2de7a790ba
While the original implementation of unmapped mbufs was a large step forward in terms of reducing cache misses by enabling mbufs to carry more than a single page for sendfile, they are rather cache unfriendly when accessing the ext_pgs metadata and data. This is because the ext_pgs part of the mbuf is allocated separately, and almost guaranteed to be cold in cache. This change takes advantage of the fact that unmapped mbufs are never used at the same time as pkthdr mbufs. Given this fact, we can overlap the ext_pgs metadata with the mbuf pkthdr, and carry the ext_pgs meta directly in the mbuf itself. Similarly, we can carry the ext_pgs data (TLS hdr/trailer/array of pages) directly after the existing m_ext. In order to be able to carry 5 pages (which is the minimum required for a 16K TLS record which is not perfectly aligned) on LP64, I've had to steal ext_arg2. The only user of this in the xmit path is sendfile, and I've adjusted it to use arg1 when using unmapped mbufs. This change is almost entirely mechanical, except that we change mb_alloc_ext_pgs() to no longer allow allocating pkthdrs, the change to avoid ext_arg2 as mentioned above, and the removal of the ext_pgs zone, This change saves roughly 2% "raw" CPU (~59% -> 57%), or over 3% "scaled" CPU on a Netflix 100% software kTLS workload at 90+ Gb/s on Broadwell Xeons. In a follow-on commit, I plan to remove some hacks to avoid access ext_pgs fields of mbufs, since they will now be in cache. Many thanks to glebius for helping to make this better in the Netflix tree. Reviewed by: hselasky, jhb, rrs, glebius (early version) Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24213
1592 lines
41 KiB
C
1592 lines
41 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2014-2019 Netflix Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rmlock.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/vmmeter.h>
|
|
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
|
|
#include <machine/pcb.h>
|
|
#endif
|
|
#include <machine/vmparam.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#ifdef RSS
|
|
#include <net/netisr.h>
|
|
#include <net/rss_config.h>
|
|
#endif
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#endif
|
|
#include <netinet/tcp_var.h>
|
|
#ifdef TCP_OFFLOAD
|
|
#include <netinet/tcp_offload.h>
|
|
#endif
|
|
#include <opencrypto/xform.h>
|
|
#include <vm/uma_dbg.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_page.h>
|
|
|
|
struct ktls_wq {
|
|
struct mtx mtx;
|
|
STAILQ_HEAD(, mbuf_ext_pgs) head;
|
|
bool running;
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
static struct ktls_wq *ktls_wq;
|
|
static struct proc *ktls_proc;
|
|
LIST_HEAD(, ktls_crypto_backend) ktls_backends;
|
|
static struct rmlock ktls_backends_lock;
|
|
static uma_zone_t ktls_session_zone;
|
|
static uint16_t ktls_cpuid_lookup[MAXCPU];
|
|
|
|
SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Kernel TLS offload");
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Kernel TLS offload stats");
|
|
|
|
static int ktls_allow_unload;
|
|
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
|
|
&ktls_allow_unload, 0, "Allow software crypto modules to unload");
|
|
|
|
#ifdef RSS
|
|
static int ktls_bind_threads = 1;
|
|
#else
|
|
static int ktls_bind_threads;
|
|
#endif
|
|
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
|
|
&ktls_bind_threads, 0,
|
|
"Bind crypto threads to cores or domains at boot");
|
|
|
|
static u_int ktls_maxlen = 16384;
|
|
SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
|
|
&ktls_maxlen, 0, "Maximum TLS record size");
|
|
|
|
static int ktls_number_threads;
|
|
SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
|
|
&ktls_number_threads, 0,
|
|
"Number of TLS threads in thread-pool");
|
|
|
|
static bool ktls_offload_enable;
|
|
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW,
|
|
&ktls_offload_enable, 0,
|
|
"Enable support for kernel TLS offload");
|
|
|
|
static bool ktls_cbc_enable = true;
|
|
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW,
|
|
&ktls_cbc_enable, 1,
|
|
"Enable Support of AES-CBC crypto for kernel TLS");
|
|
|
|
static counter_u64_t ktls_tasks_active;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
|
|
&ktls_tasks_active, "Number of active tasks");
|
|
|
|
static counter_u64_t ktls_cnt_on;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, so_inqueue, CTLFLAG_RD,
|
|
&ktls_cnt_on, "Number of TLS records in queue to tasks for SW crypto");
|
|
|
|
static counter_u64_t ktls_offload_total;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
|
|
CTLFLAG_RD, &ktls_offload_total,
|
|
"Total successful TLS setups (parameters set)");
|
|
|
|
static counter_u64_t ktls_offload_enable_calls;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
|
|
CTLFLAG_RD, &ktls_offload_enable_calls,
|
|
"Total number of TLS enable calls made");
|
|
|
|
static counter_u64_t ktls_offload_active;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
|
|
&ktls_offload_active, "Total Active TLS sessions");
|
|
|
|
static counter_u64_t ktls_offload_failed_crypto;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
|
|
&ktls_offload_failed_crypto, "Total TLS crypto failures");
|
|
|
|
static counter_u64_t ktls_switch_to_ifnet;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
|
|
&ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
|
|
|
|
static counter_u64_t ktls_switch_to_sw;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
|
|
&ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
|
|
|
|
static counter_u64_t ktls_switch_failed;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
|
|
&ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
|
|
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Software TLS session stats");
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Hardware (ifnet) TLS session stats");
|
|
#ifdef TCP_OFFLOAD
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"TOE TLS session stats");
|
|
#endif
|
|
|
|
static counter_u64_t ktls_sw_cbc;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
|
|
"Active number of software TLS sessions using AES-CBC");
|
|
|
|
static counter_u64_t ktls_sw_gcm;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
|
|
"Active number of software TLS sessions using AES-GCM");
|
|
|
|
static counter_u64_t ktls_ifnet_cbc;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
|
|
&ktls_ifnet_cbc,
|
|
"Active number of ifnet TLS sessions using AES-CBC");
|
|
|
|
static counter_u64_t ktls_ifnet_gcm;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
|
|
&ktls_ifnet_gcm,
|
|
"Active number of ifnet TLS sessions using AES-GCM");
|
|
|
|
static counter_u64_t ktls_ifnet_reset;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
|
|
&ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
|
|
|
|
static counter_u64_t ktls_ifnet_reset_dropped;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
|
|
&ktls_ifnet_reset_dropped,
|
|
"TLS sessions dropped after failing to update ifnet send tag");
|
|
|
|
static counter_u64_t ktls_ifnet_reset_failed;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
|
|
&ktls_ifnet_reset_failed,
|
|
"TLS sessions that failed to allocate a new ifnet send tag");
|
|
|
|
static int ktls_ifnet_permitted;
|
|
SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
|
|
&ktls_ifnet_permitted, 1,
|
|
"Whether to permit hardware (ifnet) TLS sessions");
|
|
|
|
#ifdef TCP_OFFLOAD
|
|
static counter_u64_t ktls_toe_cbc;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
|
|
&ktls_toe_cbc,
|
|
"Active number of TOE TLS sessions using AES-CBC");
|
|
|
|
static counter_u64_t ktls_toe_gcm;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
|
|
&ktls_toe_gcm,
|
|
"Active number of TOE TLS sessions using AES-GCM");
|
|
#endif
|
|
|
|
static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
|
|
|
|
static void ktls_cleanup(struct ktls_session *tls);
|
|
#if defined(INET) || defined(INET6)
|
|
static void ktls_reset_send_tag(void *context, int pending);
|
|
#endif
|
|
static void ktls_work_thread(void *ctx);
|
|
|
|
int
|
|
ktls_crypto_backend_register(struct ktls_crypto_backend *be)
|
|
{
|
|
struct ktls_crypto_backend *curr_be, *tmp;
|
|
|
|
if (be->api_version != KTLS_API_VERSION) {
|
|
printf("KTLS: API version mismatch (%d vs %d) for %s\n",
|
|
be->api_version, KTLS_API_VERSION,
|
|
be->name);
|
|
return (EINVAL);
|
|
}
|
|
|
|
rm_wlock(&ktls_backends_lock);
|
|
printf("KTLS: Registering crypto method %s with prio %d\n",
|
|
be->name, be->prio);
|
|
if (LIST_EMPTY(&ktls_backends)) {
|
|
LIST_INSERT_HEAD(&ktls_backends, be, next);
|
|
} else {
|
|
LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
|
|
if (curr_be->prio < be->prio) {
|
|
LIST_INSERT_BEFORE(curr_be, be, next);
|
|
break;
|
|
}
|
|
if (LIST_NEXT(curr_be, next) == NULL) {
|
|
LIST_INSERT_AFTER(curr_be, be, next);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rm_wunlock(&ktls_backends_lock);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
|
|
{
|
|
struct ktls_crypto_backend *tmp;
|
|
|
|
/*
|
|
* Don't error if the backend isn't registered. This permits
|
|
* MOD_UNLOAD handlers to use this function unconditionally.
|
|
*/
|
|
rm_wlock(&ktls_backends_lock);
|
|
LIST_FOREACH(tmp, &ktls_backends, next) {
|
|
if (tmp == be)
|
|
break;
|
|
}
|
|
if (tmp == NULL) {
|
|
rm_wunlock(&ktls_backends_lock);
|
|
return (0);
|
|
}
|
|
|
|
if (!ktls_allow_unload) {
|
|
rm_wunlock(&ktls_backends_lock);
|
|
printf(
|
|
"KTLS: Deregistering crypto method %s is not supported\n",
|
|
be->name);
|
|
return (EBUSY);
|
|
}
|
|
|
|
if (be->use_count) {
|
|
rm_wunlock(&ktls_backends_lock);
|
|
return (EBUSY);
|
|
}
|
|
|
|
LIST_REMOVE(be, next);
|
|
rm_wunlock(&ktls_backends_lock);
|
|
return (0);
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
static u_int
|
|
ktls_get_cpu(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
u_int cpuid;
|
|
|
|
inp = sotoinpcb(so);
|
|
#ifdef RSS
|
|
cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
|
|
if (cpuid != NETISR_CPUID_NONE)
|
|
return (cpuid);
|
|
#endif
|
|
/*
|
|
* Just use the flowid to shard connections in a repeatable
|
|
* fashion. Note that some crypto backends rely on the
|
|
* serialization provided by having the same connection use
|
|
* the same queue.
|
|
*/
|
|
cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
|
|
return (cpuid);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ktls_init(void *dummy __unused)
|
|
{
|
|
struct thread *td;
|
|
struct pcpu *pc;
|
|
cpuset_t mask;
|
|
int error, i;
|
|
|
|
ktls_tasks_active = counter_u64_alloc(M_WAITOK);
|
|
ktls_cnt_on = counter_u64_alloc(M_WAITOK);
|
|
ktls_offload_total = counter_u64_alloc(M_WAITOK);
|
|
ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK);
|
|
ktls_offload_active = counter_u64_alloc(M_WAITOK);
|
|
ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK);
|
|
ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK);
|
|
ktls_switch_to_sw = counter_u64_alloc(M_WAITOK);
|
|
ktls_switch_failed = counter_u64_alloc(M_WAITOK);
|
|
ktls_sw_cbc = counter_u64_alloc(M_WAITOK);
|
|
ktls_sw_gcm = counter_u64_alloc(M_WAITOK);
|
|
ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK);
|
|
ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK);
|
|
ktls_ifnet_reset = counter_u64_alloc(M_WAITOK);
|
|
ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK);
|
|
ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK);
|
|
#ifdef TCP_OFFLOAD
|
|
ktls_toe_cbc = counter_u64_alloc(M_WAITOK);
|
|
ktls_toe_gcm = counter_u64_alloc(M_WAITOK);
|
|
#endif
|
|
|
|
rm_init(&ktls_backends_lock, "ktls backends");
|
|
LIST_INIT(&ktls_backends);
|
|
|
|
ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
|
|
M_WAITOK | M_ZERO);
|
|
|
|
ktls_session_zone = uma_zcreate("ktls_session",
|
|
sizeof(struct ktls_session),
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_CACHE, 0);
|
|
|
|
/*
|
|
* Initialize the workqueues to run the TLS work. We create a
|
|
* work queue for each CPU.
|
|
*/
|
|
CPU_FOREACH(i) {
|
|
STAILQ_INIT(&ktls_wq[i].head);
|
|
mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
|
|
error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
|
|
&ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
|
|
if (error)
|
|
panic("Can't add KTLS thread %d error %d", i, error);
|
|
|
|
/*
|
|
* Bind threads to cores. If ktls_bind_threads is >
|
|
* 1, then we bind to the NUMA domain.
|
|
*/
|
|
if (ktls_bind_threads) {
|
|
if (ktls_bind_threads > 1) {
|
|
pc = pcpu_find(i);
|
|
CPU_COPY(&cpuset_domain[pc->pc_domain], &mask);
|
|
} else {
|
|
CPU_SETOF(i, &mask);
|
|
}
|
|
error = cpuset_setthread(td->td_tid, &mask);
|
|
if (error)
|
|
panic(
|
|
"Unable to bind KTLS thread for CPU %d error %d",
|
|
i, error);
|
|
}
|
|
ktls_cpuid_lookup[ktls_number_threads] = i;
|
|
ktls_number_threads++;
|
|
}
|
|
printf("KTLS: Initialized %d threads\n", ktls_number_threads);
|
|
}
|
|
SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
static int
|
|
ktls_create_session(struct socket *so, struct tls_enable *en,
|
|
struct ktls_session **tlsp)
|
|
{
|
|
struct ktls_session *tls;
|
|
int error;
|
|
|
|
/* Only TLS 1.0 - 1.3 are supported. */
|
|
if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
|
|
return (EINVAL);
|
|
if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
|
|
en->tls_vminor > TLS_MINOR_VER_THREE)
|
|
return (EINVAL);
|
|
|
|
if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
|
|
return (EINVAL);
|
|
if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
|
|
return (EINVAL);
|
|
if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
|
|
return (EINVAL);
|
|
|
|
/* All supported algorithms require a cipher key. */
|
|
if (en->cipher_key_len == 0)
|
|
return (EINVAL);
|
|
|
|
/* No flags are currently supported. */
|
|
if (en->flags != 0)
|
|
return (EINVAL);
|
|
|
|
/* Common checks for supported algorithms. */
|
|
switch (en->cipher_algorithm) {
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
/*
|
|
* auth_algorithm isn't used, but permit GMAC values
|
|
* for compatibility.
|
|
*/
|
|
switch (en->auth_algorithm) {
|
|
case 0:
|
|
#ifdef COMPAT_FREEBSD12
|
|
/* XXX: Really 13.0-current COMPAT. */
|
|
case CRYPTO_AES_128_NIST_GMAC:
|
|
case CRYPTO_AES_192_NIST_GMAC:
|
|
case CRYPTO_AES_256_NIST_GMAC:
|
|
#endif
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (en->auth_key_len != 0)
|
|
return (EINVAL);
|
|
if ((en->tls_vminor == TLS_MINOR_VER_TWO &&
|
|
en->iv_len != TLS_AEAD_GCM_LEN) ||
|
|
(en->tls_vminor == TLS_MINOR_VER_THREE &&
|
|
en->iv_len != TLS_1_3_GCM_IV_LEN))
|
|
return (EINVAL);
|
|
break;
|
|
case CRYPTO_AES_CBC:
|
|
switch (en->auth_algorithm) {
|
|
case CRYPTO_SHA1_HMAC:
|
|
/*
|
|
* TLS 1.0 requires an implicit IV. TLS 1.1+
|
|
* all use explicit IVs.
|
|
*/
|
|
if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
|
|
if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
|
|
return (EINVAL);
|
|
break;
|
|
}
|
|
|
|
/* FALLTHROUGH */
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
/* Ignore any supplied IV. */
|
|
en->iv_len = 0;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (en->auth_key_len == 0)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
|
|
|
|
counter_u64_add(ktls_offload_active, 1);
|
|
|
|
refcount_init(&tls->refcount, 1);
|
|
TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
|
|
|
|
tls->wq_index = ktls_get_cpu(so);
|
|
|
|
tls->params.cipher_algorithm = en->cipher_algorithm;
|
|
tls->params.auth_algorithm = en->auth_algorithm;
|
|
tls->params.tls_vmajor = en->tls_vmajor;
|
|
tls->params.tls_vminor = en->tls_vminor;
|
|
tls->params.flags = en->flags;
|
|
tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
|
|
|
|
/* Set the header and trailer lengths. */
|
|
tls->params.tls_hlen = sizeof(struct tls_record_layer);
|
|
switch (en->cipher_algorithm) {
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
/*
|
|
* TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
|
|
* nonce. TLS 1.3 uses a 12 byte implicit IV.
|
|
*/
|
|
if (en->tls_vminor < TLS_MINOR_VER_THREE)
|
|
tls->params.tls_hlen += sizeof(uint64_t);
|
|
tls->params.tls_tlen = AES_GMAC_HASH_LEN;
|
|
|
|
/*
|
|
* TLS 1.3 includes optional padding which we
|
|
* do not support, and also puts the "real" record
|
|
* type at the end of the encrypted data.
|
|
*/
|
|
if (en->tls_vminor == TLS_MINOR_VER_THREE)
|
|
tls->params.tls_tlen += sizeof(uint8_t);
|
|
|
|
tls->params.tls_bs = 1;
|
|
break;
|
|
case CRYPTO_AES_CBC:
|
|
switch (en->auth_algorithm) {
|
|
case CRYPTO_SHA1_HMAC:
|
|
if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
|
|
/* Implicit IV, no nonce. */
|
|
} else {
|
|
tls->params.tls_hlen += AES_BLOCK_LEN;
|
|
}
|
|
tls->params.tls_tlen = AES_BLOCK_LEN +
|
|
SHA1_HASH_LEN;
|
|
break;
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
tls->params.tls_hlen += AES_BLOCK_LEN;
|
|
tls->params.tls_tlen = AES_BLOCK_LEN +
|
|
SHA2_256_HASH_LEN;
|
|
break;
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
tls->params.tls_hlen += AES_BLOCK_LEN;
|
|
tls->params.tls_tlen = AES_BLOCK_LEN +
|
|
SHA2_384_HASH_LEN;
|
|
break;
|
|
default:
|
|
panic("invalid hmac");
|
|
}
|
|
tls->params.tls_bs = AES_BLOCK_LEN;
|
|
break;
|
|
default:
|
|
panic("invalid cipher");
|
|
}
|
|
|
|
KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
|
|
("TLS header length too long: %d", tls->params.tls_hlen));
|
|
KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
|
|
("TLS trailer length too long: %d", tls->params.tls_tlen));
|
|
|
|
if (en->auth_key_len != 0) {
|
|
tls->params.auth_key_len = en->auth_key_len;
|
|
tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
|
|
M_WAITOK);
|
|
error = copyin(en->auth_key, tls->params.auth_key,
|
|
en->auth_key_len);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
tls->params.cipher_key_len = en->cipher_key_len;
|
|
tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
|
|
error = copyin(en->cipher_key, tls->params.cipher_key,
|
|
en->cipher_key_len);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* This holds the implicit portion of the nonce for GCM and
|
|
* the initial implicit IV for TLS 1.0. The explicit portions
|
|
* of the IV are generated in ktls_frame().
|
|
*/
|
|
if (en->iv_len != 0) {
|
|
tls->params.iv_len = en->iv_len;
|
|
error = copyin(en->iv, tls->params.iv, en->iv_len);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* For TLS 1.2, generate an 8-byte nonce as a counter
|
|
* to generate unique explicit IVs.
|
|
*
|
|
* Store this counter in the last 8 bytes of the IV
|
|
* array so that it is 8-byte aligned.
|
|
*/
|
|
if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
|
|
en->tls_vminor == TLS_MINOR_VER_TWO)
|
|
arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
|
|
}
|
|
|
|
*tlsp = tls;
|
|
return (0);
|
|
|
|
out:
|
|
ktls_cleanup(tls);
|
|
return (error);
|
|
}
|
|
|
|
static struct ktls_session *
|
|
ktls_clone_session(struct ktls_session *tls)
|
|
{
|
|
struct ktls_session *tls_new;
|
|
|
|
tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
|
|
|
|
counter_u64_add(ktls_offload_active, 1);
|
|
|
|
refcount_init(&tls_new->refcount, 1);
|
|
|
|
/* Copy fields from existing session. */
|
|
tls_new->params = tls->params;
|
|
tls_new->wq_index = tls->wq_index;
|
|
|
|
/* Deep copy keys. */
|
|
if (tls_new->params.auth_key != NULL) {
|
|
tls_new->params.auth_key = malloc(tls->params.auth_key_len,
|
|
M_KTLS, M_WAITOK);
|
|
memcpy(tls_new->params.auth_key, tls->params.auth_key,
|
|
tls->params.auth_key_len);
|
|
}
|
|
|
|
tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
|
|
M_WAITOK);
|
|
memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
|
|
tls->params.cipher_key_len);
|
|
|
|
return (tls_new);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ktls_cleanup(struct ktls_session *tls)
|
|
{
|
|
|
|
counter_u64_add(ktls_offload_active, -1);
|
|
switch (tls->mode) {
|
|
case TCP_TLS_MODE_SW:
|
|
MPASS(tls->be != NULL);
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_sw_cbc, -1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_sw_gcm, -1);
|
|
break;
|
|
}
|
|
tls->free(tls);
|
|
break;
|
|
case TCP_TLS_MODE_IFNET:
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_ifnet_cbc, -1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_ifnet_gcm, -1);
|
|
break;
|
|
}
|
|
m_snd_tag_rele(tls->snd_tag);
|
|
break;
|
|
#ifdef TCP_OFFLOAD
|
|
case TCP_TLS_MODE_TOE:
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_toe_cbc, -1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_toe_gcm, -1);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
if (tls->params.auth_key != NULL) {
|
|
explicit_bzero(tls->params.auth_key, tls->params.auth_key_len);
|
|
free(tls->params.auth_key, M_KTLS);
|
|
tls->params.auth_key = NULL;
|
|
tls->params.auth_key_len = 0;
|
|
}
|
|
if (tls->params.cipher_key != NULL) {
|
|
explicit_bzero(tls->params.cipher_key,
|
|
tls->params.cipher_key_len);
|
|
free(tls->params.cipher_key, M_KTLS);
|
|
tls->params.cipher_key = NULL;
|
|
tls->params.cipher_key_len = 0;
|
|
}
|
|
explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
|
|
#ifdef TCP_OFFLOAD
|
|
static int
|
|
ktls_try_toe(struct socket *so, struct ktls_session *tls)
|
|
{
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
inp = so->so_pcb;
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags2 & INP_FREED) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_socket == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
tp = intotcpcb(inp);
|
|
if (tp->tod == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
error = tcp_offload_alloc_tls_session(tp, tls);
|
|
INP_WUNLOCK(inp);
|
|
if (error == 0) {
|
|
tls->mode = TCP_TLS_MODE_TOE;
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_toe_cbc, 1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_toe_gcm, 1);
|
|
break;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Common code used when first enabling ifnet TLS on a connection or
|
|
* when allocating a new ifnet TLS session due to a routing change.
|
|
* This function allocates a new TLS send tag on whatever interface
|
|
* the connection is currently routed over.
|
|
*/
|
|
static int
|
|
ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
|
|
struct m_snd_tag **mstp)
|
|
{
|
|
union if_snd_tag_alloc_params params;
|
|
struct ifnet *ifp;
|
|
struct rtentry *rt;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_flags2 & INP_FREED) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_socket == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
tp = intotcpcb(inp);
|
|
|
|
/*
|
|
* Check administrative controls on ifnet TLS to determine if
|
|
* ifnet TLS should be denied.
|
|
*
|
|
* - Always permit 'force' requests.
|
|
* - ktls_ifnet_permitted == 0: always deny.
|
|
*/
|
|
if (!force && ktls_ifnet_permitted == 0) {
|
|
INP_RUNLOCK(inp);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* XXX: Use the cached route in the inpcb to find the
|
|
* interface. This should perhaps instead use
|
|
* rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only
|
|
* enabled after a connection has completed key negotiation in
|
|
* userland, the cached route will be present in practice.
|
|
*/
|
|
rt = inp->inp_route.ro_rt;
|
|
if (rt == NULL || rt->rt_ifp == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
return (ENXIO);
|
|
}
|
|
ifp = rt->rt_ifp;
|
|
if_ref(ifp);
|
|
|
|
params.hdr.type = IF_SND_TAG_TYPE_TLS;
|
|
params.hdr.flowid = inp->inp_flowid;
|
|
params.hdr.flowtype = inp->inp_flowtype;
|
|
params.hdr.numa_domain = inp->inp_numa_domain;
|
|
params.tls.inp = inp;
|
|
params.tls.tls = tls;
|
|
INP_RUNLOCK(inp);
|
|
|
|
if (ifp->if_snd_tag_alloc == NULL) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
} else {
|
|
if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
}
|
|
error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp);
|
|
out:
|
|
if_rele(ifp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
|
|
{
|
|
struct m_snd_tag *mst;
|
|
int error;
|
|
|
|
error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
|
|
if (error == 0) {
|
|
tls->mode = TCP_TLS_MODE_IFNET;
|
|
tls->snd_tag = mst;
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_ifnet_cbc, 1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_ifnet_gcm, 1);
|
|
break;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_try_sw(struct socket *so, struct ktls_session *tls)
|
|
{
|
|
struct rm_priotracker prio;
|
|
struct ktls_crypto_backend *be;
|
|
|
|
/*
|
|
* Choose the best software crypto backend. Backends are
|
|
* stored in sorted priority order (larget value == most
|
|
* important at the head of the list), so this just stops on
|
|
* the first backend that claims the session by returning
|
|
* success.
|
|
*/
|
|
if (ktls_allow_unload)
|
|
rm_rlock(&ktls_backends_lock, &prio);
|
|
LIST_FOREACH(be, &ktls_backends, next) {
|
|
if (be->try(so, tls) == 0)
|
|
break;
|
|
KASSERT(tls->cipher == NULL,
|
|
("ktls backend leaked a cipher pointer"));
|
|
}
|
|
if (be != NULL) {
|
|
if (ktls_allow_unload)
|
|
be->use_count++;
|
|
tls->be = be;
|
|
}
|
|
if (ktls_allow_unload)
|
|
rm_runlock(&ktls_backends_lock, &prio);
|
|
if (be == NULL)
|
|
return (EOPNOTSUPP);
|
|
tls->mode = TCP_TLS_MODE_SW;
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_sw_cbc, 1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_sw_gcm, 1);
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ktls_enable_tx(struct socket *so, struct tls_enable *en)
|
|
{
|
|
struct ktls_session *tls;
|
|
int error;
|
|
|
|
if (!ktls_offload_enable)
|
|
return (ENOTSUP);
|
|
|
|
counter_u64_add(ktls_offload_enable_calls, 1);
|
|
|
|
/*
|
|
* This should always be true since only the TCP socket option
|
|
* invokes this function.
|
|
*/
|
|
if (so->so_proto->pr_protocol != IPPROTO_TCP)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* XXX: Don't overwrite existing sessions. We should permit
|
|
* this to support rekeying in the future.
|
|
*/
|
|
if (so->so_snd.sb_tls_info != NULL)
|
|
return (EALREADY);
|
|
|
|
if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
|
|
return (ENOTSUP);
|
|
|
|
/* TLS requires ext pgs */
|
|
if (mb_use_ext_pgs == 0)
|
|
return (ENXIO);
|
|
|
|
error = ktls_create_session(so, en, &tls);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Prefer TOE -> ifnet TLS -> software TLS. */
|
|
#ifdef TCP_OFFLOAD
|
|
error = ktls_try_toe(so, tls);
|
|
if (error)
|
|
#endif
|
|
error = ktls_try_ifnet(so, tls, false);
|
|
if (error)
|
|
error = ktls_try_sw(so, tls);
|
|
|
|
if (error) {
|
|
ktls_cleanup(tls);
|
|
return (error);
|
|
}
|
|
|
|
error = sblock(&so->so_snd, SBL_WAIT);
|
|
if (error) {
|
|
ktls_cleanup(tls);
|
|
return (error);
|
|
}
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
so->so_snd.sb_tls_info = tls;
|
|
if (tls->mode != TCP_TLS_MODE_SW)
|
|
so->so_snd.sb_flags |= SB_TLS_IFNET;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
sbunlock(&so->so_snd);
|
|
|
|
counter_u64_add(ktls_offload_total, 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ktls_get_tx_mode(struct socket *so)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct inpcb *inp;
|
|
int mode;
|
|
|
|
inp = so->so_pcb;
|
|
INP_WLOCK_ASSERT(inp);
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
tls = so->so_snd.sb_tls_info;
|
|
if (tls == NULL)
|
|
mode = TCP_TLS_MODE_NONE;
|
|
else
|
|
mode = tls->mode;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (mode);
|
|
}
|
|
|
|
/*
|
|
* Switch between SW and ifnet TLS sessions as requested.
|
|
*/
|
|
int
|
|
ktls_set_tx_mode(struct socket *so, int mode)
|
|
{
|
|
struct ktls_session *tls, *tls_new;
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
switch (mode) {
|
|
case TCP_TLS_MODE_SW:
|
|
case TCP_TLS_MODE_IFNET:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
inp = so->so_pcb;
|
|
INP_WLOCK_ASSERT(inp);
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
tls = so->so_snd.sb_tls_info;
|
|
if (tls == NULL) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (0);
|
|
}
|
|
|
|
if (tls->mode == mode) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (0);
|
|
}
|
|
|
|
tls = ktls_hold(tls);
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
INP_WUNLOCK(inp);
|
|
|
|
tls_new = ktls_clone_session(tls);
|
|
|
|
if (mode == TCP_TLS_MODE_IFNET)
|
|
error = ktls_try_ifnet(so, tls_new, true);
|
|
else
|
|
error = ktls_try_sw(so, tls_new);
|
|
if (error) {
|
|
counter_u64_add(ktls_switch_failed, 1);
|
|
ktls_free(tls_new);
|
|
ktls_free(tls);
|
|
INP_WLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
error = sblock(&so->so_snd, SBL_WAIT);
|
|
if (error) {
|
|
counter_u64_add(ktls_switch_failed, 1);
|
|
ktls_free(tls_new);
|
|
ktls_free(tls);
|
|
INP_WLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* If we raced with another session change, keep the existing
|
|
* session.
|
|
*/
|
|
if (tls != so->so_snd.sb_tls_info) {
|
|
counter_u64_add(ktls_switch_failed, 1);
|
|
sbunlock(&so->so_snd);
|
|
ktls_free(tls_new);
|
|
ktls_free(tls);
|
|
INP_WLOCK(inp);
|
|
return (EBUSY);
|
|
}
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
so->so_snd.sb_tls_info = tls_new;
|
|
if (tls_new->mode != TCP_TLS_MODE_SW)
|
|
so->so_snd.sb_flags |= SB_TLS_IFNET;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
sbunlock(&so->so_snd);
|
|
|
|
/*
|
|
* Drop two references on 'tls'. The first is for the
|
|
* ktls_hold() above. The second drops the reference from the
|
|
* socket buffer.
|
|
*/
|
|
KASSERT(tls->refcount >= 2, ("too few references on old session"));
|
|
ktls_free(tls);
|
|
ktls_free(tls);
|
|
|
|
if (mode == TCP_TLS_MODE_IFNET)
|
|
counter_u64_add(ktls_switch_to_ifnet, 1);
|
|
else
|
|
counter_u64_add(ktls_switch_to_sw, 1);
|
|
|
|
INP_WLOCK(inp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a new TLS send tag. This task is scheduled when
|
|
* ip_output detects a route change while trying to transmit a packet
|
|
* holding a TLS record. If a new tag is allocated, replace the tag
|
|
* in the TLS session. Subsequent packets on the connection will use
|
|
* the new tag. If a new tag cannot be allocated, drop the
|
|
* connection.
|
|
*/
|
|
static void
|
|
ktls_reset_send_tag(void *context, int pending)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ktls_session *tls;
|
|
struct m_snd_tag *old, *new;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
MPASS(pending == 1);
|
|
|
|
tls = context;
|
|
inp = tls->inp;
|
|
|
|
/*
|
|
* Free the old tag first before allocating a new one.
|
|
* ip[6]_output_send() will treat a NULL send tag the same as
|
|
* an ifp mismatch and drop packets until a new tag is
|
|
* allocated.
|
|
*
|
|
* Write-lock the INP when changing tls->snd_tag since
|
|
* ip[6]_output_send() holds a read-lock when reading the
|
|
* pointer.
|
|
*/
|
|
INP_WLOCK(inp);
|
|
old = tls->snd_tag;
|
|
tls->snd_tag = NULL;
|
|
INP_WUNLOCK(inp);
|
|
if (old != NULL)
|
|
m_snd_tag_rele(old);
|
|
|
|
error = ktls_alloc_snd_tag(inp, tls, true, &new);
|
|
|
|
if (error == 0) {
|
|
INP_WLOCK(inp);
|
|
tls->snd_tag = new;
|
|
mtx_pool_lock(mtxpool_sleep, tls);
|
|
tls->reset_pending = false;
|
|
mtx_pool_unlock(mtxpool_sleep, tls);
|
|
if (!in_pcbrele_wlocked(inp))
|
|
INP_WUNLOCK(inp);
|
|
|
|
counter_u64_add(ktls_ifnet_reset, 1);
|
|
|
|
/*
|
|
* XXX: Should we kick tcp_output explicitly now that
|
|
* the send tag is fixed or just rely on timers?
|
|
*/
|
|
} else {
|
|
NET_EPOCH_ENTER(et);
|
|
INP_WLOCK(inp);
|
|
if (!in_pcbrele_wlocked(inp)) {
|
|
if (!(inp->inp_flags & INP_TIMEWAIT) &&
|
|
!(inp->inp_flags & INP_DROPPED)) {
|
|
tp = intotcpcb(inp);
|
|
CURVNET_SET(tp->t_vnet);
|
|
tp = tcp_drop(tp, ECONNABORTED);
|
|
CURVNET_RESTORE();
|
|
if (tp != NULL)
|
|
INP_WUNLOCK(inp);
|
|
counter_u64_add(ktls_ifnet_reset_dropped, 1);
|
|
} else
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
counter_u64_add(ktls_ifnet_reset_failed, 1);
|
|
|
|
/*
|
|
* Leave reset_pending true to avoid future tasks while
|
|
* the socket goes away.
|
|
*/
|
|
}
|
|
|
|
ktls_free(tls);
|
|
}
|
|
|
|
int
|
|
ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
|
|
{
|
|
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* See if we should schedule a task to update the send tag for
|
|
* this session.
|
|
*/
|
|
mtx_pool_lock(mtxpool_sleep, tls);
|
|
if (!tls->reset_pending) {
|
|
(void) ktls_hold(tls);
|
|
in_pcbref(inp);
|
|
tls->inp = inp;
|
|
tls->reset_pending = true;
|
|
taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
|
|
}
|
|
mtx_pool_unlock(mtxpool_sleep, tls);
|
|
return (ENOBUFS);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
ktls_destroy(struct ktls_session *tls)
|
|
{
|
|
struct rm_priotracker prio;
|
|
|
|
ktls_cleanup(tls);
|
|
if (tls->be != NULL && ktls_allow_unload) {
|
|
rm_rlock(&ktls_backends_lock, &prio);
|
|
tls->be->use_count--;
|
|
rm_runlock(&ktls_backends_lock, &prio);
|
|
}
|
|
uma_zfree(ktls_session_zone, tls);
|
|
}
|
|
|
|
void
|
|
ktls_seq(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
struct mbuf_ext_pgs *pgs;
|
|
|
|
for (; m != NULL; m = m->m_next) {
|
|
KASSERT((m->m_flags & M_NOMAP) != 0,
|
|
("ktls_seq: mapped mbuf %p", m));
|
|
|
|
pgs = &m->m_ext_pgs;
|
|
pgs->seqno = sb->sb_tls_seqno;
|
|
sb->sb_tls_seqno++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add TLS framing (headers and trailers) to a chain of mbufs. Each
|
|
* mbuf in the chain must be an unmapped mbuf. The payload of the
|
|
* mbuf must be populated with the payload of each TLS record.
|
|
*
|
|
* The record_type argument specifies the TLS record type used when
|
|
* populating the TLS header.
|
|
*
|
|
* The enq_count argument on return is set to the number of pages of
|
|
* payload data for this entire chain that need to be encrypted via SW
|
|
* encryption. The returned value should be passed to ktls_enqueue
|
|
* when scheduling encryption of this chain of mbufs.
|
|
*/
|
|
void
|
|
ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
|
|
uint8_t record_type)
|
|
{
|
|
struct tls_record_layer *tlshdr;
|
|
struct mbuf *m;
|
|
struct mbuf_ext_pgs *pgs;
|
|
uint64_t *noncep;
|
|
uint16_t tls_len;
|
|
int maxlen;
|
|
|
|
maxlen = tls->params.max_frame_len;
|
|
*enq_cnt = 0;
|
|
for (m = top; m != NULL; m = m->m_next) {
|
|
/*
|
|
* All mbufs in the chain should be non-empty TLS
|
|
* records whose payload does not exceed the maximum
|
|
* frame length.
|
|
*/
|
|
KASSERT(m->m_len <= maxlen && m->m_len > 0,
|
|
("ktls_frame: m %p len %d\n", m, m->m_len));
|
|
/*
|
|
* TLS frames require unmapped mbufs to store session
|
|
* info.
|
|
*/
|
|
KASSERT((m->m_flags & M_NOMAP) != 0,
|
|
("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));
|
|
|
|
tls_len = m->m_len;
|
|
pgs = &m->m_ext_pgs;
|
|
|
|
/* Save a reference to the session. */
|
|
pgs->tls = ktls_hold(tls);
|
|
|
|
pgs->hdr_len = tls->params.tls_hlen;
|
|
pgs->trail_len = tls->params.tls_tlen;
|
|
if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
|
|
int bs, delta;
|
|
|
|
/*
|
|
* AES-CBC pads messages to a multiple of the
|
|
* block size. Note that the padding is
|
|
* applied after the digest and the encryption
|
|
* is done on the "plaintext || mac || padding".
|
|
* At least one byte of padding is always
|
|
* present.
|
|
*
|
|
* Compute the final trailer length assuming
|
|
* at most one block of padding.
|
|
* tls->params.sb_tls_tlen is the maximum
|
|
* possible trailer length (padding + digest).
|
|
* delta holds the number of excess padding
|
|
* bytes if the maximum were used. Those
|
|
* extra bytes are removed.
|
|
*/
|
|
bs = tls->params.tls_bs;
|
|
delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
|
|
pgs->trail_len -= delta;
|
|
}
|
|
m->m_len += pgs->hdr_len + pgs->trail_len;
|
|
|
|
/* Populate the TLS header. */
|
|
tlshdr = (void *)pgs->m_epg_hdr;
|
|
tlshdr->tls_vmajor = tls->params.tls_vmajor;
|
|
|
|
/*
|
|
* TLS 1.3 masquarades as TLS 1.2 with a record type
|
|
* of TLS_RLTYPE_APP.
|
|
*/
|
|
if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
|
|
tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
|
|
tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
|
|
tlshdr->tls_type = TLS_RLTYPE_APP;
|
|
/* save the real record type for later */
|
|
pgs->record_type = record_type;
|
|
pgs->m_epg_trail[0] = record_type;
|
|
} else {
|
|
tlshdr->tls_vminor = tls->params.tls_vminor;
|
|
tlshdr->tls_type = record_type;
|
|
}
|
|
tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
|
|
|
|
/*
|
|
* Store nonces / explicit IVs after the end of the
|
|
* TLS header.
|
|
*
|
|
* For GCM with TLS 1.2, an 8 byte nonce is copied
|
|
* from the end of the IV. The nonce is then
|
|
* incremented for use by the next record.
|
|
*
|
|
* For CBC, a random nonce is inserted for TLS 1.1+.
|
|
*/
|
|
if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
|
|
tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
|
|
noncep = (uint64_t *)(tls->params.iv + 8);
|
|
be64enc(tlshdr + 1, *noncep);
|
|
(*noncep)++;
|
|
} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
|
|
tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
|
|
arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
|
|
|
|
/*
|
|
* When using SW encryption, mark the mbuf not ready.
|
|
* It will be marked ready via sbready() after the
|
|
* record has been encrypted.
|
|
*
|
|
* When using ifnet TLS, unencrypted TLS records are
|
|
* sent down the stack to the NIC.
|
|
*/
|
|
if (tls->mode == TCP_TLS_MODE_SW) {
|
|
m->m_flags |= M_NOTREADY;
|
|
pgs->nrdy = pgs->npgs;
|
|
*enq_cnt += pgs->npgs;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ktls_enqueue_to_free(struct mbuf_ext_pgs *pgs)
|
|
{
|
|
struct ktls_wq *wq;
|
|
bool running;
|
|
|
|
/* Mark it for freeing. */
|
|
pgs->mbuf = NULL;
|
|
wq = &ktls_wq[pgs->tls->wq_index];
|
|
mtx_lock(&wq->mtx);
|
|
STAILQ_INSERT_TAIL(&wq->head, pgs, stailq);
|
|
running = wq->running;
|
|
mtx_unlock(&wq->mtx);
|
|
if (!running)
|
|
wakeup(wq);
|
|
}
|
|
|
|
void
|
|
ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
|
|
{
|
|
struct mbuf_ext_pgs *pgs;
|
|
struct ktls_wq *wq;
|
|
bool running;
|
|
|
|
KASSERT(((m->m_flags & (M_NOMAP | M_NOTREADY)) ==
|
|
(M_NOMAP | M_NOTREADY)),
|
|
("ktls_enqueue: %p not unready & nomap mbuf\n", m));
|
|
KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
|
|
|
|
pgs = &m->m_ext_pgs;
|
|
|
|
KASSERT(pgs->tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
|
|
|
|
pgs->enc_cnt = page_count;
|
|
pgs->mbuf = m;
|
|
|
|
/*
|
|
* Save a pointer to the socket. The caller is responsible
|
|
* for taking an additional reference via soref().
|
|
*/
|
|
pgs->so = so;
|
|
|
|
wq = &ktls_wq[pgs->tls->wq_index];
|
|
mtx_lock(&wq->mtx);
|
|
STAILQ_INSERT_TAIL(&wq->head, pgs, stailq);
|
|
running = wq->running;
|
|
mtx_unlock(&wq->mtx);
|
|
if (!running)
|
|
wakeup(wq);
|
|
counter_u64_add(ktls_cnt_on, 1);
|
|
}
|
|
|
|
static __noinline void
|
|
ktls_encrypt(struct mbuf_ext_pgs *pgs)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct socket *so;
|
|
struct mbuf *m, *top;
|
|
vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
|
|
struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
|
|
struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
|
|
vm_page_t pg;
|
|
int error, i, len, npages, off, total_pages;
|
|
bool is_anon;
|
|
|
|
so = pgs->so;
|
|
tls = pgs->tls;
|
|
top = pgs->mbuf;
|
|
KASSERT(tls != NULL, ("tls = NULL, top = %p, pgs = %p\n", top, pgs));
|
|
KASSERT(so != NULL, ("so = NULL, top = %p, pgs = %p\n", top, pgs));
|
|
#ifdef INVARIANTS
|
|
pgs->so = NULL;
|
|
pgs->mbuf = NULL;
|
|
#endif
|
|
total_pages = pgs->enc_cnt;
|
|
npages = 0;
|
|
|
|
/*
|
|
* Encrypt the TLS records in the chain of mbufs starting with
|
|
* 'top'. 'total_pages' gives us a total count of pages and is
|
|
* used to know when we have finished encrypting the TLS
|
|
* records originally queued with 'top'.
|
|
*
|
|
* NB: These mbufs are queued in the socket buffer and
|
|
* 'm_next' is traversing the mbufs in the socket buffer. The
|
|
* socket buffer lock is not held while traversing this chain.
|
|
* Since the mbufs are all marked M_NOTREADY their 'm_next'
|
|
* pointers should be stable. However, the 'm_next' of the
|
|
* last mbuf encrypted is not necessarily NULL. It can point
|
|
* to other mbufs appended while 'top' was on the TLS work
|
|
* queue.
|
|
*
|
|
* Each mbuf holds an entire TLS record.
|
|
*/
|
|
error = 0;
|
|
for (m = top; npages != total_pages; m = m->m_next) {
|
|
pgs = &m->m_ext_pgs;
|
|
|
|
KASSERT(pgs->tls == tls,
|
|
("different TLS sessions in a single mbuf chain: %p vs %p",
|
|
tls, pgs->tls));
|
|
KASSERT((m->m_flags & (M_NOMAP | M_NOTREADY)) ==
|
|
(M_NOMAP | M_NOTREADY),
|
|
("%p not unready & nomap mbuf (top = %p)\n", m, top));
|
|
KASSERT(npages + pgs->npgs <= total_pages,
|
|
("page count mismatch: top %p, total_pages %d, m %p", top,
|
|
total_pages, m));
|
|
|
|
/*
|
|
* Generate source and destination ivoecs to pass to
|
|
* the SW encryption backend. For writable mbufs, the
|
|
* destination iovec is a copy of the source and
|
|
* encryption is done in place. For file-backed mbufs
|
|
* (from sendfile), anonymous wired pages are
|
|
* allocated and assigned to the destination iovec.
|
|
*/
|
|
is_anon = (pgs->flags & MBUF_PEXT_FLAG_ANON) != 0;
|
|
|
|
off = pgs->first_pg_off;
|
|
for (i = 0; i < pgs->npgs; i++, off = 0) {
|
|
len = mbuf_ext_pg_len(pgs, i, off);
|
|
src_iov[i].iov_len = len;
|
|
src_iov[i].iov_base =
|
|
(char *)(void *)PHYS_TO_DMAP(pgs->m_epg_pa[i]) +
|
|
off;
|
|
|
|
if (is_anon) {
|
|
dst_iov[i].iov_base = src_iov[i].iov_base;
|
|
dst_iov[i].iov_len = src_iov[i].iov_len;
|
|
continue;
|
|
}
|
|
retry_page:
|
|
pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
|
|
VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
|
|
if (pg == NULL) {
|
|
vm_wait(NULL);
|
|
goto retry_page;
|
|
}
|
|
parray[i] = VM_PAGE_TO_PHYS(pg);
|
|
dst_iov[i].iov_base =
|
|
(char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
|
|
dst_iov[i].iov_len = len;
|
|
}
|
|
|
|
npages += i;
|
|
|
|
error = (*tls->sw_encrypt)(tls,
|
|
(const struct tls_record_layer *)pgs->m_epg_hdr,
|
|
pgs->m_epg_trail, src_iov, dst_iov, i, pgs->seqno,
|
|
pgs->record_type);
|
|
if (error) {
|
|
counter_u64_add(ktls_offload_failed_crypto, 1);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* For file-backed mbufs, release the file-backed
|
|
* pages and replace them in the ext_pgs array with
|
|
* the anonymous wired pages allocated above.
|
|
*/
|
|
if (!is_anon) {
|
|
/* Free the old pages. */
|
|
m->m_ext.ext_free(m);
|
|
|
|
/* Replace them with the new pages. */
|
|
for (i = 0; i < pgs->npgs; i++)
|
|
pgs->m_epg_pa[i] = parray[i];
|
|
|
|
/* Use the basic free routine. */
|
|
m->m_ext.ext_free = mb_free_mext_pgs;
|
|
|
|
/* Pages are now writable. */
|
|
pgs->flags |= MBUF_PEXT_FLAG_ANON;
|
|
}
|
|
|
|
/*
|
|
* Drop a reference to the session now that it is no
|
|
* longer needed. Existing code depends on encrypted
|
|
* records having no associated session vs
|
|
* yet-to-be-encrypted records having an associated
|
|
* session.
|
|
*/
|
|
pgs->tls = NULL;
|
|
ktls_free(tls);
|
|
}
|
|
|
|
CURVNET_SET(so->so_vnet);
|
|
if (error == 0) {
|
|
(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
|
|
} else {
|
|
so->so_proto->pr_usrreqs->pru_abort(so);
|
|
so->so_error = EIO;
|
|
mb_free_notready(top, total_pages);
|
|
}
|
|
|
|
SOCK_LOCK(so);
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
static void
|
|
ktls_work_thread(void *ctx)
|
|
{
|
|
struct ktls_wq *wq = ctx;
|
|
struct mbuf_ext_pgs *p, *n;
|
|
struct ktls_session *tls;
|
|
struct mbuf *m;
|
|
STAILQ_HEAD(, mbuf_ext_pgs) local_head;
|
|
|
|
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
|
|
fpu_kern_thread(0);
|
|
#endif
|
|
for (;;) {
|
|
mtx_lock(&wq->mtx);
|
|
while (STAILQ_EMPTY(&wq->head)) {
|
|
wq->running = false;
|
|
mtx_sleep(wq, &wq->mtx, 0, "-", 0);
|
|
wq->running = true;
|
|
}
|
|
|
|
STAILQ_INIT(&local_head);
|
|
STAILQ_CONCAT(&local_head, &wq->head);
|
|
mtx_unlock(&wq->mtx);
|
|
|
|
STAILQ_FOREACH_SAFE(p, &local_head, stailq, n) {
|
|
if (p->mbuf != NULL) {
|
|
ktls_encrypt(p);
|
|
counter_u64_add(ktls_cnt_on, -1);
|
|
} else {
|
|
tls = p->tls;
|
|
ktls_free(tls);
|
|
m = __containerof(p, struct mbuf, m_ext_pgs);
|
|
uma_zfree(zone_mbuf, m);
|
|
}
|
|
}
|
|
}
|
|
}
|