nr_hwcur;
howmany = kring->nr_hwavail;
}
while (howmany-- > 0) {
struct netmap_slot *slot;
struct nm_bdg_fwd *ft_p;
/* our 'NULL' is always higher than valid indexes
* so we never dereference it if the other list
* has packets (and if both are NULL we never
* get here).
*/
if (next < brd_next) {
ft_p = ft + next;
next = ft_p->ft_next;
ND("j %d uni %d next %d %d",
j, ft_p - ft, next, brd_next);
} else { /* insert broadcast */
ft_p = ft + brd_next;
brd_next = ft_p->ft_next;
ND("j %d brd %d next %d %d",
j, ft_p - ft, next, brd_next);
}
slot = &ring->slot[j];
ND("send %d %d bytes at %s:%d", i, ft_p->ft_len, dst_ifp->if_xname, j);
if (ft_p->ft_flags & NS_INDIRECT) {
ND("copying from INDIRECT source");
copyin(ft_p->ft_buf, NMB(slot),
(ft_p->ft_len + 63) & ~63);
} else {
pkt_copy(ft_p->ft_buf, NMB(slot), ft_p->ft_len);
}
slot->len = ft_p->ft_len;
j = unlikely(j == lim) ? 0: j + 1; /* XXX to be macro-ed */
sent++;
/* are we done ? */
if (next == NM_BDG_BATCH && brd_next == NM_BDG_BATCH)
break;
}
if (netmap_verbose && (howmany < 0))
D("rx ring full on %s", dst_ifp->if_xname);
if (is_vp) {
if (sent) {
kring->nr_hwavail += sent;
selwakeuppri(&kring->si, PI_NET);
}
dst_na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, dst_nr);
} else {
if (sent) {
ring->avail -= sent;
ring->cur = j;
dst_na->nm_txsync(dst_ifp, dst_nr, 0);
}
/* retry to send more packets */
if (nma_is_hw(dst_na) && howmany < 0 && retry--)
goto retry;
dst_na->nm_lock(dst_ifp, NETMAP_TX_UNLOCK, dst_nr);
}
/* NM_BDG_BATCH means 'no packet' */
d->bq_head = d->bq_tail = NM_BDG_BATCH; /* cleanup */
}
brddst->bq_head = brddst->bq_tail = NM_BDG_BATCH; /* cleanup */
BDG_RUNLOCK(b);
return 0;
}
/*
* main dispatch routine
*/
static int
bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->tx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
int i, j, k, lim = kring->nkr_num_slots - 1;
k = ring->cur;
if (k > lim)
return netmap_ring_reinit(kring);
if (do_lock)
na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr);
if (netmap_bridge <= 0) { /* testing only */
j = k; // used all
goto done;
}
if (netmap_bridge > NM_BDG_BATCH)
netmap_bridge = NM_BDG_BATCH;
j = nm_bdg_preflush(na, ring_nr, kring, k);
i = k - j;
if (i < 0)
i += kring->nkr_num_slots;
kring->nr_hwavail = kring->nkr_num_slots - 1 - i;
if (j != k)
D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail);
done:
kring->nr_hwcur = j;
ring->avail = kring->nr_hwavail;
if (do_lock)
na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr);
if (netmap_verbose)
D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock);
return 0;
}
static int
bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
u_int j, lim = kring->nkr_num_slots - 1;
u_int k = ring->cur, resvd = ring->reserved;
int n;
ND("%s ring %d lock %d avail %d",
ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail);
if (k > lim)
return netmap_ring_reinit(kring);
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr);
/* skip past packets that userspace has released */
j = kring->nr_hwcur; /* netmap ring index */
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
}
if (j != k) { /* userspace has released some packets. */
n = k - j;
if (n < 0)
n += kring->nkr_num_slots;
ND("userspace releases %d packets", n);
for (n = 0; likely(j != k); n++) {
struct netmap_slot *slot = &ring->slot[j];
void *addr = NMB(slot);
if (addr == netmap_buffer_base) { /* bad buf */
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
return netmap_ring_reinit(kring);
}
/* decrease refcount for buffer */
slot->flags &= ~NS_BUF_CHANGED;
j = unlikely(j == lim) ? 0 : j + 1;
}
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
/* tell userspace that there are new packets */
ring->avail = kring->nr_hwavail - resvd;
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
return 0;
}
static void
bdg_netmap_attach(struct netmap_adapter *arg)
{
struct netmap_adapter na;
ND("attaching virtual bridge");
bzero(&na, sizeof(na));
na.ifp = arg->ifp;
na.separate_locks = 1;
na.num_tx_rings = arg->num_tx_rings;
na.num_rx_rings = arg->num_rx_rings;
na.num_tx_desc = NM_BRIDGE_RINGSIZE;
na.num_rx_desc = NM_BRIDGE_RINGSIZE;
na.nm_txsync = bdg_netmap_txsync;
na.nm_rxsync = bdg_netmap_rxsync;
na.nm_register = bdg_netmap_reg;
netmap_attach(&na, na.num_tx_rings);
}
#endif /* NM_BRIDGE */
static struct cdev *netmap_dev; /* /dev/netmap character device. */
/*
* Module loader.
*
* Create the /dev/netmap device and initialize all global
* variables.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_init(void)
{
int error;
error = netmap_memory_init();
if (error != 0) {
printf("netmap: unable to initialize the memory allocator.\n");
return (error);
}
printf("netmap: loaded module\n");
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
"netmap");
#ifdef NM_BRIDGE
{
int i;
mtx_init(&netmap_bridge_mutex, "netmap_bridge_mutex",
MTX_NETWORK_LOCK, MTX_DEF);
bzero(nm_bridges, sizeof(struct nm_bridge) * NM_BRIDGES); /* safety */
for (i = 0; i < NM_BRIDGES; i++)
rw_init(&nm_bridges[i].bdg_lock, "bdg lock");
}
#endif
return (error);
}
/*
* Module unloader.
*
* Free all the memory, and destroy the ``/dev/netmap`` device.
*/
static void
netmap_fini(void)
{
destroy_dev(netmap_dev);
netmap_memory_fini();
printf("netmap: unloaded module.\n");
}
#ifdef __FreeBSD__
/*
* Kernel entry point.
*
* Initialize/finalize the module and return.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_loader(__unused struct module *module, int event, __unused void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error = netmap_init();
break;
case MOD_UNLOAD:
netmap_fini();
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(netmap, netmap_loader, NULL);
#endif /* __FreeBSD__ */