freebsd-skq/sys/dev/hfa/fore_load.c

1634 lines
32 KiB
C

/*
*
* ===================================
* HARP | Host ATM Research Platform
* ===================================
*
*
* This Host ATM Research Platform ("HARP") file (the "Software") is
* made available by Network Computing Services, Inc. ("NetworkCS")
* "AS IS". NetworkCS does not provide maintenance, improvements or
* support of any kind.
*
* NETWORKCS MAKES NO WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED,
* INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE, AS TO ANY ELEMENT OF THE
* SOFTWARE OR ANY SUPPORT PROVIDED IN CONNECTION WITH THIS SOFTWARE.
* In no event shall NetworkCS be responsible for any damages, including
* but not limited to consequential damages, arising from or relating to
* any use of the Software or related support.
*
* Copyright 1994-1998 Network Computing Services, Inc.
*
* Copies of this Software may be made, however, the above copyright
* notice must be reproduced on all copies.
*
* @(#) $Id: fore_load.c,v 1.7 1999/05/09 17:07:30 peter Exp $
*
*/
/*
* FORE Systems 200-Series Adapter Support
* ---------------------------------------
*
* Loadable kernel module and device identification support
*
*/
#include <dev/hfa/fore_include.h>
#ifndef lint
__RCSID("@(#) $Id: fore_load.c,v 1.7 1999/05/09 17:07:30 peter Exp $");
#endif
/*
* Local functions
*/
static int fore_start __P((void));
#ifdef sun
static int fore_stop __P((void));
static int fore_doload __P((void));
static int fore_dounload __P((void));
static int fore_identify __P((char *));
static int fore_attach __P((struct devinfo *));
#endif
#ifdef __FreeBSD__
static const char * fore_pci_probe __P((pcici_t, pcidi_t));
static void fore_pci_attach __P((pcici_t, int));
#if BSD < 199506
static int fore_pci_shutdown __P((struct kern_devconf *, int));
#else
static void fore_pci_shutdown __P((int, void *));
#endif
#endif
static void fore_unattach __P((Fore_unit *));
static void fore_reset __P((Fore_unit *));
/*
* Local variables
*/
static int fore_inited = 0;
/*
* Driver entry points
*/
#ifdef sun
static struct dev_ops fore_ops = {
1, /* revision */
fore_identify, /* identify */
fore_attach, /* attach */
NULL, /* open */
NULL, /* close */
NULL, /* read */
NULL, /* write */
NULL, /* strategy */
NULL, /* dump */
NULL, /* psize */
NULL, /* ioctl */
NULL, /* reset */
NULL /* mmap */
};
#endif
#ifdef __FreeBSD__
static u_long fore_pci_count = 0;
static struct pci_device fore_pci_device = {
FORE_DEV_NAME,
fore_pci_probe,
fore_pci_attach,
&fore_pci_count,
#if BSD < 199506
fore_pci_shutdown
#else
NULL
#endif
};
COMPAT_PCI_DRIVER(fore_pci, fore_pci_device);
#endif
/*
* Initialize driver processing
*
* This will be called during module loading. Not much to do here, as
* we must wait for our identify/attach routines to get called before
* we know what we're in for.
*
* Arguments:
* none
*
* Returns:
* 0 startup was successful
* errno startup failed - reason indicated
*
*/
static int
fore_start()
{
/*
* Verify software version
*/
if (atm_version != ATM_VERSION) {
log(LOG_ERR, "version mismatch: fore=%d.%d kernel=%d.%d\n",
ATM_VERS_MAJ(ATM_VERSION), ATM_VERS_MIN(ATM_VERSION),
ATM_VERS_MAJ(atm_version), ATM_VERS_MIN(atm_version));
return (EINVAL);
}
/*
* Initialize DMA mapping
*/
DMA_INIT();
/*
* Start up watchdog timer
*/
atm_timeout(&fore_timer, ATM_HZ * FORE_TIME_TICK, fore_timeout);
fore_inited = 1;
return (0);
}
#ifdef sun
/*
* Halt driver processing
*
* This will be called just prior to unloading the module from memory.
* Everything we've setup since we've been loaded must be undone here.
*
* Arguments:
* none
*
* Returns:
* 0 shutdown was successful
* errno shutdown failed - reason indicated
*
*/
static int
fore_stop()
{
int err = 0;
int s = splimp();
int i;
/*
* Stop the watchdog timer
*/
(void) atm_untimeout(&fore_timer);
/*
* Clean up each device (if any)
*/
for ( i = 0; i < fore_nunits; i++ ) {
Fore_unit *fup = fore_units[i];
if (fup == NULL)
continue;
/*
* Deregister device from kernel services
*/
if (err = atm_physif_deregister((Cmn_unit *)fup)) {
(void) splx(s);
return (err);
}
/*
* Unattach the device from the system
*/
fore_unattach(fup);
/*
* Free any Fore-specific device resources
*/
fore_interface_free(fup);
/*
* Free the unit structure
*/
atm_dev_free(fup);
fore_units[i] = NULL;
}
fore_nunits = 0;
/*
* Now free our global resources
*/
/*
* Release our storage pools
*/
atm_release_pool(&fore_vcc_pool);
atm_release_pool(&fore_nif_pool);
/*
* Release all DMA mappings
*/
DMA_RELEASE();
fore_inited = 0;
(void) splx(s);
return (0);
}
/*
* Device identify routine
*
* Determine if this driver will support the named device. If we claim to
* support the device, our attach routine will (later) be called for the
* device.
*
* Arguments:
* name pointer to identifier string from device
*
* Returns:
* 1 driver claims support for this device
* 0 device not claimed by this driver
*
*/
static int
fore_identify(name)
char *name;
{
int ret = 0;
int i = 0;
/*
* Initialize driver stuff
*/
if (fore_inited == 0) {
if (fore_start())
return (0);
}
while (fore_devices[i].fd_name) {
if (strcmp(fore_devices[i].fd_name, name) == 0) {
/*
* We support this device!!
*/
if (fore_nunits < FORE_MAX_UNITS) {
fore_nunits++;
ret = 1;
} else {
log(LOG_ERR,
"fore_identify: Too many devices\n");
}
break;
}
i++;
}
return (ret);
}
/*
* Device attach routine
*
* Attach a device we've previously claimed to support. Walk through its
* register set and map, as required. Determine what level the device will
* be interrupting at and then register an interrupt handler for it. If we
* succeed, then reset the adapter and read useful info from its PROM.
* Last, register the interface with the kernel ATM services.
*
* Arguments:
* devinfo_p pointer to device information structure
*
* Returns:
* 0 attach was successful
* -1 attach failed
*
*/
static int
fore_attach(devinfo_p)
struct dev_info *devinfo_p;
{
struct dev_reg *dev_reg_p;
struct dev_intr *dev_intr_p;
Fore_unit *fup;
Atm_config *fcp;
addr_t valp;
int val;
int i;
int err_count = BOOT_LOOPS;
static int unit = 0;
/*
* Sanity check
*/
if (devinfo_p == NULL)
return (-1);
/*
* Make sure this isn't a duplicate unit
*/
if (fore_units[unit] != NULL)
return (-1);
/*
* Allocate a new unit structure
*/
fup = (Fore_unit *) atm_dev_alloc(sizeof(Fore_unit), sizeof(int), 0);
if (fup == NULL)
return (-1);
/*
* Start initializing it
*/
fup->fu_unit = unit;
fup->fu_mtu = FORE_IFF_MTU;
fup->fu_devinfo = devinfo_p;
fup->fu_vcc_pool = &fore_vcc_pool;
fup->fu_nif_pool = &fore_nif_pool;
fup->fu_ioctl = fore_atm_ioctl;
fup->fu_instvcc = fore_instvcc;
fup->fu_openvcc = fore_openvcc;
fup->fu_closevcc = fore_closevcc;
fup->fu_output = fore_output;
/*
* Consider this unit assigned
*/
fore_units[unit] = fup;
unit++;
ATM_DEBUG1("fore_attach: fup=%p\n", fup);
ATM_DEBUG2("\tfu_xmit_q=%p fu_xmit_head=%p\n",
fup->fu_xmit_q, &fup->fu_xmit_head);
ATM_DEBUG2("\tfu_recv_q=%p fu_recv_head=%p\n",
fup->fu_recv_q, &fup->fu_recv_head);
ATM_DEBUG2("\tfu_buf1s_q=%p fu_buf1s_head=%p\n",
fup->fu_buf1s_q, &fup->fu_buf1s_head);
ATM_DEBUG2("\tfu_buf1l_q=%p fu_buf1l_head=%p\n",
fup->fu_buf1l_q, &fup->fu_buf1l_head);
ATM_DEBUG2("\tfu_cmd_q=%p fu_cmd_head=%p\n",
fup->fu_cmd_q, &fup->fu_cmd_head);
ATM_DEBUG1("\tfu_stats=%p\n",
&fup->fu_stats);
/*
* Tell kernel our unit number
*/
devinfo_p->devi_unit = fup->fu_unit;
/*
* Figure out what type of device we've got. This should always
* work since we've already done this at identify time!
*/
i = 0;
while (fore_devices[i].fd_name) {
if (strcmp(fore_devices[i].fd_name, devinfo_p->devi_name) == 0)
break;
i++;
}
if (fore_devices[i].fd_name == NULL)
return (-1);
fup->fu_config.ac_device = fore_devices[i].fd_devtyp;
/*
* Walk through the OPENPROM register information
* mapping register banks as they are found.
*/
for ( dev_reg_p = devinfo_p->devi_reg, i = 1;
i <= devinfo_p->devi_nreg; i++, ++dev_reg_p )
{
if ( dev_reg_p == NULL )
{
/*
* Can't happen...
*/
return ( -1 );
}
/*
* Each device type has different register sets
*/
switch (fup->fu_config.ac_device) {
#ifdef FORE_SBUS
case DEV_FORE_SBA200E:
switch ( i )
{
/*
* Host Control Register (HCR)
*/
case 1:
if ( sizeof(Fore_reg) != dev_reg_p->reg_size )
{
return ( -1 );
}
fup->fu_ctlreg = (Fore_reg *)
map_regs ( dev_reg_p->reg_addr,
sizeof(Fore_reg),
dev_reg_p->reg_bustype );
if ( fup->fu_ctlreg == NULL )
{
return ( -1 );
}
break;
/*
* SBus Burst Transfer Configuration Register
*/
case 2:
/*
* Not used
*/
break;
/*
* SBus Interrupt Level Select Register
*/
case 3:
if ( sizeof (Fore_reg) != dev_reg_p->reg_size )
{
return ( -1 );
}
fup->fu_intlvl = (Fore_reg *)
map_regs ( dev_reg_p->reg_addr,
sizeof(Fore_reg),
dev_reg_p->reg_bustype );
if ( fup->fu_intlvl == NULL )
{
return ( -1 );
}
break;
/*
* i960 RAM
*/
case 4:
fup->fu_ram = (Fore_mem *)
map_regs ( dev_reg_p->reg_addr,
dev_reg_p->reg_size,
dev_reg_p->reg_bustype );
if ( fup->fu_ram == NULL )
{
return ( -1 );
}
fup->fu_ramsize = dev_reg_p->reg_size;
/*
* Various versions of the Sun PROM mess with
* the reg_addr value in unpredictable (to me,
* at least) ways, so just use the "memoffset"
* property, which should give us the RAM
* offset directly.
*/
val = getprop(devinfo_p->devi_nodeid,
"memoffset", -1);
if (val == -1) {
return (-1);
}
fup->fu_config.ac_ram = val;
fup->fu_config.ac_ramsize = fup->fu_ramsize;
/*
* Set monitor interface for initializing
*/
fup->fu_mon = (Mon960 *)
(fup->fu_ram + MON960_BASE);
break;
default:
log(LOG_ERR,
"fore_attach: Too many registers\n");
return ( -1 );
}
break;
case DEV_FORE_SBA200:
switch ( i )
{
/*
* Board Control Register (BCR)
*/
case 1:
if ( sizeof(Fore_reg) != dev_reg_p->reg_size )
{
return ( -1 );
}
fup->fu_ctlreg = (Fore_reg *)
map_regs ( dev_reg_p->reg_addr,
sizeof(Fore_reg),
dev_reg_p->reg_bustype );
if ( fup->fu_ctlreg == NULL )
{
return ( -1 );
}
break;
/*
* i960 RAM
*/
case 2:
fup->fu_ram = (Fore_mem *)
map_regs ( dev_reg_p->reg_addr,
dev_reg_p->reg_size,
dev_reg_p->reg_bustype );
if ( fup->fu_ram == NULL )
{
return ( -1 );
}
fup->fu_ramsize = dev_reg_p->reg_size;
/*
* Various versions of the Sun PROM mess with
* the reg_addr value in unpredictable (to me,
* at least) ways, so just use the "memoffset"
* property, which should give us the RAM
* offset directly.
*/
val = getprop(devinfo_p->devi_nodeid,
"memoffset", -1);
if (val == -1) {
return (-1);
}
fup->fu_config.ac_ram = val;
fup->fu_config.ac_ramsize = fup->fu_ramsize;
/*
* Set monitor interface for initializing
*/
fup->fu_mon = (Mon960 *)
(fup->fu_ram + MON960_BASE);
break;
default:
log(LOG_ERR,
"fore_attach: Too many registers\n");
return ( -1 );
}
break;
#endif /* FORE_SBUS */
default:
log(LOG_ERR,
"fore_attach: Unsupported device type %d\n",
fup->fu_config.ac_device);
return (-1);
}
}
/*
* Install the device in the interrupt chain.
*
* dev_intr_p may be null IFF devi_nintr is zero.
*/
dev_intr_p = devinfo_p->devi_intr;
for ( i = devinfo_p->devi_nintr; i > 0; --i, ++dev_intr_p )
{
if ( dev_intr_p == NULL )
{
/*
* Can't happen.
*/
return ( -1 );
}
/*
* Convert hardware ipl (0-15) into spl level.
*/
if ( ipltospl ( dev_intr_p->int_pri ) > fup->fu_intrpri )
{
fup->fu_intrpri = ipltospl ( dev_intr_p->int_pri );
/*
* If SBA-200E card, set SBus interrupt level
* into board register
*/
if ( fup->fu_intlvl ) {
#if defined(sun4c)
*(fup->fu_intlvl) = dev_intr_p->int_pri;
#elif defined(sun4m)
extern int svimap[];
*(fup->fu_intlvl) =
svimap[dev_intr_p->int_pri & 0xf];
#else
#error PORT ME;
#endif
}
}
DEVICE_LOCK((Cmn_unit *)fup);
/*
* Register our interrupt routine.
*/
(void) addintr ( dev_intr_p->int_pri, fore_poll,
devinfo_p->devi_name, devinfo_p->devi_unit );
/*
* If we can do DMA (we can), then DVMA routines need
* to know the highest IPL level we will interrupt at.
*/
adddma ( dev_intr_p->int_pri );
DEVICE_UNLOCK((Cmn_unit *)fup);
}
/*
* Poke the hardware...boot the CP and prepare it for downloading
*/
fore_reset(fup);
switch (fup->fu_config.ac_device) {
#ifdef FORE_SBUS
case DEV_FORE_SBA200E:
/*
* Enable interrupts
*/
SBA200E_HCR_SET(*fup->fu_ctlreg, SBA200E_SBUS_ENA);
break;
#endif /* FORE_SBUS */
}
/*
* Wait for monitor to perform self-test
*/
while (CP_READ(fup->fu_mon->mon_bstat) != BOOT_MONREADY) {
if (CP_READ(fup->fu_mon->mon_bstat) == BOOT_FAILTEST) {
log(LOG_ERR, "fore_attach: Unit %d failed self-test\n",
fup->fu_unit);
return (-1);
} else if ( --err_count == 0 ) {
log(LOG_ERR, "fore_attach: Unit %d unable to boot\n",
fup->fu_unit);
return (-1);
}
DELAY ( BOOT_DELAY );
}
/*
* Write a one line message to the console informing
* that we've attached the device.
*/
report_dev ( devinfo_p );
/*
* Get the mac address from the card PROM
*/
val = getprop ( devinfo_p->devi_nodeid, "macaddress1", -1 );
if ( val != -1 ) {
fup->fu_pif.pif_macaddr.ma_data[0] = val & 0xff;
val = getprop ( devinfo_p->devi_nodeid, "macaddress2", -1 );
fup->fu_pif.pif_macaddr.ma_data[1] = val & 0xff;
val = getprop ( devinfo_p->devi_nodeid, "macaddress3", -1 );
fup->fu_pif.pif_macaddr.ma_data[2] = val & 0xff;
val = getprop ( devinfo_p->devi_nodeid, "macaddress4", -1 );
fup->fu_pif.pif_macaddr.ma_data[3] = val & 0xff;
val = getprop ( devinfo_p->devi_nodeid, "macaddress5", -1 );
fup->fu_pif.pif_macaddr.ma_data[4] = val & 0xff;
val = getprop ( devinfo_p->devi_nodeid, "macaddress6", -1 );
fup->fu_pif.pif_macaddr.ma_data[5] = val & 0xff;
} else {
/*
* Newer PROM - mac addresses have been combined. Also,
* macaddrlo2 reflects the board serial number.
*/
val = htonl(getprop(devinfo_p->devi_nodeid, "macaddrlo2", -1));
KM_COPY ( (caddr_t)&val,
(caddr_t)&fup->fu_pif.pif_macaddr.ma_data[2],
sizeof(val) );
val = htonl(getprop(devinfo_p->devi_nodeid, "macaddrhi4", -1));
KM_COPY ( (caddr_t)&val,
(caddr_t)fup->fu_pif.pif_macaddr.ma_data,
sizeof(val) );
}
/*
* Setup the adapter config info
*/
fcp = &fup->fu_config;
fcp->ac_vendor = VENDOR_FORE;
fcp->ac_vendapi = VENDAPI_FORE_1;
fcp->ac_macaddr = fup->fu_pif.pif_macaddr;
val = getprop ( devinfo_p->devi_nodeid, "promversion", -1 );
if ( val == -1 ) {
val = getprop ( devinfo_p->devi_nodeid, "hw-version", -1 );
}
if (val != -1) {
snprintf(fcp->ac_hard_vers,
sizeof(fcp->ac_hard_vers), "%d.%d.%d",
(val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
} else
snprintf(fcp->ac_hard_vers,
sizeof(fcp->ac_hard_vers), "Unknown");
val = getprop ( devinfo_p->devi_nodeid, "serialnumber", -1 );
if ( val != -1 )
fcp->ac_serial = val;
valp = (addr_t)getlongprop ( devinfo_p->devi_nodeid, "model" );
if ( valp )
{
/*
* Media Type
*/
switch (fcp->ac_device) {
#ifdef FORE_SBUS
case DEV_FORE_SBA200E:
fcp->ac_media = MEDIA_OC3C;
fup->fu_pif.pif_pcr = ATM_PCR_OC3C;
break;
case DEV_FORE_SBA200:
/*
* Look at the /SSS trailer to determine 4B5B speed
* TAXI-100 = 125; TAXI-140 = 175
* Assume that OC3 has no /SSS speed identifier.
*/
while (*valp && *valp != '/')
valp++;
if (*valp == NULL) {
fcp->ac_media = MEDIA_OC3C;
fup->fu_pif.pif_pcr = ATM_PCR_OC3C;
} else if (strcmp(valp, "/125") == 0) {
fcp->ac_media = MEDIA_TAXI_100;
fup->fu_pif.pif_pcr = ATM_PCR_TAXI100;
} else {
fcp->ac_media = MEDIA_TAXI_140;
fup->fu_pif.pif_pcr = ATM_PCR_TAXI140;
}
break;
#endif /* FORE_SBUS */
}
/*
* Free property space
*/
KM_FREE(valp, getproplen(devinfo_p->devi_nodeid, "model"), 0);
}
/*
* Bus information
*/
fcp->ac_busslot =
#ifdef SBUS_SIZE
(long)(devinfo_p->devi_reg->reg_addr - SBUS_BASE) / SBUS_SIZE;
#else
sbusslot((u_long)devinfo_p->devi_reg->reg_addr);
#endif
val = getprop(devinfo_p->devi_parent->devi_nodeid, "burst-sizes", 0);
if (val & SBUS_BURST32)
fcp->ac_bustype = BUS_SBUS_B32;
else
fcp->ac_bustype = BUS_SBUS_B16;
/*
* Set device capabilities
*/
fup->fu_pif.pif_maxvpi = FORE_MAX_VPI;
fup->fu_pif.pif_maxvci = FORE_MAX_VCI;
/*
* Register this interface with ATM core services
*/
if ( atm_physif_register
((Cmn_unit *)fup, FORE_DEV_NAME, fore_services) != 0 )
{
/*
* Registration failed - back everything out
*/
/*
* Modload calls UNLOAD if it get's a failure - don't
* call fore_unload() here.
*/
return ( -1 );
}
/*
* Initialize the CP microcode program.
*/
fore_initialize(fup);
return (0);
}
#endif /* sun */
#ifdef __FreeBSD__
/*
* Device probe routine
*
* Determine if this driver will support the identified device. If we claim
* to support the device, our attach routine will (later) be called for the
* device.
*
* Arguments:
* config_id device's PCI configuration ID
* device_id device's PCI Vendor/Device ID
*
* Returns:
* name device identification string
* NULL device not claimed by this driver
*
*/
static const char *
fore_pci_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
/*
* Initialize driver stuff
*/
if (fore_inited == 0) {
if (fore_start())
return (NULL);
}
if ((device_id & 0xffff) != FORE_VENDOR_ID)
return (NULL);
if (((device_id >> 16) & 0xffff) == FORE_PCA200E_ID)
return ("FORE Systems PCA-200E ATM");
return (NULL);
}
/*
* Device attach routine
*
* Attach a device we've previously claimed to support. Walk through its
* register set and map, as required. Determine what level the device will
* be interrupting at and then register an interrupt handler for it. If we
* succeed, then reset the adapter and initialize the microcode.
* Last, register the interface with the kernel ATM services.
*
* Arguments:
* config_id device's PCI configuration ID
* unit device unit number
*
* Returns:
* none
*
*/
static void
fore_pci_attach(config_id, unit)
pcici_t config_id;
int unit;
{
Fore_unit *fup;
vm_offset_t va;
vm_offset_t pa;
pcidi_t device_id;
long val;
int err_count = BOOT_LOOPS;
/*
* Just checking...
*/
if (unit >= FORE_MAX_UNITS) {
log(LOG_ERR, "%s%d: too many devices\n",
FORE_DEV_NAME, unit);
return;
}
/*
* Make sure this isn't a duplicate unit
*/
if (fore_units[unit] != NULL)
return;
/*
* Allocate a new unit structure
*/
fup = (Fore_unit *) atm_dev_alloc(sizeof(Fore_unit), sizeof(int), 0);
if (fup == NULL)
return;
/*
* Start initializing it
*/
fup->fu_unit = unit;
fup->fu_mtu = FORE_IFF_MTU;
fup->fu_pcitag = config_id;
fup->fu_vcc_pool = &fore_vcc_pool;
fup->fu_nif_pool = &fore_nif_pool;
fup->fu_ioctl = fore_atm_ioctl;
fup->fu_instvcc = fore_instvcc;
fup->fu_openvcc = fore_openvcc;
fup->fu_closevcc = fore_closevcc;
fup->fu_output = fore_output;
callout_handle_init(&fup->fu_thandle);
/*
* Get our device type
*/
device_id = pci_conf_read ( config_id, PCI_ID_REG );
switch ((device_id >> 16) & 0xffff) {
case FORE_PCA200E_ID:
fup->fu_config.ac_device = DEV_FORE_PCA200E;
break;
default:
fup->fu_config.ac_device = DEV_UNKNOWN;
}
/*
* Enable Memory Mapping / Bus Mastering
*/
val = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
val |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, val);
/*
* Map RAM
*/
val = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
if ((val & PCIM_CMD_MEMEN) == 0) {
log(LOG_ERR, "%s%d: memory mapping not enabled\n",
FORE_DEV_NAME, unit);
goto failed;
}
if ((pci_map_mem(config_id, PCA200E_PCI_MEMBASE, &va, &pa)) == 0) {
log(LOG_ERR, "%s%d: unable to map memory\n",
FORE_DEV_NAME, unit);
goto failed;
}
fup->fu_ram = (Fore_mem *)va;
fup->fu_ramsize = PCA200E_RAM_SIZE;
fup->fu_mon = (Mon960 *)(fup->fu_ram + MON960_BASE);
fup->fu_ctlreg = (Fore_reg *)(va + PCA200E_HCR_OFFSET);
fup->fu_imask = (Fore_reg *)(va + PCA200E_IMASK_OFFSET);
fup->fu_psr = (Fore_reg *)(va + PCA200E_PSR_OFFSET);
/*
* Convert Endianess of Slave RAM accesses
*/
val = pci_conf_read(config_id, PCA200E_PCI_MCTL);
val |= PCA200E_MCTL_SWAP;
pci_conf_write(config_id, PCA200E_PCI_MCTL, val);
/*
* Map interrupt in
*/
if ( !pci_map_int( config_id, fore_intr, fup, &net_imask ) ) {
log(LOG_ERR, "%s%d: unable to map interrupt\n",
FORE_DEV_NAME, unit);
goto failed;
}
/*
* Poke the hardware - boot the CP and prepare it for downloading
*/
fore_reset(fup);
/*
* Wait for the monitor to perform self-test
*/
while (CP_READ(fup->fu_mon->mon_bstat) != BOOT_MONREADY) {
if (CP_READ(fup->fu_mon->mon_bstat) == BOOT_FAILTEST) {
log(LOG_ERR, "%s%d: failed self-test\n",
FORE_DEV_NAME, unit);
goto failed;
} else if ( --err_count == 0 ) {
log(LOG_ERR, "%s%d: unable to boot - status=0x%lx\n",
FORE_DEV_NAME, unit,
CP_READ(fup->fu_mon->mon_bstat));
goto failed;
}
DELAY ( BOOT_DELAY );
}
/*
* Setup the adapter config info - at least as much as we can
*/
fup->fu_config.ac_vendor = VENDOR_FORE;
fup->fu_config.ac_vendapi = VENDAPI_FORE_1;
fup->fu_config.ac_media = MEDIA_OC3C;
fup->fu_pif.pif_pcr = ATM_PCR_OC3C;
fup->fu_config.ac_bustype = BUS_PCI;
fup->fu_config.ac_busslot = config_id->bus << 8 | config_id->slot;
/*
* Save device ram info for user-level programs
*/
fup->fu_config.ac_ram = (long)fup->fu_ram;
fup->fu_config.ac_ramsize = fup->fu_ramsize;
/*
* Set device capabilities
*/
fup->fu_pif.pif_maxvpi = FORE_MAX_VPI;
fup->fu_pif.pif_maxvci = FORE_MAX_VCI;
/*
* Register this interface with ATM core services
*/
if ( atm_physif_register
((Cmn_unit *)fup, FORE_DEV_NAME, fore_services) != 0 )
{
/*
* Registration failed - back everything out
*/
goto failed;
}
fore_units[unit] = fup;
fore_nunits++;
#if BSD >= 199506
/*
* Add hook to our shutdown function
*/
at_shutdown(fore_pci_shutdown, fup, SHUTDOWN_POST_SYNC);
#endif
/*
* Initialize the CP microcode program.
*/
fore_initialize(fup);
return;
failed:
/*
* Unattach the device from the system
*/
fore_unattach(fup);
/*
* Free any Fore-specific device resources
*/
fore_interface_free(fup);
atm_dev_free(fup);
return;
}
#if BSD < 199506
/*
* Device shutdown routine
*
* Arguments:
* kdc pointer to device's configuration table
* force forced shutdown flag
*
* Returns:
* none
*
*/
static int
fore_pci_shutdown(kdc, force)
struct kern_devconf *kdc;
int force;
{
Fore_unit *fup;
if (kdc->kdc_unit < fore_nunits) {
fup = fore_units[kdc->kdc_unit];
if (fup != NULL) {
fore_reset(fup);
}
}
(void) dev_detach(kdc);
return (0);
}
#else
/*
* Device shutdown routine
*
* Arguments:
* howto type of shutdown
* fup pointer to device unit structure
*
* Returns:
* none
*
*/
static void
fore_pci_shutdown(howto, fup)
int howto;
void *fup;
{
fore_reset((Fore_unit *) fup);
return;
}
#endif /* BSD < 199506 */
#endif /* __FreeBSD__ */
/*
* Device unattach routine
*
* Reset the physical device, remove any pending timeouts,
* unmap any register sets, and unregister any interrupts.
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
static void
fore_unattach(fup)
Fore_unit *fup;
{
#ifdef sun
struct dev_info *devinfo_p = fup->fu_devinfo;
struct dev_reg *dev_reg_p;
struct dev_intr *dev_intr_p;
int i;
#endif
/*
* Reset the board and return it to cold_start state.
* Hopefully, this will prevent use of resources as
* we're trying to free things up.
*/
fore_reset(fup);
/*
* Lock out all device interrupts
*/
DEVICE_LOCK((Cmn_unit *)fup);
/*
* Remove any pending timeout()'s
*/
(void)untimeout((KTimeout_ret(*) __P((void *)))fore_initialize,
(void *)fup, fup->fu_thandle);
#ifdef sun
/*
* Remove any mappings of the device
*/
for ( dev_reg_p = devinfo_p->devi_reg, i = 1;
i <= devinfo_p->devi_nreg; i++, ++dev_reg_p )
{
if ( dev_reg_p == NULL )
{
/*
* Can't happen...
*/
break;
}
/*
* Each device type has different register sets
*/
switch (fup->fu_config.ac_device) {
#ifdef FORE_SBUS
case DEV_FORE_SBA200E:
switch ( i )
{
/*
* Host Control Register (HCR)
*/
case 1:
unmap_regs((addr_t)fup->fu_ctlreg,
sizeof(Fore_reg));
break;
/*
* SBus Burst Transfer Configuration Register
*/
case 2:
/*
* Not used
*/
break;
/*
* SBus Interrupt Level Select Register
*/
case 3:
unmap_regs((addr_t)fup->fu_intlvl,
sizeof(Fore_reg));
break;
/*
* i960 RAM
*/
case 4:
unmap_regs((addr_t)fup->fu_ram,
fup->fu_ramsize);
break;
}
break;
case DEV_FORE_SBA200:
switch ( i )
{
/*
* Board Control Register (BCR)
*/
case 1:
unmap_regs((addr_t)fup->fu_ctlreg,
sizeof(Fore_reg));
break;
/*
* i960 RAM
*/
case 2:
unmap_regs((addr_t)fup->fu_ram,
fup->fu_ramsize);
break;
}
break;
#endif /* FORE_SBUS */
}
}
/*
* Remove the interrupt vector(s)
*/
dev_intr_p = devinfo_p->devi_intr;
for ( i = devinfo_p->devi_nintr; i > 0; --i, ++dev_intr_p )
{
if ( dev_intr_p == NULL )
{
/*
* Can't happen...
*/
break;
}
(void) remintr ( dev_intr_p->int_pri, fore_poll );
}
#endif /* sun */
#ifdef __FreeBSD__
/*
* Unmap the device interrupt
*/
(void) pci_unmap_int(fup->fu_pcitag);
/*
* Unmap memory
*/
#ifdef notdef
(void) pci_unmap_mem(fup->fu_pcitag, PCA200E_PCI_MEMBASE);
#endif
#endif /* __FreeBSD__ */
DEVICE_UNLOCK((Cmn_unit *)fup);
}
/*
* Device reset routine
*
* Reset the physical device
*
* Arguments:
* fup pointer to device unit structure
*
* Returns:
* none
*/
static void
fore_reset(fup)
Fore_unit *fup;
{
int s = splimp();
/*
* Reset the board and return it to cold_start state
*/
if (fup->fu_mon)
fup->fu_mon->mon_bstat = CP_WRITE(BOOT_COLDSTART);
if (fup->fu_ctlreg) {
switch (fup->fu_config.ac_device) {
#ifdef FORE_SBUS
case DEV_FORE_SBA200E:
/*
* Reset i960 by setting and clearing RESET
*/
SBA200E_HCR_INIT(*fup->fu_ctlreg, SBA200E_RESET);
SBA200E_HCR_CLR(*fup->fu_ctlreg, SBA200E_RESET);
break;
case DEV_FORE_SBA200:
/*
* Reset i960 by setting and clearing RESET
*
* SBA200 will NOT reset if bit is OR'd in!
*/
*fup->fu_ctlreg = SBA200_RESET;
*fup->fu_ctlreg = SBA200_RESET_CLR;
break;
#endif /* FORE_SBUS */
#ifdef FORE_PCI
case DEV_FORE_PCA200E:
/*
* Reset i960 by setting and clearing RESET
*/
PCA200E_HCR_INIT(*fup->fu_ctlreg, PCA200E_RESET);
DELAY(10000);
PCA200E_HCR_CLR(*fup->fu_ctlreg, PCA200E_RESET);
break;
#endif
}
}
(void) splx(s);
return;
}
#ifndef ATM_LINKED
/*
*******************************************************************
*
* Loadable Module Support
*
*******************************************************************
*/
#ifdef sun
/*
* Generic module load processing
*
* This function is called by an OS-specific function when this
* module is being loaded.
*
* Arguments:
* none
*
* Returns:
* 0 load was successful
* errno load failed - reason indicated
*
*/
static int
fore_doload()
{
int err = 0;
/*
* Start us up
*/
err = fore_start();
if (err)
/* Problems, clean up */
(void)fore_stop();
return (err);
}
/*
* Generic module unload processing
*
* This function is called by an OS-specific function when this
* module is being unloaded.
*
* Arguments:
* none
*
* Returns:
* 0 unload was successful
* errno unload failed - reason indicated
*
*/
static int
fore_dounload()
{
int err = 0;
/*
* OK, try to clean up our mess
*/
err = fore_stop();
return (err);
}
/*
* Loadable driver description
*/
static struct vdldrv fore_drv = {
VDMAGIC_DRV, /* Device Driver */
"fore_mod", /* name */
&fore_ops, /* dev_ops */
NULL, /* bdevsw */
NULL, /* cdevsw */
0, /* blockmajor */
0 /* charmajor */
};
/*
* Loadable module support entry point
*
* This is the routine called by the vd driver for all loadable module
* functions for this pseudo driver. This routine name must be specified
* on the modload(1) command. This routine will be called whenever the
* modload(1), modunload(1) or modstat(1) commands are issued for this
* module.
*
* Arguments:
* cmd vd command code
* vdp pointer to vd driver's structure
* vdi pointer to command-specific vdioctl_* structure
* vds pointer to status structure (VDSTAT only)
*
* Returns:
* 0 command was successful
* errno command failed - reason indicated
*
*/
int
fore_mod(cmd, vdp, vdi, vds)
int cmd;
struct vddrv *vdp;
caddr_t vdi;
struct vdstat *vds;
{
int err = 0;
switch (cmd) {
case VDLOAD:
/*
* Module Load
*
* We dont support any user configuration
*/
err = fore_doload();
if (err == 0)
/* Let vd driver know about us */
vdp->vdd_vdtab = (struct vdlinkage *)&fore_drv;
break;
case VDUNLOAD:
/*
* Module Unload
*/
err = fore_dounload();
break;
case VDSTAT:
/*
* Module Status
*/
/* Not much to say at the moment */
break;
default:
log(LOG_ERR, "fore_mod: Unknown vd command 0x%x\n", cmd);
err = EINVAL;
}
return (err);
}
#endif /* sun */
#ifdef __FreeBSD__
#ifdef notdef
/*
* Driver entry points
*/
static struct cdevsw fore_cdev = {
(d_open_t *)enodev, /* open */
(d_close_t *)enodev, /* close */
NULL, /* read */
NULL, /* write */
NULL, /* ioctl */
NULL, /* stop */
NULL, /* reset */
NULL, /* devtotty */
NULL, /* select */
NULL, /* mmap */
NULL /* strategy */
};
/*
* Loadable device driver module description
*/
#if BSD < 199506
MOD_DEV("fore_mod", LM_DT_CHAR, -1, (void *)&fore_cdev);
#else
MOD_DEV(fore, LM_DT_CHAR, -1, (void *)&fore_cdev);
#endif
/*
* Loadable module support "load" entry point
*
* This is the routine called by the lkm driver whenever the
* modload(1) command is issued for this module.
*
* Arguments:
* lkmtp pointer to lkm drivers's structure
* cmd lkm command code
*
* Returns:
* 0 command was successful
* errno command failed - reason indicated
*
*/
static int
fore_load(lkmtp, cmd)
struct lkm_table *lkmtp;
int cmd;
{
return(fore_doload());
}
/*
* Loadable module support "unload" entry point
*
* This is the routine called by the lkm driver whenever the
* modunload(1) command is issued for this module.
*
* Arguments:
* lkmtp pointer to lkm drivers's structure
* cmd lkm command code
*
* Returns:
* 0 command was successful
* errno command failed - reason indicated
*
*/
static int
fore_unload(lkmtp, cmd)
struct lkm_table *lkmtp;
int cmd;
{
return(fore_dounload());
}
/*
* Loadable module support entry point
*
* This is the routine called by the lkm driver for all loadable module
* functions for this driver. This routine name must be specified
* on the modload(1) command. This routine will be called whenever the
* modload(1), modunload(1) or modstat(1) commands are issued for this
* module.
*
* Arguments:
* lkmtp pointer to lkm drivers's structure
* cmd lkm command code
* ver lkm version
*
* Returns:
* 0 command was successful
* errno command failed - reason indicated
*
*/
int
fore_mod(lkmtp, cmd, ver)
struct lkm_table *lkmtp;
int cmd;
int ver;
{
#if BSD < 199506
DISPATCH(lkmtp, cmd, ver, fore_load, fore_unload, nosys);
#else
DISPATCH(lkmtp, cmd, ver, fore_load, fore_unload, lkm_nullcmd);
#endif
}
#endif /* notdef */
#endif /* __FreeBSD__ */
#endif /* ATM_LINKED */