fcda5c4f74
Reported by: kris
1360 lines
32 KiB
C
1360 lines
32 KiB
C
/*-
|
|
* Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/vmmeter.h>
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
#ifdef KTRACE
|
|
#include <sys/uio.h>
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#define KTR_ULE KTR_NFS
|
|
|
|
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
|
|
/* XXX This is bogus compatability crap for ps */
|
|
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
|
|
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
|
|
|
|
static void sched_setup(void *dummy);
|
|
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
|
|
|
|
static int sched_strict;
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
|
|
|
|
static int slice_min = 1;
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
|
|
|
|
static int slice_max = 10;
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
|
|
|
|
int realstathz;
|
|
int tickincr = 1;
|
|
|
|
#ifdef SMP
|
|
/* Callout to handle load balancing SMP systems. */
|
|
static struct callout kseq_lb_callout;
|
|
#endif
|
|
|
|
/*
|
|
* These datastructures are allocated within their parent datastructure but
|
|
* are scheduler specific.
|
|
*/
|
|
|
|
struct ke_sched {
|
|
int ske_slice;
|
|
struct runq *ske_runq;
|
|
/* The following variables are only used for pctcpu calculation */
|
|
int ske_ltick; /* Last tick that we were running on */
|
|
int ske_ftick; /* First tick that we were running on */
|
|
int ske_ticks; /* Tick count */
|
|
/* CPU that we have affinity for. */
|
|
u_char ske_cpu;
|
|
};
|
|
#define ke_slice ke_sched->ske_slice
|
|
#define ke_runq ke_sched->ske_runq
|
|
#define ke_ltick ke_sched->ske_ltick
|
|
#define ke_ftick ke_sched->ske_ftick
|
|
#define ke_ticks ke_sched->ske_ticks
|
|
#define ke_cpu ke_sched->ske_cpu
|
|
|
|
struct kg_sched {
|
|
int skg_slptime; /* Number of ticks we vol. slept */
|
|
int skg_runtime; /* Number of ticks we were running */
|
|
};
|
|
#define kg_slptime kg_sched->skg_slptime
|
|
#define kg_runtime kg_sched->skg_runtime
|
|
|
|
struct td_sched {
|
|
int std_slptime;
|
|
};
|
|
#define td_slptime td_sched->std_slptime
|
|
|
|
struct td_sched td_sched;
|
|
struct ke_sched ke_sched;
|
|
struct kg_sched kg_sched;
|
|
|
|
struct ke_sched *kse0_sched = &ke_sched;
|
|
struct kg_sched *ksegrp0_sched = &kg_sched;
|
|
struct p_sched *proc0_sched = NULL;
|
|
struct td_sched *thread0_sched = &td_sched;
|
|
|
|
/*
|
|
* The priority is primarily determined by the interactivity score. Thus, we
|
|
* give lower(better) priorities to kse groups that use less CPU. The nice
|
|
* value is then directly added to this to allow nice to have some effect
|
|
* on latency.
|
|
*
|
|
* PRI_RANGE: Total priority range for timeshare threads.
|
|
* PRI_NRESV: Number of nice values.
|
|
* PRI_BASE: The start of the dynamic range.
|
|
*/
|
|
#define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
|
|
#define SCHED_PRI_NRESV PRIO_TOTAL
|
|
#define SCHED_PRI_NHALF (PRIO_TOTAL / 2)
|
|
#define SCHED_PRI_NTHRESH (SCHED_PRI_NHALF - 1)
|
|
#define SCHED_PRI_BASE (PRI_MIN_TIMESHARE)
|
|
#define SCHED_PRI_INTERACT(score) \
|
|
((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
|
|
|
|
/*
|
|
* These determine the interactivity of a process.
|
|
*
|
|
* SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
|
|
* before throttling back.
|
|
* SLP_RUN_THROTTLE: Divisor for reducing slp/run time at fork time.
|
|
* INTERACT_MAX: Maximum interactivity value. Smaller is better.
|
|
* INTERACT_THRESH: Threshhold for placement on the current runq.
|
|
*/
|
|
#define SCHED_SLP_RUN_MAX ((hz * 5) << 10)
|
|
#define SCHED_SLP_RUN_THROTTLE (100)
|
|
#define SCHED_INTERACT_MAX (100)
|
|
#define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2)
|
|
#define SCHED_INTERACT_THRESH (30)
|
|
|
|
/*
|
|
* These parameters and macros determine the size of the time slice that is
|
|
* granted to each thread.
|
|
*
|
|
* SLICE_MIN: Minimum time slice granted, in units of ticks.
|
|
* SLICE_MAX: Maximum time slice granted.
|
|
* SLICE_RANGE: Range of available time slices scaled by hz.
|
|
* SLICE_SCALE: The number slices granted per val in the range of [0, max].
|
|
* SLICE_NICE: Determine the amount of slice granted to a scaled nice.
|
|
*/
|
|
#define SCHED_SLICE_MIN (slice_min)
|
|
#define SCHED_SLICE_MAX (slice_max)
|
|
#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
|
|
#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
|
|
#define SCHED_SLICE_NICE(nice) \
|
|
(SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
|
|
|
|
/*
|
|
* This macro determines whether or not the kse belongs on the current or
|
|
* next run queue.
|
|
*
|
|
* XXX nice value should effect how interactive a kg is.
|
|
*/
|
|
#define SCHED_INTERACTIVE(kg) \
|
|
(sched_interact_score(kg) < SCHED_INTERACT_THRESH)
|
|
#define SCHED_CURR(kg, ke) \
|
|
(ke->ke_thread->td_priority != kg->kg_user_pri || \
|
|
SCHED_INTERACTIVE(kg))
|
|
|
|
/*
|
|
* Cpu percentage computation macros and defines.
|
|
*
|
|
* SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
|
|
* SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
|
|
*/
|
|
|
|
#define SCHED_CPU_TIME 10
|
|
#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
|
|
|
|
/*
|
|
* kseq - per processor runqs and statistics.
|
|
*/
|
|
|
|
#define KSEQ_NCLASS (PRI_IDLE + 1) /* Number of run classes. */
|
|
|
|
struct kseq {
|
|
struct runq ksq_idle; /* Queue of IDLE threads. */
|
|
struct runq ksq_timeshare[2]; /* Run queues for !IDLE. */
|
|
struct runq *ksq_next; /* Next timeshare queue. */
|
|
struct runq *ksq_curr; /* Current queue. */
|
|
int ksq_loads[KSEQ_NCLASS]; /* Load for each class */
|
|
int ksq_load; /* Aggregate load. */
|
|
short ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
|
|
short ksq_nicemin; /* Least nice. */
|
|
#ifdef SMP
|
|
int ksq_cpus; /* Count of CPUs in this kseq. */
|
|
unsigned int ksq_rslices; /* Slices on run queue */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* One kse queue per processor.
|
|
*/
|
|
#ifdef SMP
|
|
struct kseq kseq_cpu[MAXCPU];
|
|
struct kseq *kseq_idmap[MAXCPU];
|
|
#define KSEQ_SELF() (kseq_idmap[PCPU_GET(cpuid)])
|
|
#define KSEQ_CPU(x) (kseq_idmap[(x)])
|
|
#else
|
|
struct kseq kseq_cpu;
|
|
#define KSEQ_SELF() (&kseq_cpu)
|
|
#define KSEQ_CPU(x) (&kseq_cpu)
|
|
#endif
|
|
|
|
static void sched_slice(struct kse *ke);
|
|
static void sched_priority(struct ksegrp *kg);
|
|
static int sched_interact_score(struct ksegrp *kg);
|
|
static void sched_interact_update(struct ksegrp *kg);
|
|
void sched_pctcpu_update(struct kse *ke);
|
|
int sched_pickcpu(void);
|
|
|
|
/* Operations on per processor queues */
|
|
static struct kse * kseq_choose(struct kseq *kseq, int steal);
|
|
static void kseq_setup(struct kseq *kseq);
|
|
static void kseq_add(struct kseq *kseq, struct kse *ke);
|
|
static void kseq_rem(struct kseq *kseq, struct kse *ke);
|
|
static void kseq_nice_add(struct kseq *kseq, int nice);
|
|
static void kseq_nice_rem(struct kseq *kseq, int nice);
|
|
void kseq_print(int cpu);
|
|
#ifdef SMP
|
|
struct kseq * kseq_load_highest(void);
|
|
void kseq_balance(void *arg);
|
|
void kseq_move(struct kseq *from, int cpu);
|
|
#endif
|
|
|
|
void
|
|
kseq_print(int cpu)
|
|
{
|
|
struct kseq *kseq;
|
|
int i;
|
|
|
|
kseq = KSEQ_CPU(cpu);
|
|
|
|
printf("kseq:\n");
|
|
printf("\tload: %d\n", kseq->ksq_load);
|
|
printf("\tload ITHD: %d\n", kseq->ksq_loads[PRI_ITHD]);
|
|
printf("\tload REALTIME: %d\n", kseq->ksq_loads[PRI_REALTIME]);
|
|
printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
|
|
printf("\tload IDLE: %d\n", kseq->ksq_loads[PRI_IDLE]);
|
|
printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
|
|
printf("\tnice counts:\n");
|
|
for (i = 0; i < PRIO_TOTAL + 1; i++)
|
|
if (kseq->ksq_nice[i])
|
|
printf("\t\t%d = %d\n",
|
|
i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
|
|
}
|
|
|
|
static void
|
|
kseq_add(struct kseq *kseq, struct kse *ke)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
|
|
kseq->ksq_load++;
|
|
if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
|
|
CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
|
|
ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
|
|
ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
|
|
if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
|
|
kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
|
|
#ifdef SMP
|
|
kseq->ksq_rslices += ke->ke_slice;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
kseq_rem(struct kseq *kseq, struct kse *ke)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
|
|
kseq->ksq_load--;
|
|
ke->ke_runq = NULL;
|
|
if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
|
|
kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
|
|
#ifdef SMP
|
|
kseq->ksq_rslices -= ke->ke_slice;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
kseq_nice_add(struct kseq *kseq, int nice)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
/* Normalize to zero. */
|
|
kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
|
|
if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
|
|
kseq->ksq_nicemin = nice;
|
|
}
|
|
|
|
static void
|
|
kseq_nice_rem(struct kseq *kseq, int nice)
|
|
{
|
|
int n;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
/* Normalize to zero. */
|
|
n = nice + SCHED_PRI_NHALF;
|
|
kseq->ksq_nice[n]--;
|
|
KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
|
|
|
|
/*
|
|
* If this wasn't the smallest nice value or there are more in
|
|
* this bucket we can just return. Otherwise we have to recalculate
|
|
* the smallest nice.
|
|
*/
|
|
if (nice != kseq->ksq_nicemin ||
|
|
kseq->ksq_nice[n] != 0 ||
|
|
kseq->ksq_loads[PRI_TIMESHARE] == 0)
|
|
return;
|
|
|
|
for (; n < SCHED_PRI_NRESV + 1; n++)
|
|
if (kseq->ksq_nice[n]) {
|
|
kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* kseq_balance is a simple CPU load balancing algorithm. It operates by
|
|
* finding the least loaded and most loaded cpu and equalizing their load
|
|
* by migrating some processes.
|
|
*
|
|
* Dealing only with two CPUs at a time has two advantages. Firstly, most
|
|
* installations will only have 2 cpus. Secondly, load balancing too much at
|
|
* once can have an unpleasant effect on the system. The scheduler rarely has
|
|
* enough information to make perfect decisions. So this algorithm chooses
|
|
* algorithm simplicity and more gradual effects on load in larger systems.
|
|
*
|
|
* It could be improved by considering the priorities and slices assigned to
|
|
* each task prior to balancing them. There are many pathological cases with
|
|
* any approach and so the semi random algorithm below may work as well as any.
|
|
*
|
|
*/
|
|
void
|
|
kseq_balance(void *arg)
|
|
{
|
|
struct kseq *kseq;
|
|
int high_load;
|
|
int low_load;
|
|
int high_cpu;
|
|
int low_cpu;
|
|
int move;
|
|
int diff;
|
|
int i;
|
|
|
|
high_cpu = 0;
|
|
low_cpu = 0;
|
|
high_load = 0;
|
|
low_load = -1;
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if (smp_started == 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load > high_load) {
|
|
high_load = kseq->ksq_load;
|
|
high_cpu = i;
|
|
}
|
|
if (low_load == -1 || kseq->ksq_load < low_load) {
|
|
low_load = kseq->ksq_load;
|
|
low_cpu = i;
|
|
}
|
|
}
|
|
|
|
kseq = KSEQ_CPU(high_cpu);
|
|
|
|
/*
|
|
* Nothing to do.
|
|
*/
|
|
if (high_load < kseq->ksq_cpus + 1)
|
|
goto out;
|
|
|
|
high_load -= kseq->ksq_cpus;
|
|
|
|
if (low_load >= high_load)
|
|
goto out;
|
|
|
|
diff = high_load - low_load;
|
|
move = diff / 2;
|
|
if (diff & 0x1)
|
|
move++;
|
|
|
|
for (i = 0; i < move; i++)
|
|
kseq_move(kseq, low_cpu);
|
|
|
|
out:
|
|
mtx_unlock_spin(&sched_lock);
|
|
callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
|
|
|
|
return;
|
|
}
|
|
|
|
struct kseq *
|
|
kseq_load_highest(void)
|
|
{
|
|
struct kseq *kseq;
|
|
int load;
|
|
int cpu;
|
|
int i;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
cpu = 0;
|
|
load = 0;
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load > load) {
|
|
load = kseq->ksq_load;
|
|
cpu = i;
|
|
}
|
|
}
|
|
kseq = KSEQ_CPU(cpu);
|
|
|
|
if (load > kseq->ksq_cpus)
|
|
return (kseq);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
kseq_move(struct kseq *from, int cpu)
|
|
{
|
|
struct kse *ke;
|
|
|
|
ke = kseq_choose(from, 1);
|
|
runq_remove(ke->ke_runq, ke);
|
|
ke->ke_state = KES_THREAD;
|
|
kseq_rem(from, ke);
|
|
|
|
ke->ke_cpu = cpu;
|
|
sched_add(ke->ke_thread);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pick the highest priority task we have and return it. If steal is 1 we
|
|
* will return kses that have been denied slices due to their nice being too
|
|
* low. In the future we should prohibit stealing interrupt threads as well.
|
|
*/
|
|
|
|
struct kse *
|
|
kseq_choose(struct kseq *kseq, int steal)
|
|
{
|
|
struct kse *ke;
|
|
struct runq *swap;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
swap = NULL;
|
|
|
|
for (;;) {
|
|
ke = runq_choose(kseq->ksq_curr);
|
|
if (ke == NULL) {
|
|
/*
|
|
* We already swaped once and didn't get anywhere.
|
|
*/
|
|
if (swap)
|
|
break;
|
|
swap = kseq->ksq_curr;
|
|
kseq->ksq_curr = kseq->ksq_next;
|
|
kseq->ksq_next = swap;
|
|
continue;
|
|
}
|
|
/*
|
|
* If we encounter a slice of 0 the kse is in a
|
|
* TIMESHARE kse group and its nice was too far out
|
|
* of the range that receives slices.
|
|
*/
|
|
if (ke->ke_slice == 0 && steal == 0) {
|
|
runq_remove(ke->ke_runq, ke);
|
|
sched_slice(ke);
|
|
ke->ke_runq = kseq->ksq_next;
|
|
runq_add(ke->ke_runq, ke);
|
|
continue;
|
|
}
|
|
return (ke);
|
|
}
|
|
|
|
return (runq_choose(&kseq->ksq_idle));
|
|
}
|
|
|
|
static void
|
|
kseq_setup(struct kseq *kseq)
|
|
{
|
|
runq_init(&kseq->ksq_timeshare[0]);
|
|
runq_init(&kseq->ksq_timeshare[1]);
|
|
runq_init(&kseq->ksq_idle);
|
|
|
|
kseq->ksq_curr = &kseq->ksq_timeshare[0];
|
|
kseq->ksq_next = &kseq->ksq_timeshare[1];
|
|
|
|
kseq->ksq_loads[PRI_ITHD] = 0;
|
|
kseq->ksq_loads[PRI_REALTIME] = 0;
|
|
kseq->ksq_loads[PRI_TIMESHARE] = 0;
|
|
kseq->ksq_loads[PRI_IDLE] = 0;
|
|
kseq->ksq_load = 0;
|
|
#ifdef SMP
|
|
kseq->ksq_rslices = 0;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
sched_setup(void *dummy)
|
|
{
|
|
#ifdef SMP
|
|
int i;
|
|
#endif
|
|
|
|
slice_min = (hz/100); /* 10ms */
|
|
slice_max = (hz/7); /* ~140ms */
|
|
|
|
#ifdef SMP
|
|
/* init kseqs */
|
|
/* Create the idmap. */
|
|
#ifdef ULE_HTT_EXPERIMENTAL
|
|
if (smp_topology == NULL) {
|
|
#else
|
|
if (1) {
|
|
#endif
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
kseq_setup(&kseq_cpu[i]);
|
|
kseq_idmap[i] = &kseq_cpu[i];
|
|
kseq_cpu[i].ksq_cpus = 1;
|
|
}
|
|
} else {
|
|
int j;
|
|
|
|
for (i = 0; i < smp_topology->ct_count; i++) {
|
|
struct cpu_group *cg;
|
|
|
|
cg = &smp_topology->ct_group[i];
|
|
kseq_setup(&kseq_cpu[i]);
|
|
|
|
for (j = 0; j < MAXCPU; j++)
|
|
if ((cg->cg_mask & (1 << j)) != 0)
|
|
kseq_idmap[j] = &kseq_cpu[i];
|
|
kseq_cpu[i].ksq_cpus = cg->cg_count;
|
|
}
|
|
}
|
|
callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
|
|
kseq_balance(NULL);
|
|
#else
|
|
kseq_setup(KSEQ_SELF());
|
|
#endif
|
|
mtx_lock_spin(&sched_lock);
|
|
kseq_add(KSEQ_SELF(), &kse0);
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Scale the scheduling priority according to the "interactivity" of this
|
|
* process.
|
|
*/
|
|
static void
|
|
sched_priority(struct ksegrp *kg)
|
|
{
|
|
int pri;
|
|
|
|
if (kg->kg_pri_class != PRI_TIMESHARE)
|
|
return;
|
|
|
|
pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
|
|
pri += SCHED_PRI_BASE;
|
|
pri += kg->kg_nice;
|
|
|
|
if (pri > PRI_MAX_TIMESHARE)
|
|
pri = PRI_MAX_TIMESHARE;
|
|
else if (pri < PRI_MIN_TIMESHARE)
|
|
pri = PRI_MIN_TIMESHARE;
|
|
|
|
kg->kg_user_pri = pri;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate a time slice based on the properties of the kseg and the runq
|
|
* that we're on. This is only for PRI_TIMESHARE ksegrps.
|
|
*/
|
|
static void
|
|
sched_slice(struct kse *ke)
|
|
{
|
|
struct kseq *kseq;
|
|
struct ksegrp *kg;
|
|
|
|
kg = ke->ke_ksegrp;
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
|
|
/*
|
|
* Rationale:
|
|
* KSEs in interactive ksegs get the minimum slice so that we
|
|
* quickly notice if it abuses its advantage.
|
|
*
|
|
* KSEs in non-interactive ksegs are assigned a slice that is
|
|
* based on the ksegs nice value relative to the least nice kseg
|
|
* on the run queue for this cpu.
|
|
*
|
|
* If the KSE is less nice than all others it gets the maximum
|
|
* slice and other KSEs will adjust their slice relative to
|
|
* this when they first expire.
|
|
*
|
|
* There is 20 point window that starts relative to the least
|
|
* nice kse on the run queue. Slice size is determined by
|
|
* the kse distance from the last nice ksegrp.
|
|
*
|
|
* If you are outside of the window you will get no slice and
|
|
* you will be reevaluated each time you are selected on the
|
|
* run queue.
|
|
*
|
|
*/
|
|
|
|
if (!SCHED_INTERACTIVE(kg)) {
|
|
int nice;
|
|
|
|
nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
|
|
if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
|
|
kg->kg_nice < kseq->ksq_nicemin)
|
|
ke->ke_slice = SCHED_SLICE_MAX;
|
|
else if (nice <= SCHED_PRI_NTHRESH)
|
|
ke->ke_slice = SCHED_SLICE_NICE(nice);
|
|
else
|
|
ke->ke_slice = 0;
|
|
} else
|
|
ke->ke_slice = SCHED_SLICE_MIN;
|
|
|
|
CTR6(KTR_ULE,
|
|
"Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
|
|
ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
|
|
kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
|
|
|
|
/*
|
|
* Check to see if we need to scale back the slp and run time
|
|
* in the kg. This will cause us to forget old interactivity
|
|
* while maintaining the current ratio.
|
|
*/
|
|
sched_interact_update(kg);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sched_interact_update(struct ksegrp *kg)
|
|
{
|
|
/* XXX Fixme, use a linear algorithm and not a while loop. */
|
|
while ((kg->kg_runtime + kg->kg_slptime) > SCHED_SLP_RUN_MAX) {
|
|
kg->kg_runtime = (kg->kg_runtime / 5) * 4;
|
|
kg->kg_slptime = (kg->kg_slptime / 5) * 4;
|
|
}
|
|
}
|
|
|
|
static int
|
|
sched_interact_score(struct ksegrp *kg)
|
|
{
|
|
int div;
|
|
|
|
if (kg->kg_runtime > kg->kg_slptime) {
|
|
div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
|
|
return (SCHED_INTERACT_HALF +
|
|
(SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
|
|
} if (kg->kg_slptime > kg->kg_runtime) {
|
|
div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
|
|
return (kg->kg_runtime / div);
|
|
}
|
|
|
|
/*
|
|
* This can happen if slptime and runtime are 0.
|
|
*/
|
|
return (0);
|
|
|
|
}
|
|
|
|
/*
|
|
* This is only somewhat accurate since given many processes of the same
|
|
* priority they will switch when their slices run out, which will be
|
|
* at most SCHED_SLICE_MAX.
|
|
*/
|
|
int
|
|
sched_rr_interval(void)
|
|
{
|
|
return (SCHED_SLICE_MAX);
|
|
}
|
|
|
|
void
|
|
sched_pctcpu_update(struct kse *ke)
|
|
{
|
|
/*
|
|
* Adjust counters and watermark for pctcpu calc.
|
|
*/
|
|
if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
|
|
/*
|
|
* Shift the tick count out so that the divide doesn't
|
|
* round away our results.
|
|
*/
|
|
ke->ke_ticks <<= 10;
|
|
ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
|
|
SCHED_CPU_TICKS;
|
|
ke->ke_ticks >>= 10;
|
|
} else
|
|
ke->ke_ticks = 0;
|
|
ke->ke_ltick = ticks;
|
|
ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
|
|
}
|
|
|
|
#ifdef SMP
|
|
/* XXX Should be changed to kseq_load_lowest() */
|
|
int
|
|
sched_pickcpu(void)
|
|
{
|
|
struct kseq *kseq;
|
|
int load;
|
|
int cpu;
|
|
int i;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if (!smp_started)
|
|
return (0);
|
|
|
|
load = 0;
|
|
cpu = 0;
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load < load) {
|
|
cpu = i;
|
|
load = kseq->ksq_load;
|
|
}
|
|
}
|
|
|
|
CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
|
|
return (cpu);
|
|
}
|
|
#else
|
|
int
|
|
sched_pickcpu(void)
|
|
{
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sched_prio(struct thread *td, u_char prio)
|
|
{
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if (TD_ON_RUNQ(td)) {
|
|
adjustrunqueue(td, prio);
|
|
} else {
|
|
td->td_priority = prio;
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_switch(struct thread *td)
|
|
{
|
|
struct thread *newtd;
|
|
u_int sched_nest;
|
|
struct kse *ke;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
ke = td->td_kse;
|
|
|
|
td->td_last_kse = ke;
|
|
td->td_lastcpu = td->td_oncpu;
|
|
td->td_oncpu = NOCPU;
|
|
td->td_flags &= ~TDF_NEEDRESCHED;
|
|
|
|
if (TD_IS_RUNNING(td)) {
|
|
if (td->td_proc->p_flag & P_SA) {
|
|
kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
|
|
setrunqueue(td);
|
|
} else {
|
|
/*
|
|
* This queue is always correct except for idle threads which
|
|
* have a higher priority due to priority propagation.
|
|
*/
|
|
if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE &&
|
|
ke->ke_thread->td_priority > PRI_MIN_IDLE)
|
|
ke->ke_runq = KSEQ_SELF()->ksq_curr;
|
|
runq_add(ke->ke_runq, ke);
|
|
/* setrunqueue(td); */
|
|
}
|
|
} else {
|
|
if (ke->ke_runq)
|
|
kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
|
|
/*
|
|
* We will not be on the run queue. So we must be
|
|
* sleeping or similar.
|
|
*/
|
|
if (td->td_proc->p_flag & P_SA)
|
|
kse_reassign(ke);
|
|
}
|
|
sched_nest = sched_lock.mtx_recurse;
|
|
newtd = choosethread();
|
|
if (td != newtd)
|
|
cpu_switch(td, newtd);
|
|
sched_lock.mtx_recurse = sched_nest;
|
|
sched_lock.mtx_lock = (uintptr_t)td;
|
|
|
|
td->td_oncpu = PCPU_GET(cpuid);
|
|
}
|
|
|
|
void
|
|
sched_nice(struct ksegrp *kg, int nice)
|
|
{
|
|
struct kse *ke;
|
|
struct thread *td;
|
|
struct kseq *kseq;
|
|
|
|
PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
/*
|
|
* We need to adjust the nice counts for running KSEs.
|
|
*/
|
|
if (kg->kg_pri_class == PRI_TIMESHARE)
|
|
FOREACH_KSE_IN_GROUP(kg, ke) {
|
|
if (ke->ke_runq == NULL)
|
|
continue;
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
kseq_nice_rem(kseq, kg->kg_nice);
|
|
kseq_nice_add(kseq, nice);
|
|
}
|
|
kg->kg_nice = nice;
|
|
sched_priority(kg);
|
|
FOREACH_THREAD_IN_GROUP(kg, td)
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
|
|
void
|
|
sched_sleep(struct thread *td, u_char prio)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
td->td_slptime = ticks;
|
|
td->td_priority = prio;
|
|
|
|
CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
|
|
td->td_kse, td->td_slptime);
|
|
}
|
|
|
|
void
|
|
sched_wakeup(struct thread *td)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
/*
|
|
* Let the kseg know how long we slept for. This is because process
|
|
* interactivity behavior is modeled in the kseg.
|
|
*/
|
|
if (td->td_slptime) {
|
|
struct ksegrp *kg;
|
|
int hzticks;
|
|
|
|
kg = td->td_ksegrp;
|
|
hzticks = ticks - td->td_slptime;
|
|
kg->kg_slptime += hzticks << 10;
|
|
sched_interact_update(kg);
|
|
sched_priority(kg);
|
|
if (td->td_kse)
|
|
sched_slice(td->td_kse);
|
|
CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
|
|
td->td_kse, hzticks);
|
|
td->td_slptime = 0;
|
|
}
|
|
setrunqueue(td);
|
|
if (td->td_priority < curthread->td_priority)
|
|
curthread->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
|
|
/*
|
|
* Penalize the parent for creating a new child and initialize the child's
|
|
* priority.
|
|
*/
|
|
void
|
|
sched_fork(struct proc *p, struct proc *p1)
|
|
{
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
|
|
sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
|
|
sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
|
|
}
|
|
|
|
void
|
|
sched_fork_kse(struct kse *ke, struct kse *child)
|
|
{
|
|
|
|
child->ke_slice = 1; /* Attempt to quickly learn interactivity. */
|
|
child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
|
|
child->ke_runq = NULL;
|
|
|
|
/* Grab our parents cpu estimation information. */
|
|
child->ke_ticks = ke->ke_ticks;
|
|
child->ke_ltick = ke->ke_ltick;
|
|
child->ke_ftick = ke->ke_ftick;
|
|
}
|
|
|
|
void
|
|
sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
|
|
/* XXX Need something better here */
|
|
|
|
child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
|
|
child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
|
|
kg->kg_runtime += tickincr << 10;
|
|
sched_interact_update(kg);
|
|
|
|
child->kg_user_pri = kg->kg_user_pri;
|
|
child->kg_nice = kg->kg_nice;
|
|
}
|
|
|
|
void
|
|
sched_fork_thread(struct thread *td, struct thread *child)
|
|
{
|
|
}
|
|
|
|
void
|
|
sched_class(struct ksegrp *kg, int class)
|
|
{
|
|
struct kseq *kseq;
|
|
struct kse *ke;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if (kg->kg_pri_class == class)
|
|
return;
|
|
|
|
FOREACH_KSE_IN_GROUP(kg, ke) {
|
|
if (ke->ke_state != KES_ONRUNQ &&
|
|
ke->ke_state != KES_THREAD)
|
|
continue;
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
|
|
kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
|
|
kseq->ksq_loads[PRI_BASE(class)]++;
|
|
|
|
if (kg->kg_pri_class == PRI_TIMESHARE)
|
|
kseq_nice_rem(kseq, kg->kg_nice);
|
|
else if (class == PRI_TIMESHARE)
|
|
kseq_nice_add(kseq, kg->kg_nice);
|
|
}
|
|
|
|
kg->kg_pri_class = class;
|
|
}
|
|
|
|
/*
|
|
* Return some of the child's priority and interactivity to the parent.
|
|
*/
|
|
void
|
|
sched_exit(struct proc *p, struct proc *child)
|
|
{
|
|
/* XXX Need something better here */
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
|
|
sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
|
|
}
|
|
|
|
void
|
|
sched_exit_kse(struct kse *ke, struct kse *child)
|
|
{
|
|
kseq_rem(KSEQ_CPU(child->ke_cpu), child);
|
|
}
|
|
|
|
void
|
|
sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
|
|
{
|
|
/* kg->kg_slptime += child->kg_slptime; */
|
|
kg->kg_runtime += child->kg_runtime;
|
|
sched_interact_update(kg);
|
|
}
|
|
|
|
void
|
|
sched_exit_thread(struct thread *td, struct thread *child)
|
|
{
|
|
}
|
|
|
|
void
|
|
sched_clock(struct thread *td)
|
|
{
|
|
struct kseq *kseq;
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
#if 0
|
|
struct kse *nke;
|
|
#endif
|
|
|
|
/*
|
|
* sched_setup() apparently happens prior to stathz being set. We
|
|
* need to resolve the timers earlier in the boot so we can avoid
|
|
* calculating this here.
|
|
*/
|
|
if (realstathz == 0) {
|
|
realstathz = stathz ? stathz : hz;
|
|
tickincr = hz / realstathz;
|
|
/*
|
|
* XXX This does not work for values of stathz that are much
|
|
* larger than hz.
|
|
*/
|
|
if (tickincr == 0)
|
|
tickincr = 1;
|
|
}
|
|
|
|
ke = td->td_kse;
|
|
kg = ke->ke_ksegrp;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((td != NULL), ("schedclock: null thread pointer"));
|
|
|
|
/* Adjust ticks for pctcpu */
|
|
ke->ke_ticks++;
|
|
ke->ke_ltick = ticks;
|
|
|
|
/* Go up to one second beyond our max and then trim back down */
|
|
if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
|
|
sched_pctcpu_update(ke);
|
|
|
|
if (td->td_flags & TDF_IDLETD)
|
|
return;
|
|
|
|
CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
|
|
ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
|
|
|
|
/*
|
|
* We only do slicing code for TIMESHARE ksegrps.
|
|
*/
|
|
if (kg->kg_pri_class != PRI_TIMESHARE)
|
|
return;
|
|
/*
|
|
* Check for a higher priority task on the run queue. This can happen
|
|
* on SMP if another processor woke up a process on our runq.
|
|
*/
|
|
kseq = KSEQ_SELF();
|
|
#if 0
|
|
if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq, 0)) != NULL) {
|
|
if (sched_strict &&
|
|
nke->ke_thread->td_priority < td->td_priority)
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
else if (nke->ke_thread->td_priority <
|
|
td->td_priority SCHED_PRIO_SLOP)
|
|
|
|
if (nke->ke_thread->td_priority < td->td_priority)
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
#endif
|
|
/*
|
|
* We used a tick charge it to the ksegrp so that we can compute our
|
|
* interactivity.
|
|
*/
|
|
kg->kg_runtime += tickincr << 10;
|
|
sched_interact_update(kg);
|
|
|
|
/*
|
|
* We used up one time slice.
|
|
*/
|
|
ke->ke_slice--;
|
|
#ifdef SMP
|
|
kseq->ksq_rslices--;
|
|
#endif
|
|
|
|
if (ke->ke_slice > 0)
|
|
return;
|
|
/*
|
|
* We're out of time, recompute priorities and requeue.
|
|
*/
|
|
kseq_rem(kseq, ke);
|
|
sched_priority(kg);
|
|
sched_slice(ke);
|
|
if (SCHED_CURR(kg, ke))
|
|
ke->ke_runq = kseq->ksq_curr;
|
|
else
|
|
ke->ke_runq = kseq->ksq_next;
|
|
kseq_add(kseq, ke);
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
|
|
int
|
|
sched_runnable(void)
|
|
{
|
|
struct kseq *kseq;
|
|
int load;
|
|
|
|
load = 1;
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
kseq = KSEQ_SELF();
|
|
|
|
if (kseq->ksq_load)
|
|
goto out;
|
|
#ifdef SMP
|
|
/*
|
|
* For SMP we may steal other processor's KSEs. Just search until we
|
|
* verify that at least on other cpu has a runnable task.
|
|
*/
|
|
if (smp_started) {
|
|
int i;
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load > kseq->ksq_cpus)
|
|
goto out;
|
|
}
|
|
}
|
|
#endif
|
|
load = 0;
|
|
out:
|
|
mtx_unlock_spin(&sched_lock);
|
|
return (load);
|
|
}
|
|
|
|
void
|
|
sched_userret(struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
#if 0
|
|
struct kseq *kseq;
|
|
struct kse *ke;
|
|
#endif
|
|
|
|
kg = td->td_ksegrp;
|
|
|
|
if (td->td_priority != kg->kg_user_pri) {
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_priority = kg->kg_user_pri;
|
|
/*
|
|
* This optimization is temporarily disabled because it
|
|
* breaks priority propagation.
|
|
*/
|
|
#if 0
|
|
kseq = KSEQ_SELF();
|
|
if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
|
|
#ifdef SMP
|
|
kseq->ksq_load > kseq->ksq_cpus &&
|
|
#else
|
|
kseq->ksq_load > 1 &&
|
|
#endif
|
|
(ke = kseq_choose(kseq, 0)) != NULL &&
|
|
ke->ke_thread->td_priority < td->td_priority)
|
|
#endif
|
|
curthread->td_flags |= TDF_NEEDRESCHED;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
}
|
|
|
|
struct kse *
|
|
sched_choose(void)
|
|
{
|
|
struct kseq *kseq;
|
|
struct kse *ke;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
#ifdef SMP
|
|
retry:
|
|
#endif
|
|
kseq = KSEQ_SELF();
|
|
ke = kseq_choose(kseq, 0);
|
|
if (ke) {
|
|
runq_remove(ke->ke_runq, ke);
|
|
ke->ke_state = KES_THREAD;
|
|
|
|
if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
|
|
CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
|
|
ke, ke->ke_runq, ke->ke_slice,
|
|
ke->ke_thread->td_priority);
|
|
}
|
|
return (ke);
|
|
}
|
|
|
|
#ifdef SMP
|
|
if (smp_started) {
|
|
/*
|
|
* Find the cpu with the highest load and steal one proc.
|
|
*/
|
|
if ((kseq = kseq_load_highest()) == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Remove this kse from this kseq and runq and then requeue
|
|
* on the current processor. Then we will dequeue it
|
|
* normally above.
|
|
*/
|
|
kseq_move(kseq, PCPU_GET(cpuid));
|
|
goto retry;
|
|
}
|
|
#endif
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
sched_add(struct thread *td)
|
|
{
|
|
struct kseq *kseq;
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
|
|
ke = td->td_kse;
|
|
kg = td->td_ksegrp;
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
|
|
KASSERT((ke->ke_thread->td_kse != NULL),
|
|
("sched_add: No KSE on thread"));
|
|
KASSERT(ke->ke_state != KES_ONRUNQ,
|
|
("sched_add: kse %p (%s) already in run queue", ke,
|
|
ke->ke_proc->p_comm));
|
|
KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
|
|
("sched_add: process swapped out"));
|
|
KASSERT(ke->ke_runq == NULL,
|
|
("sched_add: KSE %p is still assigned to a run queue", ke));
|
|
|
|
|
|
switch (PRI_BASE(kg->kg_pri_class)) {
|
|
case PRI_ITHD:
|
|
case PRI_REALTIME:
|
|
kseq = KSEQ_SELF();
|
|
ke->ke_runq = kseq->ksq_curr;
|
|
ke->ke_slice = SCHED_SLICE_MAX;
|
|
ke->ke_cpu = PCPU_GET(cpuid);
|
|
break;
|
|
case PRI_TIMESHARE:
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
if (SCHED_CURR(kg, ke))
|
|
ke->ke_runq = kseq->ksq_curr;
|
|
else
|
|
ke->ke_runq = kseq->ksq_next;
|
|
break;
|
|
case PRI_IDLE:
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
/*
|
|
* This is for priority prop.
|
|
*/
|
|
if (ke->ke_thread->td_priority > PRI_MIN_IDLE)
|
|
ke->ke_runq = kseq->ksq_curr;
|
|
else
|
|
ke->ke_runq = &kseq->ksq_idle;
|
|
ke->ke_slice = SCHED_SLICE_MIN;
|
|
break;
|
|
default:
|
|
panic("Unknown pri class.\n");
|
|
break;
|
|
}
|
|
|
|
ke->ke_ksegrp->kg_runq_kses++;
|
|
ke->ke_state = KES_ONRUNQ;
|
|
|
|
runq_add(ke->ke_runq, ke);
|
|
kseq_add(kseq, ke);
|
|
}
|
|
|
|
void
|
|
sched_rem(struct thread *td)
|
|
{
|
|
struct kseq *kseq;
|
|
struct kse *ke;
|
|
|
|
ke = td->td_kse;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
|
|
|
|
ke->ke_state = KES_THREAD;
|
|
ke->ke_ksegrp->kg_runq_kses--;
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
runq_remove(ke->ke_runq, ke);
|
|
kseq_rem(kseq, ke);
|
|
}
|
|
|
|
fixpt_t
|
|
sched_pctcpu(struct thread *td)
|
|
{
|
|
fixpt_t pctcpu;
|
|
struct kse *ke;
|
|
|
|
pctcpu = 0;
|
|
ke = td->td_kse;
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if (ke->ke_ticks) {
|
|
int rtick;
|
|
|
|
/*
|
|
* Don't update more frequently than twice a second. Allowing
|
|
* this causes the cpu usage to decay away too quickly due to
|
|
* rounding errors.
|
|
*/
|
|
if (ke->ke_ltick < (ticks - (hz / 2)))
|
|
sched_pctcpu_update(ke);
|
|
/* How many rtick per second ? */
|
|
rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
|
|
pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
|
|
}
|
|
|
|
ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
return (pctcpu);
|
|
}
|
|
|
|
int
|
|
sched_sizeof_kse(void)
|
|
{
|
|
return (sizeof(struct kse) + sizeof(struct ke_sched));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_ksegrp(void)
|
|
{
|
|
return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_proc(void)
|
|
{
|
|
return (sizeof(struct proc));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_thread(void)
|
|
{
|
|
return (sizeof(struct thread) + sizeof(struct td_sched));
|
|
}
|