3211 lines
122 KiB
C++
3211 lines
122 KiB
C++
/* Definitions of target machine for GNU compiler for IA-32.
|
||
Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* The purpose of this file is to define the characteristics of the i386,
|
||
independent of assembler syntax or operating system.
|
||
|
||
Three other files build on this one to describe a specific assembler syntax:
|
||
bsd386.h, att386.h, and sun386.h.
|
||
|
||
The actual tm.h file for a particular system should include
|
||
this file, and then the file for the appropriate assembler syntax.
|
||
|
||
Many macros that specify assembler syntax are omitted entirely from
|
||
this file because they really belong in the files for particular
|
||
assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
|
||
ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
|
||
that start with ASM_ or end in ASM_OP. */
|
||
|
||
|
||
/* $FreeBSD$ */
|
||
|
||
|
||
/* Stubs for half-pic support if not OSF/1 reference platform. */
|
||
|
||
#ifndef HALF_PIC_P
|
||
#define HALF_PIC_P() 0
|
||
#define HALF_PIC_NUMBER_PTRS 0
|
||
#define HALF_PIC_NUMBER_REFS 0
|
||
#define HALF_PIC_ENCODE(DECL)
|
||
#define HALF_PIC_DECLARE(NAME)
|
||
#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
|
||
#define HALF_PIC_ADDRESS_P(X) 0
|
||
#define HALF_PIC_PTR(X) (X)
|
||
#define HALF_PIC_FINISH(STREAM)
|
||
#endif
|
||
|
||
/* Define the specific costs for a given cpu */
|
||
|
||
struct processor_costs {
|
||
const int add; /* cost of an add instruction */
|
||
const int lea; /* cost of a lea instruction */
|
||
const int shift_var; /* variable shift costs */
|
||
const int shift_const; /* constant shift costs */
|
||
const int mult_init; /* cost of starting a multiply */
|
||
const int mult_bit; /* cost of multiply per each bit set */
|
||
const int divide; /* cost of a divide/mod */
|
||
int movsx; /* The cost of movsx operation. */
|
||
int movzx; /* The cost of movzx operation. */
|
||
const int large_insn; /* insns larger than this cost more */
|
||
const int move_ratio; /* The threshold of number of scalar
|
||
memory-to-memory move insns. */
|
||
const int movzbl_load; /* cost of loading using movzbl */
|
||
const int int_load[3]; /* cost of loading integer registers
|
||
in QImode, HImode and SImode relative
|
||
to reg-reg move (2). */
|
||
const int int_store[3]; /* cost of storing integer register
|
||
in QImode, HImode and SImode */
|
||
const int fp_move; /* cost of reg,reg fld/fst */
|
||
const int fp_load[3]; /* cost of loading FP register
|
||
in SFmode, DFmode and XFmode */
|
||
const int fp_store[3]; /* cost of storing FP register
|
||
in SFmode, DFmode and XFmode */
|
||
const int mmx_move; /* cost of moving MMX register. */
|
||
const int mmx_load[2]; /* cost of loading MMX register
|
||
in SImode and DImode */
|
||
const int mmx_store[2]; /* cost of storing MMX register
|
||
in SImode and DImode */
|
||
const int sse_move; /* cost of moving SSE register. */
|
||
const int sse_load[3]; /* cost of loading SSE register
|
||
in SImode, DImode and TImode*/
|
||
const int sse_store[3]; /* cost of storing SSE register
|
||
in SImode, DImode and TImode*/
|
||
const int mmxsse_to_integer; /* cost of moving mmxsse register to
|
||
integer and vice versa. */
|
||
const int prefetch_block; /* bytes moved to cache for prefetch. */
|
||
const int simultaneous_prefetches; /* number of parallel prefetch
|
||
operations. */
|
||
};
|
||
|
||
extern const struct processor_costs *ix86_cost;
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* configure can arrange to make this 2, to force a 486. */
|
||
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT 0
|
||
#endif
|
||
|
||
/* Masks for the -m switches */
|
||
#define MASK_80387 0x00000001 /* Hardware floating point */
|
||
#define MASK_RTD 0x00000002 /* Use ret that pops args */
|
||
#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
|
||
#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
|
||
#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
|
||
#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
|
||
#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
|
||
#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
|
||
#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
|
||
#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
|
||
#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
|
||
#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
|
||
#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
|
||
#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
|
||
#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
|
||
#define MASK_MMX_SET 0x00008000
|
||
#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
|
||
#define MASK_SSE_SET 0x00020000
|
||
#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
|
||
#define MASK_SSE2_SET 0x00080000
|
||
#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
|
||
#define MASK_3DNOW_SET 0x00200000
|
||
#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
|
||
#define MASK_3DNOW_A_SET 0x00800000
|
||
#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
|
||
#define MASK_64BIT 0x02000000 /* Produce 64bit code */
|
||
/* ... overlap with subtarget options starts by 0x04000000. */
|
||
#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
|
||
|
||
/* Use the floating point instructions */
|
||
#define TARGET_80387 (target_flags & MASK_80387)
|
||
|
||
/* Compile using ret insn that pops args.
|
||
This will not work unless you use prototypes at least
|
||
for all functions that can take varying numbers of args. */
|
||
#define TARGET_RTD (target_flags & MASK_RTD)
|
||
|
||
/* Align doubles to a two word boundary. This breaks compatibility with
|
||
the published ABI's for structures containing doubles, but produces
|
||
faster code on the pentium. */
|
||
#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
|
||
|
||
/* Use push instructions to save outgoing args. */
|
||
#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
|
||
|
||
/* Accumulate stack adjustments to prologue/epilogue. */
|
||
#define TARGET_ACCUMULATE_OUTGOING_ARGS \
|
||
(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
|
||
|
||
/* Put uninitialized locals into bss, not data.
|
||
Meaningful only on svr3. */
|
||
#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
|
||
|
||
/* Use IEEE floating point comparisons. These handle correctly the cases
|
||
where the result of a comparison is unordered. Normally SIGFPE is
|
||
generated in such cases, in which case this isn't needed. */
|
||
#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
|
||
|
||
/* Functions that return a floating point value may return that value
|
||
in the 387 FPU or in 386 integer registers. If set, this flag causes
|
||
the 387 to be used, which is compatible with most calling conventions. */
|
||
#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
|
||
|
||
/* Long double is 128bit instead of 96bit, even when only 80bits are used.
|
||
This mode wastes cache, but avoid misaligned data accesses and simplifies
|
||
address calculations. */
|
||
#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
|
||
|
||
/* Disable generation of FP sin, cos and sqrt operations for 387.
|
||
This is because FreeBSD lacks these in the math-emulator-code */
|
||
#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
|
||
|
||
/* Don't create frame pointers for leaf functions */
|
||
#define TARGET_OMIT_LEAF_FRAME_POINTER \
|
||
(target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
|
||
|
||
/* Debug GO_IF_LEGITIMATE_ADDRESS */
|
||
#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
|
||
|
||
/* Debug FUNCTION_ARG macros */
|
||
#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
|
||
|
||
/* 64bit Sledgehammer mode */
|
||
#ifdef TARGET_BI_ARCH
|
||
#define TARGET_64BIT (target_flags & MASK_64BIT)
|
||
#else
|
||
#ifdef TARGET_64BIT_DEFAULT
|
||
#define TARGET_64BIT 1
|
||
#else
|
||
#define TARGET_64BIT 0
|
||
#endif
|
||
#endif
|
||
|
||
#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
|
||
#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
|
||
#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
|
||
#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
|
||
#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
|
||
#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
|
||
#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
|
||
|
||
#define CPUMASK (1 << ix86_cpu)
|
||
extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
|
||
extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
|
||
extern const int x86_branch_hints, x86_unroll_strlen;
|
||
extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
|
||
extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
|
||
extern const int x86_use_cltd, x86_read_modify_write;
|
||
extern const int x86_read_modify, x86_split_long_moves;
|
||
extern const int x86_promote_QImode, x86_single_stringop;
|
||
extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
|
||
extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
|
||
extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
|
||
extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
|
||
extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
|
||
extern const int x86_epilogue_using_move, x86_decompose_lea;
|
||
extern const int x86_arch_always_fancy_math_387;
|
||
extern int x86_prefetch_sse;
|
||
|
||
#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
|
||
#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
|
||
#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
|
||
#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
|
||
#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
|
||
/* For sane SSE instruction set generation we need fcomi instruction. It is
|
||
safe to enable all CMOVE instructions. */
|
||
#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
|
||
#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
|
||
#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
|
||
#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
|
||
#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
|
||
#define TARGET_MOVX (x86_movx & CPUMASK)
|
||
#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
|
||
#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
|
||
#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
|
||
#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
|
||
#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
|
||
#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
|
||
#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
|
||
#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
|
||
#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
|
||
#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
|
||
#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
|
||
#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
|
||
#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
|
||
#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
|
||
#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
|
||
#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
|
||
#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
|
||
#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
|
||
#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
|
||
#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
|
||
#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
|
||
#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
|
||
#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
|
||
#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
|
||
#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
|
||
|
||
#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
|
||
|
||
#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
|
||
#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
|
||
|
||
#define ASSEMBLER_DIALECT (ix86_asm_dialect)
|
||
|
||
#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
|
||
#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
|
||
#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
|
||
#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
|
||
&& (ix86_fpmath & FPMATH_387))
|
||
#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
|
||
#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
|
||
#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
|
||
|
||
#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
|
||
|
||
/* WARNING: Do not mark empty strings for translation, as calling
|
||
gettext on an empty string does NOT return an empty
|
||
string. */
|
||
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "80387", MASK_80387, N_("Use hardware fp") }, \
|
||
{ "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
|
||
{ "hard-float", MASK_80387, N_("Use hardware fp") }, \
|
||
{ "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
|
||
{ "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
|
||
{ "386", 0, "" /*Deprecated.*/}, \
|
||
{ "486", 0, "" /*Deprecated.*/}, \
|
||
{ "pentium", 0, "" /*Deprecated.*/}, \
|
||
{ "pentiumpro", 0, "" /*Deprecated.*/}, \
|
||
{ "intel-syntax", 0, "" /*Deprecated.*/}, \
|
||
{ "no-intel-syntax", 0, "" /*Deprecated.*/}, \
|
||
{ "rtd", MASK_RTD, \
|
||
N_("Alternate calling convention") }, \
|
||
{ "no-rtd", -MASK_RTD, \
|
||
N_("Use normal calling convention") }, \
|
||
{ "align-double", MASK_ALIGN_DOUBLE, \
|
||
N_("Align some doubles on dword boundary") }, \
|
||
{ "no-align-double", -MASK_ALIGN_DOUBLE, \
|
||
N_("Align doubles on word boundary") }, \
|
||
{ "svr3-shlib", MASK_SVR3_SHLIB, \
|
||
N_("Uninitialized locals in .bss") }, \
|
||
{ "no-svr3-shlib", -MASK_SVR3_SHLIB, \
|
||
N_("Uninitialized locals in .data") }, \
|
||
{ "ieee-fp", MASK_IEEE_FP, \
|
||
N_("Use IEEE math for fp comparisons") }, \
|
||
{ "no-ieee-fp", -MASK_IEEE_FP, \
|
||
N_("Do not use IEEE math for fp comparisons") }, \
|
||
{ "fp-ret-in-387", MASK_FLOAT_RETURNS, \
|
||
N_("Return values of functions in FPU registers") }, \
|
||
{ "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
|
||
N_("Do not return values of functions in FPU registers")}, \
|
||
{ "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
|
||
N_("Do not generate sin, cos, sqrt for FPU") }, \
|
||
{ "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
|
||
N_("Generate sin, cos, sqrt for FPU")}, \
|
||
{ "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
|
||
N_("Omit the frame pointer in leaf functions") }, \
|
||
{ "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
|
||
{ "stack-arg-probe", MASK_STACK_PROBE, \
|
||
N_("Enable stack probing") }, \
|
||
{ "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
|
||
{ "windows", 0, 0 /* undocumented */ }, \
|
||
{ "dll", 0, 0 /* undocumented */ }, \
|
||
{ "align-stringops", -MASK_NO_ALIGN_STROPS, \
|
||
N_("Align destination of the string operations") }, \
|
||
{ "no-align-stringops", MASK_NO_ALIGN_STROPS, \
|
||
N_("Do not align destination of the string operations") }, \
|
||
{ "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
|
||
N_("Inline all known string operations") }, \
|
||
{ "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
|
||
N_("Do not inline all known string operations") }, \
|
||
{ "push-args", -MASK_NO_PUSH_ARGS, \
|
||
N_("Use push instructions to save outgoing arguments") }, \
|
||
{ "no-push-args", MASK_NO_PUSH_ARGS, \
|
||
N_("Do not use push instructions to save outgoing arguments") }, \
|
||
{ "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
|
||
| MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
|
||
N_("Use push instructions to save outgoing arguments") }, \
|
||
{ "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
|
||
N_("Do not use push instructions to save outgoing arguments") }, \
|
||
{ "mmx", MASK_MMX | MASK_MMX_SET, \
|
||
N_("Support MMX built-in functions") }, \
|
||
{ "no-mmx", -MASK_MMX, \
|
||
N_("Do not support MMX built-in functions") }, \
|
||
{ "no-mmx", MASK_MMX_SET, "" }, \
|
||
{ "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
|
||
N_("Support 3DNow! built-in functions") }, \
|
||
{ "no-3dnow", -MASK_3DNOW, "" }, \
|
||
{ "no-3dnow", MASK_3DNOW_SET, \
|
||
N_("Do not support 3DNow! built-in functions") }, \
|
||
{ "sse", MASK_SSE | MASK_SSE_SET, \
|
||
N_("Support MMX and SSE built-in functions and code generation") }, \
|
||
{ "no-sse", -MASK_SSE, "" }, \
|
||
{ "no-sse", MASK_SSE_SET, \
|
||
N_("Do not support MMX and SSE built-in functions and code generation") },\
|
||
{ "sse2", MASK_SSE2 | MASK_SSE2_SET, \
|
||
N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
|
||
{ "no-sse2", -MASK_SSE2, "" }, \
|
||
{ "no-sse2", MASK_SSE2_SET, \
|
||
N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
|
||
{ "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
|
||
N_("sizeof(long double) is 16") }, \
|
||
{ "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
|
||
N_("sizeof(long double) is 12") }, \
|
||
{ "64", MASK_64BIT, \
|
||
N_("Generate 64bit x86-64 code") }, \
|
||
{ "32", -MASK_64BIT, \
|
||
N_("Generate 32bit i386 code") }, \
|
||
{ "red-zone", -MASK_NO_RED_ZONE, \
|
||
N_("Use red-zone in the x86-64 code") }, \
|
||
{ "no-red-zone", MASK_NO_RED_ZONE, \
|
||
N_("Do not use red-zone in the x86-64 code") }, \
|
||
SUBTARGET_SWITCHES \
|
||
{ "", TARGET_DEFAULT, 0 }}
|
||
|
||
#ifdef TARGET_64BIT_DEFAULT
|
||
#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
|
||
#else
|
||
#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
|
||
#endif
|
||
|
||
/* Which processor to schedule for. The cpu attribute defines a list that
|
||
mirrors this list, so changes to i386.md must be made at the same time. */
|
||
|
||
enum processor_type
|
||
{
|
||
PROCESSOR_I386, /* 80386 */
|
||
PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
|
||
PROCESSOR_PENTIUM,
|
||
PROCESSOR_PENTIUMPRO,
|
||
PROCESSOR_K6,
|
||
PROCESSOR_ATHLON,
|
||
PROCESSOR_PENTIUM4,
|
||
PROCESSOR_max
|
||
};
|
||
enum fpmath_unit
|
||
{
|
||
FPMATH_387 = 1,
|
||
FPMATH_SSE = 2
|
||
};
|
||
|
||
extern enum processor_type ix86_cpu;
|
||
extern enum fpmath_unit ix86_fpmath;
|
||
|
||
extern int ix86_arch;
|
||
|
||
/* This macro is similar to `TARGET_SWITCHES' but defines names of
|
||
command options that have values. Its definition is an
|
||
initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
fixed part of the option name, and the address of a variable. The
|
||
variable, type `char *', is set to the variable part of the given
|
||
option if the fixed part matches. The actual option name is made
|
||
by appending `-m' to the specified name. */
|
||
#define TARGET_OPTIONS \
|
||
{ { "cpu=", &ix86_cpu_string, \
|
||
N_("Schedule code for given CPU")}, \
|
||
{ "fpmath=", &ix86_fpmath_string, \
|
||
N_("Generate floating point mathematics using given instruction set")},\
|
||
{ "arch=", &ix86_arch_string, \
|
||
N_("Generate code for given CPU")}, \
|
||
{ "regparm=", &ix86_regparm_string, \
|
||
N_("Number of registers used to pass integer arguments") }, \
|
||
{ "align-loops=", &ix86_align_loops_string, \
|
||
N_("Loop code aligned to this power of 2") }, \
|
||
{ "align-jumps=", &ix86_align_jumps_string, \
|
||
N_("Jump targets are aligned to this power of 2") }, \
|
||
{ "align-functions=", &ix86_align_funcs_string, \
|
||
N_("Function starts are aligned to this power of 2") }, \
|
||
{ "preferred-stack-boundary=", \
|
||
&ix86_preferred_stack_boundary_string, \
|
||
N_("Attempt to keep stack aligned to this power of 2") }, \
|
||
{ "branch-cost=", &ix86_branch_cost_string, \
|
||
N_("Branches are this expensive (1-5, arbitrary units)") }, \
|
||
{ "cmodel=", &ix86_cmodel_string, \
|
||
N_("Use given x86-64 code model") }, \
|
||
{ "debug-arg", &ix86_debug_arg_string, \
|
||
"" /* Undocumented. */ }, \
|
||
{ "debug-addr", &ix86_debug_addr_string, \
|
||
"" /* Undocumented. */ }, \
|
||
{ "asm=", &ix86_asm_string, \
|
||
N_("Use given assembler dialect") }, \
|
||
SUBTARGET_OPTIONS \
|
||
}
|
||
|
||
/* Sometimes certain combinations of command options do not make
|
||
sense on a particular target machine. You can define a macro
|
||
`OVERRIDE_OPTIONS' to take account of this. This macro, if
|
||
defined, is executed once just after all the command options have
|
||
been parsed.
|
||
|
||
Don't use this macro to turn on various extra optimizations for
|
||
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
|
||
|
||
#define OVERRIDE_OPTIONS override_options ()
|
||
|
||
/* These are meant to be redefined in the host dependent files */
|
||
#define SUBTARGET_SWITCHES
|
||
#define SUBTARGET_OPTIONS
|
||
|
||
/* Define this to change the optimizations performed by default. */
|
||
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
|
||
optimization_options ((LEVEL), (SIZE))
|
||
|
||
/* Specs for the compiler proper */
|
||
|
||
#ifndef CC1_CPU_SPEC
|
||
#define CC1_CPU_SPEC "\
|
||
%{!mcpu*: \
|
||
%{m386:-mcpu=i386 \
|
||
%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
|
||
%{m486:-mcpu=i486 \
|
||
%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
|
||
%{mpentium:-mcpu=pentium \
|
||
%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
|
||
%{mpentiumpro:-mcpu=pentiumpro \
|
||
%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
|
||
%{mintel-syntax:-masm=intel \
|
||
%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
|
||
%{mno-intel-syntax:-masm=att \
|
||
%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
|
||
#endif
|
||
|
||
#define TARGET_CPU_DEFAULT_i386 0
|
||
#define TARGET_CPU_DEFAULT_i486 1
|
||
#define TARGET_CPU_DEFAULT_pentium 2
|
||
#define TARGET_CPU_DEFAULT_pentium_mmx 3
|
||
#define TARGET_CPU_DEFAULT_pentiumpro 4
|
||
#define TARGET_CPU_DEFAULT_pentium2 5
|
||
#define TARGET_CPU_DEFAULT_pentium3 6
|
||
#define TARGET_CPU_DEFAULT_pentium4 7
|
||
#define TARGET_CPU_DEFAULT_k6 8
|
||
#define TARGET_CPU_DEFAULT_k6_2 9
|
||
#define TARGET_CPU_DEFAULT_k6_3 10
|
||
#define TARGET_CPU_DEFAULT_athlon 11
|
||
#define TARGET_CPU_DEFAULT_athlon_sse 12
|
||
|
||
#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
|
||
"pentiumpro", "pentium2", "pentium3", \
|
||
"pentium4", "k6", "k6-2", "k6-3",\
|
||
"athlon", "athlon-4"}
|
||
#ifndef CPP_CPU_DEFAULT_SPEC
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
|
||
-D__tune_pentium2__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
|
||
-D__tune_pentium2__ -D__tune_pentium3__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
|
||
#endif
|
||
#ifndef CPP_CPU_DEFAULT_SPEC
|
||
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
|
||
#endif
|
||
#endif /* CPP_CPU_DEFAULT_SPEC */
|
||
|
||
#ifdef TARGET_BI_ARCH
|
||
#define NO_BUILTIN_SIZE_TYPE
|
||
#define NO_BUILTIN_PTRDIFF_TYPE
|
||
#endif
|
||
|
||
#ifdef NO_BUILTIN_SIZE_TYPE
|
||
#define CPP_CPU32_SIZE_TYPE_SPEC \
|
||
" -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
|
||
#define CPP_CPU64_SIZE_TYPE_SPEC \
|
||
" -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
|
||
#else
|
||
#define CPP_CPU32_SIZE_TYPE_SPEC ""
|
||
#define CPP_CPU64_SIZE_TYPE_SPEC ""
|
||
#endif
|
||
|
||
#define CPP_CPU32_SPEC \
|
||
"-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
|
||
-D__i386__ %(cpp_cpu32sizet)"
|
||
|
||
#define CPP_CPU64_SPEC \
|
||
"-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
|
||
|
||
#define CPP_CPUCOMMON_SPEC "\
|
||
%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
|
||
%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
|
||
%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
|
||
%{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
|
||
%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
|
||
-D__pentium__mmx__ \
|
||
%{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
|
||
%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
|
||
-D__pentiumpro -D__pentiumpro__ \
|
||
%{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
|
||
%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
|
||
%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
|
||
%{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
|
||
%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
|
||
%{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
|
||
%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
|
||
%{!mcpu*:-D__tune_athlon__ }}\
|
||
%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
|
||
-D__athlon_sse__ \
|
||
%{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
|
||
%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
|
||
%{m386|mcpu=i386:-D__tune_i386__ }\
|
||
%{m486|mcpu=i486:-D__tune_i486__ }\
|
||
%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
|
||
%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
|
||
-D__tune_pentiumpro__ }\
|
||
%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
|
||
%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
|
||
-D__tune_athlon__ }\
|
||
%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
|
||
-D__tune_athlon_sse__ }\
|
||
%{mcpu=pentium4:-D__tune_pentium4__ }\
|
||
%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
|
||
-D__SSE__ }\
|
||
%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
|
||
|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
|
||
|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
|
||
%{march=k6-2|march=k6-3\
|
||
|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
|
||
|march=athlon-mp: -D__3dNOW__ }\
|
||
%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
|
||
|march=athlon-mp: -D__3dNOW_A__ }\
|
||
%{march=pentium4: -D__SSE2__ }\
|
||
%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
|
||
|
||
#ifndef CPP_CPU_SPEC
|
||
#ifdef TARGET_BI_ARCH
|
||
#ifdef TARGET_64BIT_DEFAULT
|
||
#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
|
||
#else
|
||
#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
|
||
#endif
|
||
#else
|
||
#ifdef TARGET_64BIT_DEFAULT
|
||
#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
|
||
#else
|
||
#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef CC1_SPEC
|
||
#define CC1_SPEC "%(cc1_cpu) "
|
||
#endif
|
||
|
||
/* This macro defines names of additional specifications to put in the
|
||
specs that can be used in various specifications like CC1_SPEC. Its
|
||
definition is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GNU CC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
|
||
{ "cpp_cpu", CPP_CPU_SPEC }, \
|
||
{ "cpp_cpu32", CPP_CPU32_SPEC }, \
|
||
{ "cpp_cpu64", CPP_CPU64_SPEC }, \
|
||
{ "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \
|
||
{ "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \
|
||
{ "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
|
||
{ "cc1_cpu", CC1_CPU_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define for XFmode or TFmode extended real floating point support.
|
||
This will automatically cause REAL_ARITHMETIC to be defined.
|
||
|
||
The XFmode is specified by i386 ABI, while TFmode may be faster
|
||
due to alignment and simplifications in the address calculations.
|
||
*/
|
||
#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
|
||
#define MAX_LONG_DOUBLE_TYPE_SIZE 128
|
||
#ifdef __x86_64__
|
||
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
|
||
#else
|
||
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
|
||
#endif
|
||
/* Tell real.c that this is the 80-bit Intel extended float format
|
||
packaged in a 128-bit or 96bit entity. */
|
||
#define INTEL_EXTENDED_IEEE_FORMAT 1
|
||
|
||
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE 32
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#define LONG_TYPE_SIZE BITS_PER_WORD
|
||
#define MAX_WCHAR_TYPE_SIZE 32
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
|
||
#define MAX_BITS_PER_WORD 64
|
||
#define MAX_LONG_TYPE_SIZE 64
|
||
#else
|
||
#define MAX_BITS_PER_WORD 32
|
||
#define MAX_LONG_TYPE_SIZE 32
|
||
#endif
|
||
|
||
/* Define if you don't want extended real, but do want to use the
|
||
software floating point emulator for REAL_ARITHMETIC and
|
||
decimal <-> binary conversion. */
|
||
/* #define REAL_ARITHMETIC */
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the 80386. */
|
||
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is not true on the 80386. */
|
||
#define BYTES_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
/* Not true for 80386 */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 80386, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
|
||
#define MIN_UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE BITS_PER_WORD
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Boundary (in *bits*) on which the stack pointer preferrs to be
|
||
aligned; the compiler cannot rely on having this alignment. */
|
||
#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
|
||
|
||
/* As of July 2001, many runtimes to not align the stack properly when
|
||
entering main. This causes expand_main_function to forcably align
|
||
the stack, which results in aligned frames for functions called from
|
||
main, though it does nothing for the alignment of main itself. */
|
||
#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
|
||
(ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
|
||
|
||
/* Allocation boundary for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
|
||
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Minimum size in bits of the largest boundary to which any
|
||
and all fundamental data types supported by the hardware
|
||
might need to be aligned. No data type wants to be aligned
|
||
rounder than this.
|
||
|
||
Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
|
||
and Pentium Pro XFmode values at 128 bit boundaries. */
|
||
|
||
#define BIGGEST_ALIGNMENT 128
|
||
|
||
/* Decide whether a variable of mode MODE must be 128 bit aligned. */
|
||
#define ALIGN_MODE_128(MODE) \
|
||
((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
|
||
|| (MODE) == V4SFmode || (MODE) == V4SImode)
|
||
|
||
/* The published ABIs say that doubles should be aligned on word
|
||
boundaries, so lower the aligment for structure fields unless
|
||
-malign-double is set. */
|
||
/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
|
||
constant. Use the smaller value in that context. */
|
||
#ifndef IN_TARGET_LIBS
|
||
#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
|
||
#else
|
||
#define BIGGEST_FIELD_ALIGNMENT 32
|
||
#endif
|
||
|
||
/* If defined, a C expression to compute the alignment given to a
|
||
constant that is being placed in memory. EXP is the constant
|
||
and ALIGN is the alignment that the object would ordinarily have.
|
||
The value of this macro is used instead of that alignment to align
|
||
the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
The typical use of this macro is to increase alignment for string
|
||
constants to be word aligned so that `strcpy' calls that copy
|
||
constants can be done inline. */
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a static
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. Another is to
|
||
cause character arrays to be word-aligned so that `strcpy' calls
|
||
that copy constants to character arrays can be done inline. */
|
||
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a local
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. */
|
||
|
||
#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in
|
||
bits, of an argument with the specified mode and type. If it is
|
||
not defined, `PARM_BOUNDARY' is used for all arguments. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
ix86_function_arg_boundary ((MODE), (TYPE))
|
||
|
||
/* Set this non-zero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 0
|
||
|
||
/* If bit field type is int, don't let it cross an int,
|
||
and give entire struct the alignment of an int. */
|
||
/* Required on the 386 since it doesn't have bitfield insns. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* This processor has special stack-like registers. See reg-stack.c
|
||
for details. */
|
||
|
||
#define STACK_REGS
|
||
#define IS_STACK_MODE(MODE) \
|
||
((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
|
||
|| (MODE) == TFmode)
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
In the 80386 we give the 8 general purpose registers the numbers 0-7.
|
||
We number the floating point registers 8-15.
|
||
Note that registers 0-7 can be accessed as a short or int,
|
||
while only 0-3 may be used with byte `mov' instructions.
|
||
|
||
Reg 16 does not correspond to any hardware register, but instead
|
||
appears in the RTL as an argument pointer prior to reload, and is
|
||
eliminated during reloading in favor of either the stack or frame
|
||
pointer. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 53
|
||
|
||
/* Number of hardware registers that go into the DWARF-2 unwind info.
|
||
If not defined, equals FIRST_PSEUDO_REGISTER. */
|
||
|
||
#define DWARF_FRAME_REGISTERS 17
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
On the 80386, the stack pointer is such, as is the arg pointer.
|
||
|
||
The value is an mask - bit 1 is set for fixed registers
|
||
for 32bit target, while 2 is set for fixed registers for 64bit.
|
||
Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
|
||
*/
|
||
#define FIXED_REGISTERS \
|
||
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
|
||
{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/*arg,flags,fpsr,dir,frame*/ \
|
||
3, 3, 3, 3, 3, \
|
||
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
|
||
1, 1, 1, 1, 1, 1, 1, 1}
|
||
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
|
||
The value is an mask - bit 1 is set for call used
|
||
for 32bit target, while 2 is set for call used for 64bit.
|
||
Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
|
||
*/
|
||
#define CALL_USED_REGISTERS \
|
||
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
|
||
{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
|
||
/*arg,flags,fpsr,dir,frame*/ \
|
||
3, 3, 3, 3, 3, \
|
||
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
|
||
3, 3, 3, 3, 3, 3, 3, 3, \
|
||
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
|
||
3, 3, 3, 3, 3, 3, 3, 3, \
|
||
/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
|
||
3, 3, 3, 3, 1, 1, 1, 1, \
|
||
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
|
||
3, 3, 3, 3, 3, 3, 3, 3} \
|
||
|
||
/* Order in which to allocate registers. Each register must be
|
||
listed once, even those in FIXED_REGISTERS. List frame pointer
|
||
late and fixed registers last. Note that, in general, we prefer
|
||
registers listed in CALL_USED_REGISTERS, keeping the others
|
||
available for storage of persistent values.
|
||
|
||
The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
|
||
so this is just empty initializer for array. */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
|
||
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
|
||
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
|
||
48, 49, 50, 51, 52 }
|
||
|
||
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
|
||
to be rearranged based on a particular function. When using sse math,
|
||
we want to allocase SSE before x87 registers and vice vera. */
|
||
|
||
#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
|
||
|
||
|
||
/* Macro to conditionally modify fixed_regs/call_used_regs. */
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
do { \
|
||
int i; \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
{ \
|
||
fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
|
||
call_used_regs[i] = (call_used_regs[i] \
|
||
& (TARGET_64BIT ? 2 : 1)) != 0; \
|
||
} \
|
||
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
|
||
{ \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
} \
|
||
if (! TARGET_MMX) \
|
||
{ \
|
||
int i; \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
} \
|
||
if (! TARGET_SSE) \
|
||
{ \
|
||
int i; \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
} \
|
||
if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
|
||
{ \
|
||
int i; \
|
||
HARD_REG_SET x; \
|
||
COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
if (TEST_HARD_REG_BIT (x, i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
Actually there are no two word move instructions for consecutive
|
||
registers. And only registers 0-3 may have mov byte instructions
|
||
applied to them.
|
||
*/
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
|
||
? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
|
||
: ((MODE) == TFmode \
|
||
? (TARGET_64BIT ? 2 : 3) \
|
||
: (MODE) == TCmode \
|
||
? (TARGET_64BIT ? 4 : 6) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
|
||
|
||
#define VALID_SSE_REG_MODE(MODE) \
|
||
((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
|
||
|| (MODE) == SFmode \
|
||
|| (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
|
||
|
||
#define VALID_MMX_REG_MODE_3DNOW(MODE) \
|
||
((MODE) == V2SFmode || (MODE) == SFmode)
|
||
|
||
#define VALID_MMX_REG_MODE(MODE) \
|
||
((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
|
||
|| (MODE) == V2SImode || (MODE) == SImode)
|
||
|
||
#define VECTOR_MODE_SUPPORTED_P(MODE) \
|
||
(VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
|
||
: VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
|
||
: VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
|
||
|
||
#define VALID_FP_MODE_P(MODE) \
|
||
((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
|
||
|| (!TARGET_64BIT && (MODE) == XFmode) \
|
||
|| (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
|
||
|| (!TARGET_64BIT && (MODE) == XCmode))
|
||
|
||
#define VALID_INT_MODE_P(MODE) \
|
||
((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
|
||
|| (MODE) == DImode \
|
||
|| (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
|
||
|| (MODE) == CDImode \
|
||
|| (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
ix86_hard_regno_mode_ok ((REGNO), (MODE))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((MODE1) == (MODE2) \
|
||
|| (((MODE1) == HImode || (MODE1) == SImode \
|
||
|| ((MODE1) == QImode \
|
||
&& (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
|
||
|| ((MODE1) == DImode && TARGET_64BIT)) \
|
||
&& ((MODE2) == HImode || (MODE2) == SImode \
|
||
|| ((MODE1) == QImode \
|
||
&& (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
|
||
|| ((MODE2) == DImode && TARGET_64BIT))))
|
||
|
||
|
||
/* Specify the modes required to caller save a given hard regno.
|
||
We do this on i386 to prevent flags from being saved at all.
|
||
|
||
Kill any attempts to combine saving of modes. */
|
||
|
||
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
|
||
(CC_REGNO_P (REGNO) ? VOIDmode \
|
||
: (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
|
||
: (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
|
||
: (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
|
||
: (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
|
||
: (MODE))
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* on the 386 the pc register is %eip, and is not usable as a general
|
||
register. The ordinary mov instructions won't work */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 7
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define HARD_FRAME_POINTER_REGNUM 6
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 20
|
||
|
||
/* First floating point reg */
|
||
#define FIRST_FLOAT_REG 8
|
||
|
||
/* First & last stack-like regs */
|
||
#define FIRST_STACK_REG FIRST_FLOAT_REG
|
||
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
|
||
|
||
#define FLAGS_REG 17
|
||
#define FPSR_REG 18
|
||
#define DIRFLAG_REG 19
|
||
|
||
#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
|
||
#define LAST_SSE_REG (FIRST_SSE_REG + 7)
|
||
|
||
#define FIRST_MMX_REG (LAST_SSE_REG + 1)
|
||
#define LAST_MMX_REG (FIRST_MMX_REG + 7)
|
||
|
||
#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
|
||
#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
|
||
|
||
#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
|
||
#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
|
||
|
||
/* Override this in other tm.h files to cope with various OS losage
|
||
requiring a frame pointer. */
|
||
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
|
||
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
|
||
#endif
|
||
|
||
/* Make sure we can access arbitrary call frames. */
|
||
#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 16
|
||
|
||
/* Register in which static-chain is passed to a function.
|
||
We do use ECX as static chain register for 32 bit ABI. On the
|
||
64bit ABI, ECX is an argument register, so we use R10 instead. */
|
||
#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
|
||
|
||
/* Register to hold the addressing base for position independent
|
||
code access to data items. We don't use PIC pointer for 64bit
|
||
mode. Define the regnum to dummy value to prevent gcc from
|
||
pessimizing code dealing with EBX. */
|
||
#define PIC_OFFSET_TABLE_REGNUM \
|
||
(TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
|
||
|
||
/* Register in which address to store a structure value
|
||
arrives in the function. On the 386, the prologue
|
||
copies this from the stack to register %eax. */
|
||
#define STRUCT_VALUE_INCOMING 0
|
||
|
||
/* Place in which caller passes the structure value address.
|
||
0 means push the value on the stack like an argument. */
|
||
#define STRUCT_VALUE 0
|
||
|
||
/* A C expression which can inhibit the returning of certain function
|
||
values in registers, based on the type of value. A nonzero value
|
||
says to return the function value in memory, just as large
|
||
structures are always returned. Here TYPE will be a C expression
|
||
of type `tree', representing the data type of the value.
|
||
|
||
Note that values of mode `BLKmode' must be explicitly handled by
|
||
this macro. Also, the option `-fpcc-struct-return' takes effect
|
||
regardless of this macro. On most systems, it is possible to
|
||
leave the macro undefined; this causes a default definition to be
|
||
used, whose value is the constant 1 for `BLKmode' values, and 0
|
||
otherwise.
|
||
|
||
Do not use this macro to indicate that structures and unions
|
||
should always be returned in memory. You should instead use
|
||
`DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
ix86_return_in_memory (TYPE)
|
||
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union.
|
||
|
||
It might seem that class BREG is unnecessary, since no useful 386
|
||
opcode needs reg %ebx. But some systems pass args to the OS in ebx,
|
||
and the "b" register constraint is useful in asms for syscalls.
|
||
|
||
The flags and fpsr registers are in no class. */
|
||
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
AREG, DREG, CREG, BREG, SIREG, DIREG,
|
||
AD_REGS, /* %eax/%edx for DImode */
|
||
Q_REGS, /* %eax %ebx %ecx %edx */
|
||
NON_Q_REGS, /* %esi %edi %ebp %esp */
|
||
INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
|
||
LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
|
||
GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
|
||
FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
|
||
FLOAT_REGS,
|
||
SSE_REGS,
|
||
MMX_REGS,
|
||
FP_TOP_SSE_REGS,
|
||
FP_SECOND_SSE_REGS,
|
||
FLOAT_SSE_REGS,
|
||
FLOAT_INT_REGS,
|
||
INT_SSE_REGS,
|
||
FLOAT_INT_SSE_REGS,
|
||
ALL_REGS, LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
|
||
|
||
#define INTEGER_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), GENERAL_REGS)
|
||
#define FLOAT_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), FLOAT_REGS)
|
||
#define SSE_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), SSE_REGS)
|
||
#define MMX_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), MMX_REGS)
|
||
#define MAYBE_INTEGER_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p ((CLASS), GENERAL_REGS)
|
||
#define MAYBE_FLOAT_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p ((CLASS), FLOAT_REGS)
|
||
#define MAYBE_SSE_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p (SSE_REGS, (CLASS))
|
||
#define MAYBE_MMX_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p (MMX_REGS, (CLASS))
|
||
|
||
#define Q_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), Q_REGS)
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", \
|
||
"AREG", "DREG", "CREG", "BREG", \
|
||
"SIREG", "DIREG", \
|
||
"AD_REGS", \
|
||
"Q_REGS", "NON_Q_REGS", \
|
||
"INDEX_REGS", \
|
||
"LEGACY_REGS", \
|
||
"GENERAL_REGS", \
|
||
"FP_TOP_REG", "FP_SECOND_REG", \
|
||
"FLOAT_REGS", \
|
||
"SSE_REGS", \
|
||
"MMX_REGS", \
|
||
"FP_TOP_SSE_REGS", \
|
||
"FP_SECOND_SSE_REGS", \
|
||
"FLOAT_SSE_REGS", \
|
||
"FLOAT_INT_REGS", \
|
||
"INT_SSE_REGS", \
|
||
"FLOAT_INT_SSE_REGS", \
|
||
"ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ { 0x00, 0x0 }, \
|
||
{ 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
|
||
{ 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
|
||
{ 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
|
||
{ 0x03, 0x0 }, /* AD_REGS */ \
|
||
{ 0x0f, 0x0 }, /* Q_REGS */ \
|
||
{ 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
|
||
{ 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
|
||
{ 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
|
||
{ 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
|
||
{ 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
|
||
{ 0xff00, 0x0 }, /* FLOAT_REGS */ \
|
||
{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
|
||
{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
|
||
{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
|
||
{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
|
||
{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
|
||
{ 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
|
||
{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
|
||
{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
|
||
{ 0xffffffff,0x1fffff } \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
|
||
|
||
/* When defined, the compiler allows registers explicitly used in the
|
||
rtl to be used as spill registers but prevents the compiler from
|
||
extending the lifetime of these registers. */
|
||
|
||
#define SMALL_REGISTER_CLASSES 1
|
||
|
||
#define QI_REG_P(X) \
|
||
(REG_P (X) && REGNO (X) < 4)
|
||
|
||
#define GENERAL_REGNO_P(N) \
|
||
((N) < 8 || REX_INT_REGNO_P (N))
|
||
|
||
#define GENERAL_REG_P(X) \
|
||
(REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
|
||
|
||
#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
|
||
|
||
#define NON_QI_REG_P(X) \
|
||
(REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
|
||
|
||
#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
|
||
#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
|
||
|
||
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
|
||
#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
|
||
#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
|
||
#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
|
||
|
||
#define SSE_REGNO_P(N) \
|
||
(((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
|
||
|| ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
|
||
|
||
#define SSE_REGNO(N) \
|
||
((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
|
||
#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
|
||
|
||
#define SSE_FLOAT_MODE_P(MODE) \
|
||
((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
|
||
|
||
#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
|
||
#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
|
||
|
||
#define STACK_REG_P(XOP) \
|
||
(REG_P (XOP) && \
|
||
REGNO (XOP) >= FIRST_STACK_REG && \
|
||
REGNO (XOP) <= LAST_STACK_REG)
|
||
|
||
#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
|
||
|
||
#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
|
||
|
||
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
|
||
#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
|
||
|
||
/* Indicate whether hard register numbered REG_NO should be converted
|
||
to SSA form. */
|
||
#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
|
||
((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS INDEX_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'r' ? GENERAL_REGS : \
|
||
(C) == 'R' ? LEGACY_REGS : \
|
||
(C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
|
||
(C) == 'Q' ? Q_REGS : \
|
||
(C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
|
||
? FLOAT_REGS \
|
||
: NO_REGS) : \
|
||
(C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
|
||
? FP_TOP_REG \
|
||
: NO_REGS) : \
|
||
(C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
|
||
? FP_SECOND_REG \
|
||
: NO_REGS) : \
|
||
(C) == 'a' ? AREG : \
|
||
(C) == 'b' ? BREG : \
|
||
(C) == 'c' ? CREG : \
|
||
(C) == 'd' ? DREG : \
|
||
(C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
|
||
(C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
|
||
(C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
|
||
(C) == 'A' ? AD_REGS : \
|
||
(C) == 'D' ? DIREG : \
|
||
(C) == 'S' ? SIREG : NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
I is for non-DImode shifts.
|
||
J is for DImode shifts.
|
||
K is for signed imm8 operands.
|
||
L is for andsi as zero-extending move.
|
||
M is for shifts that can be executed by the "lea" opcode.
|
||
N is for immedaite operands for out/in instructions (0-255)
|
||
*/
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
|
||
: (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
|
||
: (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
|
||
: (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
|
||
: (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
|
||
: (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
|
||
TARGET_387 isn't set, because the stack register converter may need to
|
||
load 0.0 into the function value register. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? standard_80387_constant_p (VALUE) \
|
||
: ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
|
||
|
||
/* A C expression that defines the optional machine-dependent
|
||
constraint letters that can be used to segregate specific types of
|
||
operands, usually memory references, for the target machine. Any
|
||
letter that is not elsewhere defined and not matched by
|
||
`REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
|
||
be defined.
|
||
|
||
If it is required for a particular target machine, it should
|
||
return 1 if VALUE corresponds to the operand type represented by
|
||
the constraint letter C. If C is not defined as an extra
|
||
constraint, the value returned should be 0 regardless of VALUE. */
|
||
|
||
#define EXTRA_CONSTRAINT(VALUE, C) \
|
||
((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
|
||
: (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
|
||
: 0)
|
||
|
||
/* Place additional restrictions on the register class to use when it
|
||
is necessary to be able to hold a value of mode MODE in a reload
|
||
register for which class CLASS would ordinarily be used. */
|
||
|
||
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
|
||
((MODE) == QImode && !TARGET_64BIT \
|
||
&& ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
|
||
|| (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
|
||
? Q_REGS : (CLASS))
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class.
|
||
On the 80386 series, we prevent floating constants from being
|
||
reloaded into floating registers (since no move-insn can do that)
|
||
and we ensure that QImodes aren't reloaded into the esi or edi reg. */
|
||
|
||
/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
|
||
QImode must go into class Q_REGS.
|
||
Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
|
||
movdf to do mem-to-mem moves through integer regs. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
||
ix86_preferred_reload_class ((X), (CLASS))
|
||
|
||
/* If we are copying between general and FP registers, we need a memory
|
||
location. The same is true for SSE and MMX registers. */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
|
||
|
||
/* QImode spills from non-QI registers need a scratch. This does not
|
||
happen often -- the only example so far requires an uninitialized
|
||
pseudo. */
|
||
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
|
||
(((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
|
||
|| (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
|
||
? Q_REGS : NO_REGS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On the 80386, this is the size of MODE in words,
|
||
except in the FP regs, where a single reg is always enough.
|
||
The TFmodes are really just 80bit values, so we use only 3 registers
|
||
to hold them, instead of 4, as the size would suggest.
|
||
*/
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
(!MAYBE_INTEGER_CLASS_P (CLASS) \
|
||
? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
|
||
: ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* A C expression whose value is nonzero if pseudos that have been
|
||
assigned to registers of class CLASS would likely be spilled
|
||
because registers of CLASS are needed for spill registers.
|
||
|
||
The default value of this macro returns 1 if CLASS has exactly one
|
||
register and zero otherwise. On most machines, this default
|
||
should be used. Only define this macro to some other expression
|
||
if pseudo allocated by `local-alloc.c' end up in memory because
|
||
their hard registers were needed for spill registers. If this
|
||
macro returns nonzero for those classes, those pseudos will only
|
||
be allocated by `global.c', which knows how to reallocate the
|
||
pseudo to another register. If there would not be another
|
||
register available for reallocation, you should not change the
|
||
definition of this macro since the only effect of such a
|
||
definition would be to slow down register allocation. */
|
||
|
||
#define CLASS_LIKELY_SPILLED_P(CLASS) \
|
||
(((CLASS) == AREG) \
|
||
|| ((CLASS) == DREG) \
|
||
|| ((CLASS) == CREG) \
|
||
|| ((CLASS) == BREG) \
|
||
|| ((CLASS) == AD_REGS) \
|
||
|| ((CLASS) == SIREG) \
|
||
|| ((CLASS) == DIREG))
|
||
|
||
/* A C statement that adds to CLOBBERS any hard regs the port wishes
|
||
to automatically clobber for all asms.
|
||
|
||
We do this in the new i386 backend to maintain source compatibility
|
||
with the old cc0-based compiler. */
|
||
|
||
#define MD_ASM_CLOBBERS(CLOBBERS) \
|
||
do { \
|
||
(CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
|
||
(CLOBBERS)); \
|
||
(CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
|
||
(CLOBBERS)); \
|
||
(CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
|
||
(CLOBBERS)); \
|
||
} while (0)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On 386 pushw decrements by exactly 2 no matter what the position was.
|
||
On the 386 there is no pushb; we use pushw instead, and this
|
||
has the effect of rounding up to 2.
|
||
|
||
For 64bit ABI we round up to 8 bytes.
|
||
*/
|
||
|
||
#define PUSH_ROUNDING(BYTES) \
|
||
(TARGET_64BIT \
|
||
? (((BYTES) + 7) & (-8)) \
|
||
: (((BYTES) + 1) & (-2)))
|
||
|
||
/* If defined, the maximum amount of space required for outgoing arguments will
|
||
be computed and placed into the variable
|
||
`current_function_outgoing_args_size'. No space will be pushed onto the
|
||
stack for each call; instead, the function prologue should increase the stack
|
||
frame size by this amount. */
|
||
|
||
#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
|
||
|
||
/* If defined, a C expression whose value is nonzero when we want to use PUSH
|
||
instructions to pass outgoing arguments. */
|
||
|
||
#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* Define this macro if functions should assume that stack space has been
|
||
allocated for arguments even when their values are passed in registers.
|
||
|
||
The value of this macro is the size, in bytes, of the area reserved for
|
||
arguments passed in registers for the function represented by FNDECL.
|
||
|
||
This space can be allocated by the caller, or be a part of the
|
||
machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
|
||
which. */
|
||
#define REG_PARM_STACK_SPACE(FNDECL) 0
|
||
|
||
/* Define as a C expression that evaluates to nonzero if we do not know how
|
||
to pass TYPE solely in registers. The file expr.h defines a
|
||
definition that is usually appropriate, refer to expr.h for additional
|
||
documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
|
||
computed in the stack and then loaded into a register. */
|
||
#define MUST_PASS_IN_STACK(MODE, TYPE) \
|
||
((TYPE) != 0 \
|
||
&& (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
|
||
|| TREE_ADDRESSABLE (TYPE) \
|
||
|| ((MODE) == TImode) \
|
||
|| ((MODE) == BLKmode \
|
||
&& ! ((TYPE) != 0 \
|
||
&& TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
|
||
&& 0 == (int_size_in_bytes (TYPE) \
|
||
% (PARM_BOUNDARY / BITS_PER_UNIT))) \
|
||
&& (FUNCTION_ARG_PADDING (MODE, TYPE) \
|
||
== (BYTES_BIG_ENDIAN ? upward : downward)))))
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the 80386, the RTD insn may be used to pop them if the number
|
||
of args is fixed, but if the number is variable then the caller
|
||
must pop them all. RTD can't be used for library calls now
|
||
because the library is compiled with the Unix compiler.
|
||
Use of RTD is a selectable option, since it is incompatible with
|
||
standard Unix calling sequences. If the option is not selected,
|
||
the caller must always pop the args.
|
||
|
||
The attribute stdcall is equivalent to RTD on a per module basis. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
|
||
ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
ix86_function_value (VALTYPE)
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) \
|
||
ix86_function_value_regno_p (N)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
ix86_libcall_value (MODE)
|
||
|
||
/* Define the size of the result block used for communication between
|
||
untyped_call and untyped_return. The block contains a DImode value
|
||
followed by the block used by fnsave and frstor. */
|
||
|
||
#define APPLY_RESULT_SIZE (8+108)
|
||
|
||
/* 1 if N is a possible register number for function argument passing. */
|
||
#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go. */
|
||
|
||
typedef struct ix86_args {
|
||
int words; /* # words passed so far */
|
||
int nregs; /* # registers available for passing */
|
||
int regno; /* next available register number */
|
||
int sse_words; /* # sse words passed so far */
|
||
int sse_nregs; /* # sse registers available for passing */
|
||
int sse_regno; /* next available sse register number */
|
||
int maybe_vaarg; /* true for calls to possibly vardic fncts. */
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
|
||
init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg (&(CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* If PIC, we cannot make sibling calls to global functions
|
||
because the PLT requires %ebx live.
|
||
If we are returning floats on the register stack, we cannot make
|
||
sibling calls to functions that return floats. (The stack adjust
|
||
instruction will wind up after the sibcall jump, and not be executed.) */
|
||
#define FUNCTION_OK_FOR_SIBCALL(DECL) \
|
||
((DECL) \
|
||
&& (! flag_pic || ! TREE_PUBLIC (DECL)) \
|
||
&& (! TARGET_FLOAT_RETURNS_IN_80387 \
|
||
|| ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
|
||
|| FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
|
||
|
||
/* Perform any needed actions needed for a function that is receiving a
|
||
variable number of arguments.
|
||
|
||
CUM is as above.
|
||
|
||
MODE and TYPE are the mode and type of the current parameter.
|
||
|
||
PRETEND_SIZE is a variable that should be set to the amount of stack
|
||
that must be pushed by the prolog to pretend that our caller pushed
|
||
it.
|
||
|
||
Normally, this macro will push all remaining incoming registers on the
|
||
stack and set PRETEND_SIZE to the length of the registers pushed. */
|
||
|
||
#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
|
||
ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
|
||
(NO_RTL))
|
||
|
||
/* Define the `__builtin_va_list' type for the ABI. */
|
||
#define BUILD_VA_LIST_TYPE(VALIST) \
|
||
((VALIST) = ix86_build_va_list ())
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
|
||
ix86_va_start ((STDARG), (VALIST), (NEXTARG))
|
||
|
||
/* Implement `va_arg'. */
|
||
#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
|
||
ix86_va_arg ((VALIST), (TYPE))
|
||
|
||
/* This macro is invoked at the end of compilation. It is used here to
|
||
output code for -fpic that will load the return address into %ebx. */
|
||
|
||
#undef ASM_FILE_END
|
||
#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
do { \
|
||
if (flag_pic) \
|
||
{ \
|
||
fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
|
||
LPREFIX, (LABELNO)); \
|
||
fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
|
||
fprintf ((FILE), "\tcall\t_mcount\n"); \
|
||
} \
|
||
} while (0)
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
/* Note on the 386 it might be more efficient not to define this since
|
||
we have to restore it ourselves from the frame pointer, in order to
|
||
use pop */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On the 386, the trampoline contains two instructions:
|
||
mov #STATIC,ecx
|
||
jmp FUNCTION
|
||
The trampoline is generated entirely at runtime. The operand of JMP
|
||
is the address of FUNCTION relative to the instruction following the
|
||
JMP (which is 5 bytes long). */
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
There are two registers that can always be eliminated on the i386.
|
||
The frame pointer and the arg pointer can be replaced by either the
|
||
hard frame pointer or to the stack pointer, depending upon the
|
||
circumstances. The hard frame pointer is not used before reload and
|
||
so it is not eligible for elimination. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is
|
||
allowed. Frame pointer elimination is automatically handled.
|
||
|
||
All other eliminations are valid. */
|
||
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the other
|
||
its replacement, at the start of a routine. */
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT 0 */
|
||
/* #define HAVE_POST_DECREMENT 0 */
|
||
|
||
/* #define HAVE_PRE_DECREMENT 0 */
|
||
/* #define HAVE_PRE_INCREMENT 0 */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < STACK_POINTER_REGNUM \
|
||
|| (REGNO >= FIRST_REX_INT_REG \
|
||
&& (REGNO) <= LAST_REX_INT_REG) \
|
||
|| ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
|
||
&& (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
|
||
|| (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
|
||
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) <= STACK_POINTER_REGNUM \
|
||
|| (REGNO) == ARG_POINTER_REGNUM \
|
||
|| (REGNO) == FRAME_POINTER_REGNUM \
|
||
|| (REGNO >= FIRST_REX_INT_REG \
|
||
&& (REGNO) <= LAST_REX_INT_REG) \
|
||
|| ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
|
||
&& (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
|
||
|| (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
|
||
|
||
#define REGNO_OK_FOR_SIREG_P(REGNO) \
|
||
((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
|
||
#define REGNO_OK_FOR_DIREG_P(REGNO) \
|
||
((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
|
||
/* Non strict versions, pseudos are ok */
|
||
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
|
||
(REGNO (X) < STACK_POINTER_REGNUM \
|
||
|| (REGNO (X) >= FIRST_REX_INT_REG \
|
||
&& REGNO (X) <= LAST_REX_INT_REG) \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
||
|
||
#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
|
||
(REGNO (X) <= STACK_POINTER_REGNUM \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
||
|| (REGNO (X) >= FIRST_REX_INT_REG \
|
||
&& REGNO (X) <= LAST_REX_INT_REG) \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
||
|
||
/* Strict versions, hard registers only */
|
||
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#ifndef REG_OK_STRICT
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
|
||
|
||
#else
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
|
||
except for CONSTANT_ADDRESS_P which is usually machine-independent.
|
||
|
||
See legitimize_pic_address in i386.c for details as to what
|
||
constitutes a legitimate address when -fpic is used. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == CONST_DOUBLE)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) 1
|
||
|
||
#ifdef REG_OK_STRICT
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
do { \
|
||
if (legitimate_address_p ((MODE), (X), 1)) \
|
||
goto ADDR; \
|
||
} while (0)
|
||
|
||
#else
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
do { \
|
||
if (legitimate_address_p ((MODE), (X), 0)) \
|
||
goto ADDR; \
|
||
} while (0)
|
||
|
||
#endif
|
||
|
||
/* If defined, a C expression to determine the base term of address X.
|
||
This macro is used in only one place: `find_base_term' in alias.c.
|
||
|
||
It is always safe for this macro to not be defined. It exists so
|
||
that alias analysis can understand machine-dependent addresses.
|
||
|
||
The typical use of this macro is to handle addresses containing
|
||
a label_ref or symbol_ref within an UNSPEC. */
|
||
|
||
#define FIND_BASE_TERM(X) ix86_find_base_term (X)
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For the 80386, we handle X+REG by loading X into a register R and
|
||
using R+REG. R will go in a general reg and indexing will be used.
|
||
However, if REG is a broken-out memory address or multiplication,
|
||
nothing needs to be done because REG can certainly go in a general reg.
|
||
|
||
When -fpic is used, special handling is needed for symbolic references.
|
||
See comments by legitimize_pic_address in i386.c for details. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
do { \
|
||
(X) = legitimize_address ((X), (OLDX), (MODE)); \
|
||
if (memory_address_p ((MODE), (X))) \
|
||
goto WIN; \
|
||
} while (0)
|
||
|
||
#define REWRITE_ADDRESS(X) rewrite_address (X)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand
|
||
when generating PIC code. It is given that flag_pic is on and
|
||
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) \
|
||
(! SYMBOLIC_CONST (X) \
|
||
|| legitimate_pic_address_disp_p (X))
|
||
|
||
#define SYMBOLIC_CONST(X) \
|
||
(GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == LABEL_REF \
|
||
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the 80386, only postdecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand). */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
do { \
|
||
if (GET_CODE (ADDR) == POST_INC \
|
||
|| GET_CODE (ADDR) == POST_DEC) \
|
||
goto LABEL; \
|
||
} while (0)
|
||
|
||
/* Codes for all the SSE/MMX builtins. */
|
||
enum ix86_builtins
|
||
{
|
||
IX86_BUILTIN_ADDPS,
|
||
IX86_BUILTIN_ADDSS,
|
||
IX86_BUILTIN_DIVPS,
|
||
IX86_BUILTIN_DIVSS,
|
||
IX86_BUILTIN_MULPS,
|
||
IX86_BUILTIN_MULSS,
|
||
IX86_BUILTIN_SUBPS,
|
||
IX86_BUILTIN_SUBSS,
|
||
|
||
IX86_BUILTIN_CMPEQPS,
|
||
IX86_BUILTIN_CMPLTPS,
|
||
IX86_BUILTIN_CMPLEPS,
|
||
IX86_BUILTIN_CMPGTPS,
|
||
IX86_BUILTIN_CMPGEPS,
|
||
IX86_BUILTIN_CMPNEQPS,
|
||
IX86_BUILTIN_CMPNLTPS,
|
||
IX86_BUILTIN_CMPNLEPS,
|
||
IX86_BUILTIN_CMPNGTPS,
|
||
IX86_BUILTIN_CMPNGEPS,
|
||
IX86_BUILTIN_CMPORDPS,
|
||
IX86_BUILTIN_CMPUNORDPS,
|
||
IX86_BUILTIN_CMPNEPS,
|
||
IX86_BUILTIN_CMPEQSS,
|
||
IX86_BUILTIN_CMPLTSS,
|
||
IX86_BUILTIN_CMPLESS,
|
||
IX86_BUILTIN_CMPGTSS,
|
||
IX86_BUILTIN_CMPGESS,
|
||
IX86_BUILTIN_CMPNEQSS,
|
||
IX86_BUILTIN_CMPNLTSS,
|
||
IX86_BUILTIN_CMPNLESS,
|
||
IX86_BUILTIN_CMPNGTSS,
|
||
IX86_BUILTIN_CMPNGESS,
|
||
IX86_BUILTIN_CMPORDSS,
|
||
IX86_BUILTIN_CMPUNORDSS,
|
||
IX86_BUILTIN_CMPNESS,
|
||
|
||
IX86_BUILTIN_COMIEQSS,
|
||
IX86_BUILTIN_COMILTSS,
|
||
IX86_BUILTIN_COMILESS,
|
||
IX86_BUILTIN_COMIGTSS,
|
||
IX86_BUILTIN_COMIGESS,
|
||
IX86_BUILTIN_COMINEQSS,
|
||
IX86_BUILTIN_UCOMIEQSS,
|
||
IX86_BUILTIN_UCOMILTSS,
|
||
IX86_BUILTIN_UCOMILESS,
|
||
IX86_BUILTIN_UCOMIGTSS,
|
||
IX86_BUILTIN_UCOMIGESS,
|
||
IX86_BUILTIN_UCOMINEQSS,
|
||
|
||
IX86_BUILTIN_CVTPI2PS,
|
||
IX86_BUILTIN_CVTPS2PI,
|
||
IX86_BUILTIN_CVTSI2SS,
|
||
IX86_BUILTIN_CVTSS2SI,
|
||
IX86_BUILTIN_CVTTPS2PI,
|
||
IX86_BUILTIN_CVTTSS2SI,
|
||
|
||
IX86_BUILTIN_MAXPS,
|
||
IX86_BUILTIN_MAXSS,
|
||
IX86_BUILTIN_MINPS,
|
||
IX86_BUILTIN_MINSS,
|
||
|
||
IX86_BUILTIN_LOADAPS,
|
||
IX86_BUILTIN_LOADUPS,
|
||
IX86_BUILTIN_STOREAPS,
|
||
IX86_BUILTIN_STOREUPS,
|
||
IX86_BUILTIN_LOADSS,
|
||
IX86_BUILTIN_STORESS,
|
||
IX86_BUILTIN_MOVSS,
|
||
|
||
IX86_BUILTIN_MOVHLPS,
|
||
IX86_BUILTIN_MOVLHPS,
|
||
IX86_BUILTIN_LOADHPS,
|
||
IX86_BUILTIN_LOADLPS,
|
||
IX86_BUILTIN_STOREHPS,
|
||
IX86_BUILTIN_STORELPS,
|
||
|
||
IX86_BUILTIN_MASKMOVQ,
|
||
IX86_BUILTIN_MOVMSKPS,
|
||
IX86_BUILTIN_PMOVMSKB,
|
||
|
||
IX86_BUILTIN_MOVNTPS,
|
||
IX86_BUILTIN_MOVNTQ,
|
||
|
||
IX86_BUILTIN_PACKSSWB,
|
||
IX86_BUILTIN_PACKSSDW,
|
||
IX86_BUILTIN_PACKUSWB,
|
||
|
||
IX86_BUILTIN_PADDB,
|
||
IX86_BUILTIN_PADDW,
|
||
IX86_BUILTIN_PADDD,
|
||
IX86_BUILTIN_PADDSB,
|
||
IX86_BUILTIN_PADDSW,
|
||
IX86_BUILTIN_PADDUSB,
|
||
IX86_BUILTIN_PADDUSW,
|
||
IX86_BUILTIN_PSUBB,
|
||
IX86_BUILTIN_PSUBW,
|
||
IX86_BUILTIN_PSUBD,
|
||
IX86_BUILTIN_PSUBSB,
|
||
IX86_BUILTIN_PSUBSW,
|
||
IX86_BUILTIN_PSUBUSB,
|
||
IX86_BUILTIN_PSUBUSW,
|
||
|
||
IX86_BUILTIN_PAND,
|
||
IX86_BUILTIN_PANDN,
|
||
IX86_BUILTIN_POR,
|
||
IX86_BUILTIN_PXOR,
|
||
|
||
IX86_BUILTIN_PAVGB,
|
||
IX86_BUILTIN_PAVGW,
|
||
|
||
IX86_BUILTIN_PCMPEQB,
|
||
IX86_BUILTIN_PCMPEQW,
|
||
IX86_BUILTIN_PCMPEQD,
|
||
IX86_BUILTIN_PCMPGTB,
|
||
IX86_BUILTIN_PCMPGTW,
|
||
IX86_BUILTIN_PCMPGTD,
|
||
|
||
IX86_BUILTIN_PEXTRW,
|
||
IX86_BUILTIN_PINSRW,
|
||
|
||
IX86_BUILTIN_PMADDWD,
|
||
|
||
IX86_BUILTIN_PMAXSW,
|
||
IX86_BUILTIN_PMAXUB,
|
||
IX86_BUILTIN_PMINSW,
|
||
IX86_BUILTIN_PMINUB,
|
||
|
||
IX86_BUILTIN_PMULHUW,
|
||
IX86_BUILTIN_PMULHW,
|
||
IX86_BUILTIN_PMULLW,
|
||
|
||
IX86_BUILTIN_PSADBW,
|
||
IX86_BUILTIN_PSHUFW,
|
||
|
||
IX86_BUILTIN_PSLLW,
|
||
IX86_BUILTIN_PSLLD,
|
||
IX86_BUILTIN_PSLLQ,
|
||
IX86_BUILTIN_PSRAW,
|
||
IX86_BUILTIN_PSRAD,
|
||
IX86_BUILTIN_PSRLW,
|
||
IX86_BUILTIN_PSRLD,
|
||
IX86_BUILTIN_PSRLQ,
|
||
IX86_BUILTIN_PSLLWI,
|
||
IX86_BUILTIN_PSLLDI,
|
||
IX86_BUILTIN_PSLLQI,
|
||
IX86_BUILTIN_PSRAWI,
|
||
IX86_BUILTIN_PSRADI,
|
||
IX86_BUILTIN_PSRLWI,
|
||
IX86_BUILTIN_PSRLDI,
|
||
IX86_BUILTIN_PSRLQI,
|
||
|
||
IX86_BUILTIN_PUNPCKHBW,
|
||
IX86_BUILTIN_PUNPCKHWD,
|
||
IX86_BUILTIN_PUNPCKHDQ,
|
||
IX86_BUILTIN_PUNPCKLBW,
|
||
IX86_BUILTIN_PUNPCKLWD,
|
||
IX86_BUILTIN_PUNPCKLDQ,
|
||
|
||
IX86_BUILTIN_SHUFPS,
|
||
|
||
IX86_BUILTIN_RCPPS,
|
||
IX86_BUILTIN_RCPSS,
|
||
IX86_BUILTIN_RSQRTPS,
|
||
IX86_BUILTIN_RSQRTSS,
|
||
IX86_BUILTIN_SQRTPS,
|
||
IX86_BUILTIN_SQRTSS,
|
||
|
||
IX86_BUILTIN_UNPCKHPS,
|
||
IX86_BUILTIN_UNPCKLPS,
|
||
|
||
IX86_BUILTIN_ANDPS,
|
||
IX86_BUILTIN_ANDNPS,
|
||
IX86_BUILTIN_ORPS,
|
||
IX86_BUILTIN_XORPS,
|
||
|
||
IX86_BUILTIN_EMMS,
|
||
IX86_BUILTIN_LDMXCSR,
|
||
IX86_BUILTIN_STMXCSR,
|
||
IX86_BUILTIN_SFENCE,
|
||
|
||
/* 3DNow! Original */
|
||
IX86_BUILTIN_FEMMS,
|
||
IX86_BUILTIN_PAVGUSB,
|
||
IX86_BUILTIN_PF2ID,
|
||
IX86_BUILTIN_PFACC,
|
||
IX86_BUILTIN_PFADD,
|
||
IX86_BUILTIN_PFCMPEQ,
|
||
IX86_BUILTIN_PFCMPGE,
|
||
IX86_BUILTIN_PFCMPGT,
|
||
IX86_BUILTIN_PFMAX,
|
||
IX86_BUILTIN_PFMIN,
|
||
IX86_BUILTIN_PFMUL,
|
||
IX86_BUILTIN_PFRCP,
|
||
IX86_BUILTIN_PFRCPIT1,
|
||
IX86_BUILTIN_PFRCPIT2,
|
||
IX86_BUILTIN_PFRSQIT1,
|
||
IX86_BUILTIN_PFRSQRT,
|
||
IX86_BUILTIN_PFSUB,
|
||
IX86_BUILTIN_PFSUBR,
|
||
IX86_BUILTIN_PI2FD,
|
||
IX86_BUILTIN_PMULHRW,
|
||
|
||
/* 3DNow! Athlon Extensions */
|
||
IX86_BUILTIN_PF2IW,
|
||
IX86_BUILTIN_PFNACC,
|
||
IX86_BUILTIN_PFPNACC,
|
||
IX86_BUILTIN_PI2FW,
|
||
IX86_BUILTIN_PSWAPDSI,
|
||
IX86_BUILTIN_PSWAPDSF,
|
||
|
||
IX86_BUILTIN_SSE_ZERO,
|
||
IX86_BUILTIN_MMX_ZERO,
|
||
|
||
IX86_BUILTIN_MAX
|
||
};
|
||
|
||
/* Define this macro if references to a symbol must be treated
|
||
differently depending on something about the variable or
|
||
function named by the symbol (such as what section it is in).
|
||
|
||
On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
|
||
so that we may access it directly in the GOT. */
|
||
|
||
#define ENCODE_SECTION_INFO(DECL) \
|
||
do { \
|
||
if (flag_pic) \
|
||
{ \
|
||
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
|
||
? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
|
||
\
|
||
if (GET_CODE (rtl) == MEM) \
|
||
{ \
|
||
if (TARGET_DEBUG_ADDR \
|
||
&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
|
||
{ \
|
||
fprintf (stderr, "Encode %s, public = %d\n", \
|
||
IDENTIFIER_POINTER (DECL_NAME (DECL)), \
|
||
TREE_PUBLIC (DECL)); \
|
||
} \
|
||
\
|
||
SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
|
||
= (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
|
||
|| ! TREE_PUBLIC (DECL)); \
|
||
} \
|
||
} \
|
||
} while (0)
|
||
|
||
/* The `FINALIZE_PIC' macro serves as a hook to emit these special
|
||
codes once the function is being compiled into assembly code, but
|
||
not before. (It is not done before, because in the case of
|
||
compiling an inline function, it would lead to multiple PIC
|
||
prologues being included in functions which used inline functions
|
||
and were compiled to assembly language.) */
|
||
|
||
#define FINALIZE_PIC \
|
||
(current_function_uses_pic_offset_table |= current_function_profile)
|
||
|
||
|
||
/* Max number of args passed in registers. If this is more than 3, we will
|
||
have problems with ebx (register #4), since it is a caller save register and
|
||
is also used as the pic register in ELF. So for now, don't allow more than
|
||
3 registers to be passed in registers. */
|
||
|
||
#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
|
||
|
||
#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE 1 */
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Number of bytes moved into a data cache for a single prefetch operation. */
|
||
#define PREFETCH_BLOCK ix86_cost->prefetch_block
|
||
|
||
/* Number of prefetch operations that can be done in parallel. */
|
||
#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 16
|
||
|
||
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
|
||
move efficiently, as opposed to MOVE_MAX which is the maximum
|
||
number of bytes we can move with a single instruction. */
|
||
#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
|
||
|
||
/* If a memory-to-memory move would take MOVE_RATIO or more simple
|
||
move-instruction pairs, we will do a movstr or libcall instead.
|
||
Increasing the value will always make code faster, but eventually
|
||
incurs high cost in increased code size.
|
||
|
||
If you don't define this, a reasonable default is used. */
|
||
|
||
#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* On i386, shifts do truncate the count. But bit opcodes don't. */
|
||
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'.
|
||
(The 386 can't easily push less than an int.) */
|
||
|
||
#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
|
||
|
||
/* A macro to update M and UNSIGNEDP when an object whose type is
|
||
TYPE and which has the specified mode and signedness is to be
|
||
stored in a register. This macro is only called when TYPE is a
|
||
scalar type.
|
||
|
||
On i386 it is sometimes useful to promote HImode and QImode
|
||
quantities to SImode. The choice depends on target type. */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
do { \
|
||
if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
|
||
|| ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
|
||
(MODE) = SImode; \
|
||
} while (0)
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode (TARGET_64BIT ? DImode : SImode)
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* A part of a C `switch' statement that describes the relative costs
|
||
of constant RTL expressions. It must contain `case' labels for
|
||
expression codes `const_int', `const', `symbol_ref', `label_ref'
|
||
and `const_double'. Each case must ultimately reach a `return'
|
||
statement to return the relative cost of the use of that kind of
|
||
constant value in an expression. The cost may depend on the
|
||
precise value of the constant, which is available for examination
|
||
in X, and the rtx code of the expression in which it is contained,
|
||
found in OUTER_CODE.
|
||
|
||
CODE is the expression code--redundant, since it can be obtained
|
||
with `GET_CODE (X)'. */
|
||
|
||
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
|
||
case CONST_INT: \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
|
||
return 3; \
|
||
if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
|
||
return 2; \
|
||
return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
|
||
\
|
||
case CONST_DOUBLE: \
|
||
{ \
|
||
int code; \
|
||
if (GET_MODE (RTX) == VOIDmode) \
|
||
return 0; \
|
||
\
|
||
code = standard_80387_constant_p (RTX); \
|
||
return code == 1 ? 1 : \
|
||
code == 2 ? 2 : \
|
||
3; \
|
||
}
|
||
|
||
/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
|
||
#define TOPLEVEL_COSTS_N_INSNS(N) \
|
||
do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
|
||
|
||
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
|
||
This can be used, for example, to indicate how costly a multiply
|
||
instruction is. In writing this macro, you can use the construct
|
||
`COSTS_N_INSNS (N)' to specify a cost equal to N fast
|
||
instructions. OUTER_CODE is the code of the expression in which X
|
||
is contained.
|
||
|
||
This macro is optional; do not define it if the default cost
|
||
assumptions are adequate for the target machine. */
|
||
|
||
#define RTX_COSTS(X, CODE, OUTER_CODE) \
|
||
case ZERO_EXTEND: \
|
||
/* The zero extensions is often completely free on x86_64, so make \
|
||
it as cheap as possible. */ \
|
||
if (TARGET_64BIT && GET_MODE (X) == DImode \
|
||
&& GET_MODE (XEXP (X, 0)) == SImode) \
|
||
{ \
|
||
total = 1; goto egress_rtx_costs; \
|
||
} \
|
||
else \
|
||
TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
|
||
ix86_cost->add : ix86_cost->movzx); \
|
||
break; \
|
||
case SIGN_EXTEND: \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
|
||
break; \
|
||
case ASHIFT: \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
|
||
{ \
|
||
HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
|
||
if (value == 1) \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
|
||
if ((value == 2 || value == 3) \
|
||
&& !TARGET_DECOMPOSE_LEA \
|
||
&& ix86_cost->lea <= ix86_cost->shift_const) \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
|
||
} \
|
||
/* fall through */ \
|
||
\
|
||
case ROTATE: \
|
||
case ASHIFTRT: \
|
||
case LSHIFTRT: \
|
||
case ROTATERT: \
|
||
if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
{ \
|
||
if (INTVAL (XEXP (X, 1)) > 32) \
|
||
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
|
||
else \
|
||
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
|
||
} \
|
||
else \
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 1)) == AND) \
|
||
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
|
||
else \
|
||
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
|
||
} \
|
||
} \
|
||
else \
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
|
||
else \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
|
||
} \
|
||
break; \
|
||
\
|
||
case MULT: \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
{ \
|
||
unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
|
||
int nbits = 0; \
|
||
\
|
||
while (value != 0) \
|
||
{ \
|
||
nbits++; \
|
||
value >>= 1; \
|
||
} \
|
||
\
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
|
||
+ nbits * ix86_cost->mult_bit); \
|
||
} \
|
||
else /* This is arbitrary */ \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
|
||
+ 7 * ix86_cost->mult_bit); \
|
||
\
|
||
case DIV: \
|
||
case UDIV: \
|
||
case MOD: \
|
||
case UMOD: \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
|
||
\
|
||
case PLUS: \
|
||
if (!TARGET_DECOMPOSE_LEA \
|
||
&& INTEGRAL_MODE_P (GET_MODE (X)) \
|
||
&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 0)) == PLUS \
|
||
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
|
||
&& GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
|
||
&& CONSTANT_P (XEXP (X, 1))) \
|
||
{ \
|
||
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
|
||
if (val == 2 || val == 4 || val == 8) \
|
||
{ \
|
||
return (COSTS_N_INSNS (ix86_cost->lea) \
|
||
+ rtx_cost (XEXP (XEXP (X, 0), 1), \
|
||
(OUTER_CODE)) \
|
||
+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
|
||
(OUTER_CODE)) \
|
||
+ rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (XEXP (X, 0)) == MULT \
|
||
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
|
||
{ \
|
||
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
|
||
if (val == 2 || val == 4 || val == 8) \
|
||
{ \
|
||
return (COSTS_N_INSNS (ix86_cost->lea) \
|
||
+ rtx_cost (XEXP (XEXP (X, 0), 0), \
|
||
(OUTER_CODE)) \
|
||
+ rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (XEXP (X, 0)) == PLUS) \
|
||
{ \
|
||
return (COSTS_N_INSNS (ix86_cost->lea) \
|
||
+ rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
|
||
+ rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
|
||
+ rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
|
||
} \
|
||
} \
|
||
\
|
||
/* fall through */ \
|
||
case AND: \
|
||
case IOR: \
|
||
case XOR: \
|
||
case MINUS: \
|
||
if (!TARGET_64BIT && GET_MODE (X) == DImode) \
|
||
return (COSTS_N_INSNS (ix86_cost->add) * 2 \
|
||
+ (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
|
||
<< (GET_MODE (XEXP (X, 0)) != DImode)) \
|
||
+ (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
|
||
<< (GET_MODE (XEXP (X, 1)) != DImode))); \
|
||
\
|
||
/* fall through */ \
|
||
case NEG: \
|
||
case NOT: \
|
||
if (!TARGET_64BIT && GET_MODE (X) == DImode) \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
|
||
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
|
||
\
|
||
egress_rtx_costs: \
|
||
break;
|
||
|
||
|
||
/* An expression giving the cost of an addressing mode that contains
|
||
ADDRESS. If not defined, the cost is computed from the ADDRESS
|
||
expression and the `CONST_COSTS' values.
|
||
|
||
For most CISC machines, the default cost is a good approximation
|
||
of the true cost of the addressing mode. However, on RISC
|
||
machines, all instructions normally have the same length and
|
||
execution time. Hence all addresses will have equal costs.
|
||
|
||
In cases where more than one form of an address is known, the form
|
||
with the lowest cost will be used. If multiple forms have the
|
||
same, lowest, cost, the one that is the most complex will be used.
|
||
|
||
For example, suppose an address that is equal to the sum of a
|
||
register and a constant is used twice in the same basic block.
|
||
When this macro is not defined, the address will be computed in a
|
||
register and memory references will be indirect through that
|
||
register. On machines where the cost of the addressing mode
|
||
containing the sum is no higher than that of a simple indirect
|
||
reference, this will produce an additional instruction and
|
||
possibly require an additional register. Proper specification of
|
||
this macro eliminates this overhead for such machines.
|
||
|
||
Similar use of this macro is made in strength reduction of loops.
|
||
|
||
ADDRESS need not be valid as an address. In such a case, the cost
|
||
is not relevant and can be any value; invalid addresses need not be
|
||
assigned a different cost.
|
||
|
||
On machines where an address involving more than one register is as
|
||
cheap as an address computation involving only one register,
|
||
defining `ADDRESS_COST' to reflect this can cause two registers to
|
||
be live over a region of code where only one would have been if
|
||
`ADDRESS_COST' were not defined in that manner. This effect should
|
||
be considered in the definition of this macro. Equivalent costs
|
||
should probably only be given to addresses with different numbers
|
||
of registers on machines with lots of registers.
|
||
|
||
This macro will normally either not be defined or be defined as a
|
||
constant.
|
||
|
||
For i386, it is better to use a complex address than let gcc copy
|
||
the address into a reg and make a new pseudo. But not if the address
|
||
requires to two regs - that would mean more pseudos with longer
|
||
lifetimes. */
|
||
|
||
#define ADDRESS_COST(RTX) \
|
||
ix86_address_cost (RTX)
|
||
|
||
/* A C expression for the cost of moving data from a register in class FROM to
|
||
one in class TO. The classes are expressed using the enumeration values
|
||
such as `GENERAL_REGS'. A value of 2 is the default; other values are
|
||
interpreted relative to that.
|
||
|
||
It is not required that the cost always equal 2 when FROM is the same as TO;
|
||
on some machines it is expensive to move between registers if they are not
|
||
general registers. */
|
||
|
||
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
||
ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
|
||
|
||
/* A C expression for the cost of moving data of mode M between a
|
||
register and memory. A value of 2 is the default; this cost is
|
||
relative to those in `REGISTER_MOVE_COST'.
|
||
|
||
If moving between registers and memory is more expensive than
|
||
between two registers, you should define this macro to express the
|
||
relative cost. */
|
||
|
||
#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
|
||
ix86_memory_move_cost ((MODE), (CLASS), (IN))
|
||
|
||
/* A C expression for the cost of a branch instruction. A value of 1
|
||
is the default; other values are interpreted relative to that. */
|
||
|
||
#define BRANCH_COST ix86_branch_cost
|
||
|
||
/* Define this macro as a C expression which is nonzero if accessing
|
||
less than a word of memory (i.e. a `char' or a `short') is no
|
||
faster than accessing a word of memory, i.e., if such access
|
||
require more than one instruction or if there is no difference in
|
||
cost between byte and (aligned) word loads.
|
||
|
||
When this macro is not defined, the compiler will access a field by
|
||
finding the smallest containing object; when it is defined, a
|
||
fullword load will be used if alignment permits. Unless bytes
|
||
accesses are faster than word accesses, using word accesses is
|
||
preferable since it may eliminate subsequent memory access if
|
||
subsequent accesses occur to other fields in the same word of the
|
||
structure, but to different bytes. */
|
||
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Nonzero if access to memory by shorts is slow and undesirable. */
|
||
#define SLOW_SHORT_ACCESS 0
|
||
|
||
/* Define this macro to be the value 1 if unaligned accesses have a
|
||
cost many times greater than aligned accesses, for example if they
|
||
are emulated in a trap handler.
|
||
|
||
When this macro is non-zero, the compiler will act as if
|
||
`STRICT_ALIGNMENT' were non-zero when generating code for block
|
||
moves. This can cause significantly more instructions to be
|
||
produced. Therefore, do not set this macro non-zero if unaligned
|
||
accesses only add a cycle or two to the time for a memory access.
|
||
|
||
If the value of this macro is always zero, it need not be defined. */
|
||
|
||
/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
|
||
|
||
/* Define this macro to inhibit strength reduction of memory
|
||
addresses. (On some machines, such strength reduction seems to do
|
||
harm rather than good.) */
|
||
|
||
/* #define DONT_REDUCE_ADDR */
|
||
|
||
/* Define this macro if it is as good or better to call a constant
|
||
function address than to call an address kept in a register.
|
||
|
||
Desirable on the 386 because a CALL with a constant address is
|
||
faster than one with a register address. */
|
||
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* Define this macro if it is as good or better for a function to call
|
||
itself with an explicit address than to call an address kept in a
|
||
register. */
|
||
|
||
#define NO_RECURSIVE_FUNCTION_CSE
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
For the i386, we need separate modes when floating-point
|
||
equality comparisons are being done.
|
||
|
||
Add CCNO to indicate comparisons against zero that requires
|
||
Overflow flag to be unset. Sign bit test is used instead and
|
||
thus can be used to form "a&b>0" type of tests.
|
||
|
||
Add CCGC to indicate comparisons agains zero that allows
|
||
unspecified garbage in the Carry flag. This mode is used
|
||
by inc/dec instructions.
|
||
|
||
Add CCGOC to indicate comparisons agains zero that allows
|
||
unspecified garbage in the Carry and Overflow flag. This
|
||
mode is used to simulate comparisons of (a-b) and (a+b)
|
||
against zero using sub/cmp/add operations.
|
||
|
||
Add CCZ to indicate that only the Zero flag is valid. */
|
||
|
||
#define EXTRA_CC_MODES \
|
||
CC (CCGCmode, "CCGC") \
|
||
CC (CCGOCmode, "CCGOC") \
|
||
CC (CCNOmode, "CCNO") \
|
||
CC (CCZmode, "CCZ") \
|
||
CC (CCFPmode, "CCFP") \
|
||
CC (CCFPUmode, "CCFPU")
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison.
|
||
|
||
For floating-point equality comparisons, CCFPEQmode should be used.
|
||
VOIDmode should be used in all other cases.
|
||
|
||
For integer comparisons against zero, reduce to CCNOmode or CCZmode if
|
||
possible, to allow for more combinations. */
|
||
|
||
#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
|
||
|
||
/* Return non-zero if MODE implies a floating point inequality can be
|
||
reversed. */
|
||
|
||
#define REVERSIBLE_CC_MODE(MODE) 1
|
||
|
||
/* A C expression whose value is reversed condition code of the CODE for
|
||
comparison done in CC_MODE mode. */
|
||
#define REVERSE_CONDITION(CODE, MODE) \
|
||
((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
|
||
: reverse_condition_maybe_unordered (CODE))
|
||
|
||
|
||
/* Control the assembler format that we output, to the extent
|
||
this does not vary between assemblers. */
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
|
||
For non floating point regs, the following are the HImode names.
|
||
|
||
For float regs, the stack top is sometimes referred to as "%st(0)"
|
||
instead of just "%st". PRINT_REG handles this with the "y" code. */
|
||
|
||
#undef HI_REGISTER_NAMES
|
||
#define HI_REGISTER_NAMES \
|
||
{"ax","dx","cx","bx","si","di","bp","sp", \
|
||
"st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
|
||
"flags","fpsr", "dirflag", "frame", \
|
||
"xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
|
||
"mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
||
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
|
||
|
||
#define REGISTER_NAMES HI_REGISTER_NAMES
|
||
|
||
/* Table of additional register names to use in user input. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
|
||
{ "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
|
||
{ "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
|
||
{ "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
|
||
{ "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
|
||
{ "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
|
||
{ "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
|
||
{ "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
|
||
|
||
/* Note we are omitting these since currently I don't know how
|
||
to get gcc to use these, since they want the same but different
|
||
number as al, and ax.
|
||
*/
|
||
|
||
#define QI_REGISTER_NAMES \
|
||
{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
|
||
|
||
/* These parallel the array above, and can be used to access bits 8:15
|
||
of regs 0 through 3. */
|
||
|
||
#define QI_HIGH_REGISTER_NAMES \
|
||
{"ah", "dh", "ch", "bh", }
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(N) \
|
||
(TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
|
||
|
||
extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
|
||
extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
|
||
extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Before the prologue, RA is at 0(%esp). */
|
||
#define INCOMING_RETURN_ADDR_RTX \
|
||
gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
|
||
|
||
/* After the prologue, RA is at -4(AP) in the current frame. */
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
((COUNT) == 0 \
|
||
? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
|
||
: gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
|
||
|
||
/* PC is dbx register 8; let's use that column for RA. */
|
||
#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
|
||
|
||
/* Before the prologue, the top of the frame is at 4(%esp). */
|
||
#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
|
||
|
||
/* Describe how we implement __builtin_eh_return. */
|
||
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
|
||
|
||
|
||
/* Select a format to encode pointers in exception handling data. CODE
|
||
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
|
||
true if the symbol may be affected by dynamic relocations.
|
||
|
||
??? All x86 object file formats are capable of representing this.
|
||
After all, the relocation needed is the same as for the call insn.
|
||
Whether or not a particular assembler allows us to enter such, I
|
||
guess we'll have to see. */
|
||
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
||
(flag_pic \
|
||
? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
|
||
: DW_EH_PE_absptr)
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE, NAME) \
|
||
(assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
|
||
asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
|
||
asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
ix86_output_addr_vec_elt ((FILE), (VALUE))
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
|
||
|
||
/* Under some conditions we need jump tables in the text section, because
|
||
the assembler cannot handle label differences between sections. */
|
||
|
||
#define JUMP_TABLES_IN_TEXT_SECTION \
|
||
(!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
|
||
|
||
/* A C statement that outputs an address constant appropriate to
|
||
for DWARF debugging. */
|
||
|
||
#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
|
||
i386_dwarf_output_addr_const ((FILE), (X))
|
||
|
||
/* Either simplify a location expression, or return the original. */
|
||
|
||
#define ASM_SIMPLIFY_DWARF_ADDR(X) \
|
||
i386_simplify_dwarf_addr (X)
|
||
|
||
/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
|
||
and switch back. For x86 we do this only to save a few bytes that
|
||
would otherwise be unused in the text section. */
|
||
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
||
asm (SECTION_OP "\n\t" \
|
||
"call " USER_LABEL_PREFIX #FUNC "\n" \
|
||
TEXT_SECTION_ASM_OP);
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
Effect of various CODE letters is described in i386.c near
|
||
print_operand function. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '*' || (CODE) == '+')
|
||
|
||
/* Print the name of a register based on its machine mode and number.
|
||
If CODE is 'w', pretend the mode is HImode.
|
||
If CODE is 'b', pretend the mode is QImode.
|
||
If CODE is 'k', pretend the mode is SImode.
|
||
If CODE is 'q', pretend the mode is DImode.
|
||
If CODE is 'h', pretend the reg is the `high' byte register.
|
||
If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
|
||
|
||
#define PRINT_REG(X, CODE, FILE) \
|
||
print_reg ((X), (CODE), (FILE))
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
print_operand ((FILE), (X), (CODE))
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
print_operand_address ((FILE), (ADDR))
|
||
|
||
/* Print the name of a register for based on its machine mode and number.
|
||
This macro is used to print debugging output.
|
||
This macro is different from PRINT_REG in that it may be used in
|
||
programs that are not linked with aux-output.o. */
|
||
|
||
#define DEBUG_PRINT_REG(X, CODE, FILE) \
|
||
do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
|
||
static const char * const qi_name[] = QI_REGISTER_NAMES; \
|
||
fprintf ((FILE), "%d ", REGNO (X)); \
|
||
if (REGNO (X) == FLAGS_REG) \
|
||
{ fputs ("flags", (FILE)); break; } \
|
||
if (REGNO (X) == DIRFLAG_REG) \
|
||
{ fputs ("dirflag", (FILE)); break; } \
|
||
if (REGNO (X) == FPSR_REG) \
|
||
{ fputs ("fpsr", (FILE)); break; } \
|
||
if (REGNO (X) == ARG_POINTER_REGNUM) \
|
||
{ fputs ("argp", (FILE)); break; } \
|
||
if (REGNO (X) == FRAME_POINTER_REGNUM) \
|
||
{ fputs ("frame", (FILE)); break; } \
|
||
if (STACK_TOP_P (X)) \
|
||
{ fputs ("st(0)", (FILE)); break; } \
|
||
if (FP_REG_P (X)) \
|
||
{ fputs (hi_name[REGNO(X)], (FILE)); break; } \
|
||
if (REX_INT_REG_P (X)) \
|
||
{ \
|
||
switch (GET_MODE_SIZE (GET_MODE (X))) \
|
||
{ \
|
||
default: \
|
||
case 8: \
|
||
fprintf ((FILE), "r%i", REGNO (X) \
|
||
- FIRST_REX_INT_REG + 8); \
|
||
break; \
|
||
case 4: \
|
||
fprintf ((FILE), "r%id", REGNO (X) \
|
||
- FIRST_REX_INT_REG + 8); \
|
||
break; \
|
||
case 2: \
|
||
fprintf ((FILE), "r%iw", REGNO (X) \
|
||
- FIRST_REX_INT_REG + 8); \
|
||
break; \
|
||
case 1: \
|
||
fprintf ((FILE), "r%ib", REGNO (X) \
|
||
- FIRST_REX_INT_REG + 8); \
|
||
break; \
|
||
} \
|
||
break; \
|
||
} \
|
||
switch (GET_MODE_SIZE (GET_MODE (X))) \
|
||
{ \
|
||
case 8: \
|
||
fputs ("r", (FILE)); \
|
||
fputs (hi_name[REGNO (X)], (FILE)); \
|
||
break; \
|
||
default: \
|
||
fputs ("e", (FILE)); \
|
||
case 2: \
|
||
fputs (hi_name[REGNO (X)], (FILE)); \
|
||
break; \
|
||
case 1: \
|
||
fputs (qi_name[REGNO (X)], (FILE)); \
|
||
break; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* a letter which is not needed by the normal asm syntax, which
|
||
we can use for operand syntax in the extended asm */
|
||
|
||
#define ASM_OPERAND_LETTER '#'
|
||
#define RET return ""
|
||
#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
|
||
|
||
/* Define the codes that are matched by predicates in i386.c. */
|
||
|
||
#define PREDICATE_CODES \
|
||
{"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
|
||
SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
|
||
SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
|
||
SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
|
||
SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
|
||
SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
|
||
SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
|
||
SYMBOL_REF, LABEL_REF}}, \
|
||
{"shiftdi_operand", {SUBREG, REG, MEM}}, \
|
||
{"const_int_1_operand", {CONST_INT}}, \
|
||
{"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
|
||
LABEL_REF, SUBREG, REG, MEM}}, \
|
||
{"pic_symbolic_operand", {CONST}}, \
|
||
{"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
|
||
{"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
|
||
{"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
|
||
{"const1_operand", {CONST_INT}}, \
|
||
{"const248_operand", {CONST_INT}}, \
|
||
{"incdec_operand", {CONST_INT}}, \
|
||
{"mmx_reg_operand", {REG}}, \
|
||
{"reg_no_sp_operand", {SUBREG, REG}}, \
|
||
{"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
|
||
SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
|
||
{"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
|
||
{"q_regs_operand", {SUBREG, REG}}, \
|
||
{"non_q_regs_operand", {SUBREG, REG}}, \
|
||
{"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
|
||
ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
|
||
GE, UNGE, LTGT, UNEQ}}, \
|
||
{"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
|
||
ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
|
||
}}, \
|
||
{"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
|
||
GTU, UNORDERED, ORDERED, UNLE, UNLT, \
|
||
UNGE, UNGT, LTGT, UNEQ }}, \
|
||
{"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
|
||
{"ext_register_operand", {SUBREG, REG}}, \
|
||
{"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
|
||
{"mult_operator", {MULT}}, \
|
||
{"div_operator", {DIV}}, \
|
||
{"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
|
||
UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
|
||
UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
|
||
LSHIFTRT, ROTATERT}}, \
|
||
{"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
|
||
{"memory_displacement_operand", {MEM}}, \
|
||
{"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
|
||
LABEL_REF, SUBREG, REG, MEM, AND}}, \
|
||
{"long_memory_operand", {MEM}},
|
||
|
||
/* A list of predicates that do special things with modes, and so
|
||
should not elicit warnings for VOIDmode match_operand. */
|
||
|
||
#define SPECIAL_MODE_PREDICATES \
|
||
"ext_register_operand",
|
||
|
||
/* CM_32 is used by 32bit ABI
|
||
CM_SMALL is small model assuming that all code and data fits in the first
|
||
31bits of address space.
|
||
CM_KERNEL is model assuming that all code and data fits in the negative
|
||
31bits of address space.
|
||
CM_MEDIUM is model assuming that code fits in the first 31bits of address
|
||
space. Size of data is unlimited.
|
||
CM_LARGE is model making no assumptions about size of particular sections.
|
||
|
||
CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
|
||
tables first in 31bits of address space.
|
||
*/
|
||
enum cmodel {
|
||
CM_32,
|
||
CM_SMALL,
|
||
CM_KERNEL,
|
||
CM_MEDIUM,
|
||
CM_LARGE,
|
||
CM_SMALL_PIC
|
||
};
|
||
|
||
/* Size of the RED_ZONE area. */
|
||
#define RED_ZONE_SIZE 128
|
||
/* Reserved area of the red zone for temporaries. */
|
||
#define RED_ZONE_RESERVE 8
|
||
extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
|
||
|
||
enum asm_dialect {
|
||
ASM_ATT,
|
||
ASM_INTEL
|
||
};
|
||
extern const char *ix86_asm_string;
|
||
extern enum asm_dialect ix86_asm_dialect;
|
||
/* Value of -mcmodel specified by user. */
|
||
extern const char *ix86_cmodel_string;
|
||
extern enum cmodel ix86_cmodel;
|
||
|
||
/* Variables in i386.c */
|
||
extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
|
||
extern const char *ix86_arch_string; /* for -march=<xxx> */
|
||
extern const char *ix86_fpmath_string; /* for -mfpmath=<xxx> */
|
||
extern const char *ix86_regparm_string; /* # registers to use to pass args */
|
||
extern const char *ix86_align_loops_string; /* power of two alignment for loops */
|
||
extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
|
||
extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
|
||
extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
|
||
extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
|
||
extern int ix86_regparm; /* ix86_regparm_string as a number */
|
||
extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
|
||
extern int ix86_branch_cost; /* values 1-5: see jump.c */
|
||
extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
|
||
extern rtx ix86_compare_op0; /* operand 0 for comparisons */
|
||
extern rtx ix86_compare_op1; /* operand 1 for comparisons */
|
||
|
||
/* To properly truncate FP values into integers, we need to set i387 control
|
||
word. We can't emit proper mode switching code before reload, as spills
|
||
generated by reload may truncate values incorrectly, but we still can avoid
|
||
redundant computation of new control word by the mode switching pass.
|
||
The fldcw instructions are still emitted redundantly, but this is probably
|
||
not going to be noticeable problem, as most CPUs do have fast path for
|
||
the sequence.
|
||
|
||
The machinery is to emit simple truncation instructions and split them
|
||
before reload to instructions having USEs of two memory locations that
|
||
are filled by this code to old and new control word.
|
||
|
||
Post-reload pass may be later used to eliminate the redundant fildcw if
|
||
needed. */
|
||
|
||
enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
|
||
|
||
/* Define this macro if the port needs extra instructions inserted
|
||
for mode switching in an optimizing compilation. */
|
||
|
||
#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
|
||
|
||
/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
|
||
initializer for an array of integers. Each initializer element N
|
||
refers to an entity that needs mode switching, and specifies the
|
||
number of different modes that might need to be set for this
|
||
entity. The position of the initializer in the initializer -
|
||
starting counting at zero - determines the integer that is used to
|
||
refer to the mode-switched entity in question. */
|
||
|
||
#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
|
||
|
||
/* ENTITY is an integer specifying a mode-switched entity. If
|
||
`OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
|
||
return an integer value not larger than the corresponding element
|
||
in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
|
||
must be switched into prior to the execution of INSN. */
|
||
|
||
#define MODE_NEEDED(ENTITY, I) \
|
||
(GET_CODE (I) == CALL_INSN \
|
||
|| (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
|
||
|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
|
||
? FP_CW_UNINITIALIZED \
|
||
: recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
|
||
? FP_CW_ANY \
|
||
: FP_CW_STORED)
|
||
|
||
/* This macro specifies the order in which modes for ENTITY are
|
||
processed. 0 is the highest priority. */
|
||
|
||
#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
|
||
|
||
/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
|
||
is the set of hard registers live at the point where the insn(s)
|
||
are to be inserted. */
|
||
|
||
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
|
||
((MODE) == FP_CW_STORED \
|
||
? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
|
||
assign_386_stack_local (HImode, 2)), 0\
|
||
: 0)
|
||
|
||
/* Avoid renaming of stack registers, as doing so in combination with
|
||
scheduling just increases amount of live registers at time and in
|
||
the turn amount of fxch instructions needed.
|
||
|
||
??? Maybe Pentium chips benefits from renaming, someone can try... */
|
||
|
||
#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
|
||
((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
|
||
|
||
|
||
/*
|
||
Local variables:
|
||
version-control: t
|
||
End:
|
||
*/
|