209e74eb9b
(Reported by Matthew Jacob) - Fix a couple of __inline__ (changed to __inline). - Check also against DT_DATA_IN phase on parity/crc error. (Merged from Pamela Delaney's changes in the Linux driver) - Fix support for phase mismatch handling from the C code for the C1010 (only useful for testing issue). - Add an asynchonous notification handler for `lost device' (AC_LOST).
1799 lines
45 KiB
C
1799 lines
45 KiB
C
/*
|
|
* Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
|
|
* PCI-SCSI controllers.
|
|
*
|
|
* Copyright (C) 1999-2000 Gerard Roudier <groudier@club-internet.fr>
|
|
*
|
|
* This driver also supports the following Symbios/LSI PCI-SCSI chips:
|
|
* 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
|
|
* 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode.
|
|
*
|
|
*
|
|
* This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
|
|
* Copyright (C) 1998-1999 Gerard Roudier
|
|
*
|
|
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
|
|
* a port of the FreeBSD ncr driver to Linux-1.2.13.
|
|
*
|
|
* The original ncr driver has been written for 386bsd and FreeBSD by
|
|
* Wolfgang Stanglmeier <wolf@cologne.de>
|
|
* Stefan Esser <se@mi.Uni-Koeln.de>
|
|
* Copyright (C) 1994 Wolfgang Stanglmeier
|
|
*
|
|
* The initialisation code, and part of the code that addresses
|
|
* FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
|
|
* written by Justin T. Gibbs.
|
|
*
|
|
* Other major contributions:
|
|
*
|
|
* NVRAM detection and reading.
|
|
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
|
|
*
|
|
*-----------------------------------------------------------------------------
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* $FreeBSD$ */
|
|
|
|
/*
|
|
* Scripts for SYMBIOS-Processor
|
|
*
|
|
* We have to know the offsets of all labels before we reach
|
|
* them (for forward jumps). Therefore we declare a struct
|
|
* here. If you make changes inside the script,
|
|
*
|
|
* DONT FORGET TO CHANGE THE LENGTHS HERE!
|
|
*/
|
|
|
|
/*
|
|
* Script fragments which are loaded into the on-chip RAM
|
|
* of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
|
|
* Must not exceed 4K bytes.
|
|
*/
|
|
struct SYM_FWA_SCR {
|
|
u32 start [ 11];
|
|
u32 getjob_begin [ 4];
|
|
u32 _sms_a10 [ 5];
|
|
u32 getjob_end [ 4];
|
|
u32 _sms_a20 [ 4];
|
|
u32 select [ 8];
|
|
u32 _sms_a30 [ 8];
|
|
u32 wf_sel_done [ 2];
|
|
u32 send_ident [ 2];
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 select2 [ 8];
|
|
#else
|
|
u32 select2 [ 2];
|
|
#endif
|
|
u32 command [ 2];
|
|
u32 dispatch [ 28];
|
|
u32 sel_no_cmd [ 10];
|
|
u32 init [ 6];
|
|
u32 clrack [ 4];
|
|
u32 disp_status [ 4];
|
|
u32 datai_done [ 26];
|
|
u32 datao_done [ 12];
|
|
u32 datai_phase [ 2];
|
|
u32 datao_phase [ 2];
|
|
u32 msg_in [ 2];
|
|
u32 msg_in2 [ 10];
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 status [ 14];
|
|
#else
|
|
u32 status [ 10];
|
|
#endif
|
|
u32 complete [ 9];
|
|
u32 complete2 [ 8];
|
|
u32 _sms_a40 [ 12];
|
|
u32 complete_error [ 5];
|
|
u32 done [ 5];
|
|
u32 _sms_a50 [ 5];
|
|
u32 _sms_a60 [ 2];
|
|
u32 done_end [ 4];
|
|
u32 save_dp [ 9];
|
|
u32 restore_dp [ 5];
|
|
u32 disconnect [ 20];
|
|
u32 disconnect2 [ 5];
|
|
u32 _sms_a65 [ 3];
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 idle [ 4];
|
|
#else
|
|
u32 idle [ 2];
|
|
#endif
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 ungetjob [ 7];
|
|
#else
|
|
u32 ungetjob [ 5];
|
|
#endif
|
|
u32 reselect [ 4];
|
|
u32 reselected [ 19];
|
|
u32 _sms_a70 [ 6];
|
|
u32 _sms_a80 [ 4];
|
|
u32 reselected1 [ 25];
|
|
u32 _sms_a90 [ 4];
|
|
u32 resel_lun0 [ 7];
|
|
u32 _sms_a100 [ 4];
|
|
u32 resel_tag [ 8];
|
|
#if SYM_CONF_MAX_TASK*4 > 512
|
|
u32 _sms_a110 [ 23];
|
|
#elif SYM_CONF_MAX_TASK*4 > 256
|
|
u32 _sms_a110 [ 17];
|
|
#else
|
|
u32 _sms_a110 [ 13];
|
|
#endif
|
|
u32 _sms_a120 [ 2];
|
|
u32 resel_go [ 4];
|
|
u32 _sms_a130 [ 7];
|
|
u32 resel_dsa [ 2];
|
|
u32 resel_dsa1 [ 4];
|
|
u32 _sms_a140 [ 10];
|
|
u32 resel_no_tag [ 4];
|
|
u32 _sms_a145 [ 7];
|
|
u32 data_in [SYM_CONF_MAX_SG * 2];
|
|
u32 data_in2 [ 4];
|
|
u32 data_out [SYM_CONF_MAX_SG * 2];
|
|
u32 data_out2 [ 4];
|
|
u32 pm0_data [ 12];
|
|
u32 pm0_data_out [ 6];
|
|
u32 pm0_data_end [ 7];
|
|
u32 pm_data_end [ 4];
|
|
u32 _sms_a150 [ 4];
|
|
u32 pm1_data [ 12];
|
|
u32 pm1_data_out [ 6];
|
|
u32 pm1_data_end [ 9];
|
|
};
|
|
|
|
/*
|
|
* Script fragments which stay in main memory for all chips
|
|
* except for chips that support 8K on-chip RAM.
|
|
*/
|
|
struct SYM_FWB_SCR {
|
|
u32 no_data [ 2];
|
|
u32 sel_for_abort [ 18];
|
|
u32 sel_for_abort_1 [ 2];
|
|
u32 msg_in_etc [ 12];
|
|
u32 msg_received [ 5];
|
|
u32 msg_weird_seen [ 5];
|
|
u32 msg_extended [ 17];
|
|
u32 _sms_b10 [ 4];
|
|
u32 msg_bad [ 6];
|
|
u32 msg_weird [ 4];
|
|
u32 msg_weird1 [ 8];
|
|
u32 wdtr_resp [ 6];
|
|
u32 send_wdtr [ 4];
|
|
u32 sdtr_resp [ 6];
|
|
u32 send_sdtr [ 4];
|
|
u32 ppr_resp [ 6];
|
|
u32 send_ppr [ 4];
|
|
u32 nego_bad_phase [ 4];
|
|
u32 msg_out [ 4];
|
|
u32 msg_out_done [ 4];
|
|
u32 data_ovrun [ 3];
|
|
u32 data_ovrun1 [ 22];
|
|
u32 data_ovrun2 [ 8];
|
|
u32 abort_resel [ 16];
|
|
u32 resend_ident [ 4];
|
|
u32 ident_break [ 4];
|
|
u32 ident_break_atn [ 4];
|
|
u32 sdata_in [ 6];
|
|
u32 resel_bad_lun [ 4];
|
|
u32 bad_i_t_l [ 4];
|
|
u32 bad_i_t_l_q [ 4];
|
|
u32 bad_status [ 7];
|
|
u32 wsr_ma_helper [ 4];
|
|
|
|
/* Data area */
|
|
u32 zero [ 1];
|
|
u32 scratch [ 1];
|
|
u32 scratch1 [ 1];
|
|
u32 prev_done [ 1];
|
|
u32 done_pos [ 1];
|
|
u32 nextjob [ 1];
|
|
u32 startpos [ 1];
|
|
u32 targtbl [ 1];
|
|
/* End of data area */
|
|
|
|
u32 snooptest [ 9];
|
|
u32 snoopend [ 2];
|
|
};
|
|
|
|
static struct SYM_FWA_SCR SYM_FWA_SCR = {
|
|
/*--------------------------< START >----------------------------*/ {
|
|
/*
|
|
* Switch the LED on.
|
|
* Will be patched with a NO_OP if LED
|
|
* not needed or not desired.
|
|
*/
|
|
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
|
|
0,
|
|
/*
|
|
* Clear SIGP.
|
|
*/
|
|
SCR_FROM_REG (ctest2),
|
|
0,
|
|
/*
|
|
* Stop here if the C code wants to perform
|
|
* some error recovery procedure manually.
|
|
* (Indicate this by setting SEM in ISTAT)
|
|
*/
|
|
SCR_FROM_REG (istat),
|
|
0,
|
|
/*
|
|
* Report to the C code the next position in
|
|
* the start queue the SCRIPTS will schedule.
|
|
* The C code must not change SCRATCHA.
|
|
*/
|
|
SCR_COPY (4),
|
|
PADDR_B (startpos),
|
|
RADDR_1 (scratcha),
|
|
SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
|
|
SIR_SCRIPT_STOPPED,
|
|
/*
|
|
* Start the next job.
|
|
*
|
|
* @DSA = start point for this job.
|
|
* SCRATCHA = address of this job in the start queue.
|
|
*
|
|
* We will restore startpos with SCRATCHA if we fails the
|
|
* arbitration or if it is the idle job.
|
|
*
|
|
* The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
|
|
* is a critical path. If it is partially executed, it then
|
|
* may happen that the job address is not yet in the DSA
|
|
* and the the next queue position points to the next JOB.
|
|
*/
|
|
}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
|
|
/*
|
|
* Copy to a fixed location both the next STARTPOS
|
|
* and the current JOB address, using self modifying
|
|
* SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (scratcha),
|
|
PADDR_A (_sms_a10),
|
|
SCR_COPY (8),
|
|
}/*-------------------------< _SMS_A10 >-------------------------*/,{
|
|
0,
|
|
PADDR_B (nextjob),
|
|
/*
|
|
* Move the start address to TEMP using self-
|
|
* modifying SCRIPTS and jump indirectly to
|
|
* that address.
|
|
*/
|
|
SCR_COPY (4),
|
|
PADDR_B (nextjob),
|
|
RADDR_1 (dsa),
|
|
}/*-------------------------< GETJOB_END >-----------------------*/,{
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a20),
|
|
SCR_COPY (4),
|
|
}/*-------------------------< _SMS_A20 >-------------------------*/,{
|
|
0,
|
|
RADDR_1 (temp),
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< SELECT >---------------------------*/,{
|
|
/*
|
|
* DSA contains the address of a scheduled
|
|
* data structure.
|
|
*
|
|
* SCRATCHA contains the address of the start queue
|
|
* entry which points to the next job.
|
|
*
|
|
* Set Initiator mode.
|
|
*
|
|
* (Target mode is left as an exercise for the reader)
|
|
*/
|
|
SCR_CLR (SCR_TRG),
|
|
0,
|
|
/*
|
|
* And try to select this target.
|
|
*/
|
|
SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
|
|
PADDR_A (ungetjob),
|
|
/*
|
|
* Now there are 4 possibilities:
|
|
*
|
|
* (1) The chip looses arbitration.
|
|
* This is ok, because it will try again,
|
|
* when the bus becomes idle.
|
|
* (But beware of the timeout function!)
|
|
*
|
|
* (2) The chip is reselected.
|
|
* Then the script processor takes the jump
|
|
* to the RESELECT label.
|
|
*
|
|
* (3) The chip wins arbitration.
|
|
* Then it will execute SCRIPTS instruction until
|
|
* the next instruction that checks SCSI phase.
|
|
* Then will stop and wait for selection to be
|
|
* complete or selection time-out to occur.
|
|
*
|
|
* After having won arbitration, the SCRIPTS
|
|
* processor is able to execute instructions while
|
|
* the SCSI core is performing SCSI selection.
|
|
*/
|
|
|
|
/*
|
|
* Copy the CCB header to a fixed location
|
|
* in the HCB using self-modifying SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a30),
|
|
SCR_COPY (sizeof(struct sym_ccbh)),
|
|
}/*-------------------------< _SMS_A30 >-------------------------*/,{
|
|
0,
|
|
HADDR_1 (ccb_head),
|
|
/*
|
|
* Load the savep (saved data pointer) into
|
|
* the actual data pointer.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (ccb_head.savep),
|
|
RADDR_1 (temp),
|
|
/*
|
|
* Initialize the status register
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (ccb_head.status),
|
|
RADDR_1 (scr0),
|
|
}/*-------------------------< WF_SEL_DONE >----------------------*/,{
|
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
SIR_SEL_ATN_NO_MSG_OUT,
|
|
}/*-------------------------< SEND_IDENT >-----------------------*/,{
|
|
/*
|
|
* Selection complete.
|
|
* Send the IDENTIFY and possibly the TAG message
|
|
* and negotiation message if present.
|
|
*/
|
|
SCR_MOVE_TBL ^ SCR_MSG_OUT,
|
|
offsetof (struct sym_dsb, smsg),
|
|
}/*-------------------------< SELECT2 >--------------------------*/,{
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* Set IMMEDIATE ARBITRATION if we have been given
|
|
* a hint to do so. (Some job to do after this one).
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
|
|
8,
|
|
SCR_REG_REG (scntl1, SCR_OR, IARB),
|
|
0,
|
|
#endif
|
|
/*
|
|
* Anticipate the COMMAND phase.
|
|
* This is the PHASE we expect at this point.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
|
|
PADDR_A (sel_no_cmd),
|
|
}/*-------------------------< COMMAND >--------------------------*/,{
|
|
/*
|
|
* ... and send the command
|
|
*/
|
|
SCR_MOVE_TBL ^ SCR_COMMAND,
|
|
offsetof (struct sym_dsb, cmd),
|
|
}/*-------------------------< DISPATCH >-------------------------*/,{
|
|
/*
|
|
* MSG_IN is the only phase that shall be
|
|
* entered at least once for each (re)selection.
|
|
* So we test it first.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (msg_in),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
|
|
PADDR_A (datao_phase),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
|
|
PADDR_A (datai_phase),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
|
|
PADDR_A (status),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
|
|
PADDR_A (command),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
|
|
PADDR_B (msg_out),
|
|
/*
|
|
* Discard as many illegal phases as
|
|
* required and tell the C code about.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
|
|
16,
|
|
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
|
|
-16,
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
|
|
16,
|
|
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
|
|
-16,
|
|
SCR_INT,
|
|
SIR_BAD_PHASE,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
|
|
/*
|
|
* The target does not switch to command
|
|
* phase after IDENTIFY has been sent.
|
|
*
|
|
* If it stays in MSG OUT phase send it
|
|
* the IDENTIFY again.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (resend_ident),
|
|
/*
|
|
* If target does not switch to MSG IN phase
|
|
* and we sent a negotiation, assert the
|
|
* failure immediately.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (dispatch),
|
|
SCR_FROM_REG (HS_REG),
|
|
0,
|
|
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
|
|
SIR_NEGO_FAILED,
|
|
/*
|
|
* Jump to dispatcher.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< INIT >-----------------------------*/,{
|
|
/*
|
|
* Wait for the SCSI RESET signal to be
|
|
* inactive before restarting operations,
|
|
* since the chip may hang on SEL_ATN
|
|
* if SCSI RESET is active.
|
|
*/
|
|
SCR_FROM_REG (sstat0),
|
|
0,
|
|
SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
|
|
-16,
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< CLRACK >---------------------------*/,{
|
|
/*
|
|
* Terminate possible pending message phase.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DISP_STATUS >----------------------*/,{
|
|
/*
|
|
* Anticipate STATUS phase.
|
|
*
|
|
* Does spare 3 SCRIPTS instructions when we have
|
|
* completed the INPUT of the data.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
|
|
PADDR_A (status),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DATAI_DONE >-----------------------*/,{
|
|
/*
|
|
* If the device still wants to send us data,
|
|
* we must count the extra bytes.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* If the SWIDE is not full, jump to dispatcher.
|
|
* We anticipate a STATUS phase.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
|
|
PADDR_A (disp_status),
|
|
/*
|
|
* The SWIDE is full.
|
|
* Clear this condition.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_OR, WSR),
|
|
0,
|
|
/*
|
|
* We are expecting an IGNORE RESIDUE message
|
|
* from the device, otherwise we are in data
|
|
* overrun condition. Check against MSG_IN phase.
|
|
*/
|
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
SIR_SWIDE_OVERRUN,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (disp_status),
|
|
/*
|
|
* We are in MSG_IN phase,
|
|
* Read the first byte of the message.
|
|
* If it is not an IGNORE RESIDUE message,
|
|
* signal overrun and jump to message
|
|
* processing.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[0]),
|
|
SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
|
|
SIR_SWIDE_OVERRUN,
|
|
SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
|
|
PADDR_A (msg_in2),
|
|
/*
|
|
* We got the message we expected.
|
|
* Read the 2nd byte, and jump to dispatcher.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[1]),
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (disp_status),
|
|
}/*-------------------------< DATAO_DONE >-----------------------*/,{
|
|
/*
|
|
* If the device wants us to send more data,
|
|
* we must count the extra bytes.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* If the SODL is not full jump to dispatcher.
|
|
* We anticipate a STATUS phase.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
|
|
PADDR_A (disp_status),
|
|
/*
|
|
* The SODL is full, clear this condition.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_OR, WSS),
|
|
0,
|
|
/*
|
|
* And signal a DATA UNDERRUN condition
|
|
* to the C code.
|
|
*/
|
|
SCR_INT,
|
|
SIR_SODL_UNDERRUN,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DATAI_PHASE >----------------------*/,{
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< DATAO_PHASE >----------------------*/,{
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< MSG_IN >---------------------------*/,{
|
|
/*
|
|
* Get the first byte of the message.
|
|
*
|
|
* The script processor doesn't negate the
|
|
* ACK signal after this transfer.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[0]),
|
|
}/*-------------------------< MSG_IN2 >--------------------------*/,{
|
|
/*
|
|
* Check first against 1 byte messages
|
|
* that we handle from SCRIPTS.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
|
|
PADDR_A (complete),
|
|
SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
|
|
PADDR_A (disconnect),
|
|
SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
|
|
PADDR_A (save_dp),
|
|
SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
|
|
PADDR_A (restore_dp),
|
|
/*
|
|
* We handle all other messages from the
|
|
* C code, so no need to waste on-chip RAM
|
|
* for those ones.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_B (msg_in_etc),
|
|
}/*-------------------------< STATUS >---------------------------*/,{
|
|
/*
|
|
* get the status
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_STATUS,
|
|
HADDR_1 (scratch),
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
|
|
* since we may have to tamper the start queue from
|
|
* the C code.
|
|
*/
|
|
SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
|
|
8,
|
|
SCR_REG_REG (scntl1, SCR_AND, ~IARB),
|
|
0,
|
|
#endif
|
|
/*
|
|
* save status to scsi_status.
|
|
* mark as complete.
|
|
*/
|
|
SCR_TO_REG (SS_REG),
|
|
0,
|
|
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
|
|
0,
|
|
/*
|
|
* Anticipate the MESSAGE PHASE for
|
|
* the TASK COMPLETE message.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (msg_in),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< COMPLETE >-------------------------*/,{
|
|
/*
|
|
* Complete message.
|
|
*
|
|
* Copy the data pointer to LASTP.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (temp),
|
|
HADDR_1 (ccb_head.lastp),
|
|
/*
|
|
* When we terminate the cycle by clearing ACK,
|
|
* the target may disconnect immediately.
|
|
*
|
|
* We don't want to be told of an "unexpected disconnect",
|
|
* so we disable this feature.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
/*
|
|
* Terminate cycle ...
|
|
*/
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
/*
|
|
* ... and wait for the disconnect.
|
|
*/
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
}/*-------------------------< COMPLETE2 >------------------------*/,{
|
|
/*
|
|
* Save host status.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (scr0),
|
|
HADDR_1 (ccb_head.status),
|
|
/*
|
|
* Move back the CCB header using self-modifying
|
|
* SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a40),
|
|
SCR_COPY (sizeof(struct sym_ccbh)),
|
|
HADDR_1 (ccb_head),
|
|
}/*-------------------------< _SMS_A40 >-------------------------*/,{
|
|
0,
|
|
/*
|
|
* Some bridges may reorder DMA writes to memory.
|
|
* We donnot want the CPU to deal with completions
|
|
* without all the posted write having been flushed
|
|
* to memory. This DUMMY READ should flush posted
|
|
* buffers prior to the CPU having to deal with
|
|
* completions.
|
|
*/
|
|
SCR_COPY (4), /* DUMMY READ */
|
|
HADDR_1 (ccb_head.status),
|
|
RADDR_1 (scr0),
|
|
/*
|
|
* If command resulted in not GOOD status,
|
|
* call the C code if needed.
|
|
*/
|
|
SCR_FROM_REG (SS_REG),
|
|
0,
|
|
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
|
|
PADDR_B (bad_status),
|
|
/*
|
|
* If we performed an auto-sense, call
|
|
* the C code to synchronyze task aborts
|
|
* with UNIT ATTENTION conditions.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
SCR_JUMP ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
|
|
PADDR_A (done),
|
|
}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
|
|
SCR_COPY (4),
|
|
PADDR_B (startpos),
|
|
RADDR_1 (scratcha),
|
|
SCR_INT,
|
|
SIR_COMPLETE_ERROR,
|
|
}/*-------------------------< DONE >-----------------------------*/,{
|
|
/*
|
|
* Copy the DSA to the DONE QUEUE and
|
|
* signal completion to the host.
|
|
* If we are interrupted between DONE
|
|
* and DONE_END, we must reset, otherwise
|
|
* the completed CCB may be lost.
|
|
*/
|
|
SCR_COPY (4),
|
|
PADDR_B (done_pos),
|
|
PADDR_A (_sms_a50),
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
}/*-------------------------< _SMS_A50 >-------------------------*/,{
|
|
0,
|
|
SCR_COPY (4),
|
|
PADDR_B (done_pos),
|
|
PADDR_A (_sms_a60),
|
|
/*
|
|
* The instruction below reads the DONE QUEUE next
|
|
* free position from memory.
|
|
* In addition it ensures that all PCI posted writes
|
|
* are flushed and so the DSA value of the done
|
|
* CCB is visible by the CPU before INTFLY is raised.
|
|
*/
|
|
SCR_COPY (8),
|
|
}/*-------------------------< _SMS_A60 >-------------------------*/,{
|
|
0,
|
|
PADDR_B (prev_done),
|
|
}/*-------------------------< DONE_END >-------------------------*/,{
|
|
SCR_INT_FLY,
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< SAVE_DP >--------------------------*/,{
|
|
/*
|
|
* Clear ACK immediately.
|
|
* No need to delay it.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
/*
|
|
* Keep track we received a SAVE DP, so
|
|
* we will switch to the other PM context
|
|
* on the next PM since the DP may point
|
|
* to the current PM context.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
|
|
0,
|
|
/*
|
|
* SAVE_DP message:
|
|
* Copy the data pointer to SAVEP.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (temp),
|
|
HADDR_1 (ccb_head.savep),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< RESTORE_DP >-----------------------*/,{
|
|
/*
|
|
* RESTORE_DP message:
|
|
* Copy SAVEP to actual data pointer.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (ccb_head.savep),
|
|
RADDR_1 (temp),
|
|
SCR_JUMP,
|
|
PADDR_A (clrack),
|
|
}/*-------------------------< DISCONNECT >-----------------------*/,{
|
|
/*
|
|
* DISCONNECTing ...
|
|
*
|
|
* disable the "unexpected disconnect" feature,
|
|
* and remove the ACK signal.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
/*
|
|
* Wait for the disconnect.
|
|
*/
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
/*
|
|
* Status is: DISCONNECTED.
|
|
*/
|
|
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
|
|
0,
|
|
/*
|
|
* Save host status.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (scr0),
|
|
HADDR_1 (ccb_head.status),
|
|
/*
|
|
* If QUIRK_AUTOSAVE is set,
|
|
* do an "save pointer" operation.
|
|
*/
|
|
SCR_FROM_REG (QU_REG),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
|
|
PADDR_A (disconnect2),
|
|
/*
|
|
* like SAVE_DP message:
|
|
* Remember we saved the data pointer.
|
|
* Copy data pointer to SAVEP.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
|
|
0,
|
|
SCR_COPY (4),
|
|
RADDR_1 (temp),
|
|
HADDR_1 (ccb_head.savep),
|
|
}/*-------------------------< DISCONNECT2 >----------------------*/,{
|
|
/*
|
|
* Move back the CCB header using self-modifying
|
|
* SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a65),
|
|
SCR_COPY (sizeof(struct sym_ccbh)),
|
|
HADDR_1 (ccb_head),
|
|
}/*-------------------------< _SMS_A65 >-------------------------*/,{
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< IDLE >-----------------------------*/,{
|
|
/*
|
|
* Nothing to do?
|
|
* Switch the LED off and wait for reselect.
|
|
* Will be patched with a NO_OP if LED
|
|
* not needed or not desired.
|
|
*/
|
|
SCR_REG_REG (gpreg, SCR_OR, 0x01),
|
|
0,
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
SCR_JUMPR,
|
|
8,
|
|
#endif
|
|
}/*-------------------------< UNGETJOB >-------------------------*/,{
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* Set IMMEDIATE ARBITRATION, for the next time.
|
|
* This will give us better chance to win arbitration
|
|
* for the job we just wanted to do.
|
|
*/
|
|
SCR_REG_REG (scntl1, SCR_OR, IARB),
|
|
0,
|
|
#endif
|
|
/*
|
|
* We are not able to restart the SCRIPTS if we are
|
|
* interrupted and these instruction haven't been
|
|
* all executed. BTW, this is very unlikely to
|
|
* happen, but we check that from the C code.
|
|
*/
|
|
SCR_LOAD_REG (dsa, 0xff),
|
|
0,
|
|
SCR_COPY (4),
|
|
RADDR_1 (scratcha),
|
|
PADDR_B (startpos),
|
|
}/*-------------------------< RESELECT >-------------------------*/,{
|
|
/*
|
|
* Make sure we are in initiator mode.
|
|
*/
|
|
SCR_CLR (SCR_TRG),
|
|
0,
|
|
/*
|
|
* Sleep waiting for a reselection.
|
|
*/
|
|
SCR_WAIT_RESEL,
|
|
PADDR_A(start),
|
|
}/*-------------------------< RESELECTED >-----------------------*/,{
|
|
/*
|
|
* Switch the LED on.
|
|
* Will be patched with a NO_OP if LED
|
|
* not needed or not desired.
|
|
*/
|
|
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
|
|
0,
|
|
/*
|
|
* load the target id into the sdid
|
|
*/
|
|
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
|
|
0,
|
|
SCR_TO_REG (sdid),
|
|
0,
|
|
/*
|
|
* Load the target control block address
|
|
*/
|
|
SCR_COPY (4),
|
|
PADDR_B (targtbl),
|
|
RADDR_1 (dsa),
|
|
SCR_SFBR_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_AND, 0x3c),
|
|
0,
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a70),
|
|
SCR_COPY (4),
|
|
}/*-------------------------< _SMS_A70 >-------------------------*/,{
|
|
0,
|
|
RADDR_1 (dsa),
|
|
/*
|
|
* Copy the TCB header to a fixed place in
|
|
* the HCB.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a80),
|
|
SCR_COPY (sizeof(struct sym_tcbh)),
|
|
}/*-------------------------< _SMS_A80 >-------------------------*/,{
|
|
0,
|
|
HADDR_1 (tcb_head),
|
|
/*
|
|
* We expect MESSAGE IN phase.
|
|
* If not, get help from the C code.
|
|
*/
|
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
SIR_RESEL_NO_MSG_IN,
|
|
}/*-------------------------< RESELECTED1 >----------------------*/,{
|
|
/*
|
|
* Load the synchronous transfer registers.
|
|
*/
|
|
SCR_COPY (1),
|
|
HADDR_1 (tcb_head.wval),
|
|
RADDR_1 (scntl3),
|
|
SCR_COPY (1),
|
|
HADDR_1 (tcb_head.sval),
|
|
RADDR_1 (sxfer),
|
|
/*
|
|
* Get the IDENTIFY message.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin),
|
|
/*
|
|
* If IDENTIFY LUN #0, use a faster path
|
|
* to find the LCB structure.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
|
|
PADDR_A (resel_lun0),
|
|
/*
|
|
* If message isn't an IDENTIFY,
|
|
* tell the C code about.
|
|
*/
|
|
SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
|
|
SIR_RESEL_NO_IDENTIFY,
|
|
/*
|
|
* It is an IDENTIFY message,
|
|
* Load the LUN control block address.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (tcb_head.luntbl_sa),
|
|
RADDR_1 (dsa),
|
|
SCR_SFBR_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_AND, 0xfc),
|
|
0,
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a90),
|
|
SCR_COPY (4),
|
|
}/*-------------------------< _SMS_A90 >-------------------------*/,{
|
|
0,
|
|
RADDR_1 (dsa),
|
|
SCR_JUMPR,
|
|
12,
|
|
}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
|
|
/*
|
|
* LUN 0 special case (but usual one :))
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (tcb_head.lun0_sa),
|
|
RADDR_1 (dsa),
|
|
/*
|
|
* Jump indirectly to the reselect action for this LUN.
|
|
* (lcb.head.resel_sa assumed at offset zero of lcb).
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a100),
|
|
SCR_COPY (4),
|
|
}/*-------------------------< _SMS_A100 >------------------------*/,{
|
|
0,
|
|
RADDR_1 (temp),
|
|
SCR_RETURN,
|
|
0,
|
|
/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
|
|
}/*-------------------------< RESEL_TAG >------------------------*/,{
|
|
/*
|
|
* ACK the IDENTIFY previously received.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
/*
|
|
* It shall be a tagged command.
|
|
* Read SIMPLE+TAG.
|
|
* The C code will deal with errors.
|
|
* Agressive optimization, is'nt it? :)
|
|
*/
|
|
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin),
|
|
/*
|
|
* Copy the LCB header to a fixed place in
|
|
* the HCB using self-modifying SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a110),
|
|
SCR_COPY (sizeof(struct sym_lcbh)),
|
|
}/*-------------------------< _SMS_A110 >------------------------*/,{
|
|
0,
|
|
HADDR_1 (lcb_head),
|
|
/*
|
|
* Load the pointer to the tagged task
|
|
* table for this LUN.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (lcb_head.itlq_tbl_sa),
|
|
RADDR_1 (dsa),
|
|
/*
|
|
* The SIDL still contains the TAG value.
|
|
* Agressive optimization, isn't it? :):)
|
|
*/
|
|
SCR_REG_SFBR (sidl, SCR_SHL, 0),
|
|
0,
|
|
#if SYM_CONF_MAX_TASK*4 > 512
|
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
|
8,
|
|
SCR_REG_REG (dsa1, SCR_OR, 2),
|
|
0,
|
|
SCR_REG_REG (sfbr, SCR_SHL, 0),
|
|
0,
|
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
|
8,
|
|
SCR_REG_REG (dsa1, SCR_OR, 1),
|
|
0,
|
|
#elif SYM_CONF_MAX_TASK*4 > 256
|
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
|
8,
|
|
SCR_REG_REG (dsa1, SCR_OR, 1),
|
|
0,
|
|
#endif
|
|
/*
|
|
* Retrieve the DSA of this task.
|
|
* JUMP indirectly to the restart point of the CCB.
|
|
*/
|
|
SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
|
|
0,
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a120),
|
|
SCR_COPY (4),
|
|
}/*-------------------------< _SMS_A120 >------------------------*/,{
|
|
0,
|
|
RADDR_1 (dsa),
|
|
}/*-------------------------< RESEL_GO >-------------------------*/,{
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a130),
|
|
/*
|
|
* Move 'ccb.phys.head.go' action to
|
|
* scratch/scratch1. So scratch1 will
|
|
* contain the 'restart' field of the
|
|
* 'go' structure.
|
|
*/
|
|
SCR_COPY (8),
|
|
}/*-------------------------< _SMS_A130 >------------------------*/,{
|
|
0,
|
|
PADDR_B (scratch),
|
|
SCR_COPY (4),
|
|
PADDR_B (scratch1), /* phys.head.go.restart */
|
|
RADDR_1 (temp),
|
|
SCR_RETURN,
|
|
0,
|
|
/* In normal situations we branch to RESEL_DSA */
|
|
}/*-------------------------< RESEL_DSA >------------------------*/,{
|
|
/*
|
|
* ACK the IDENTIFY or TAG previously received.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
|
|
/*
|
|
* Copy the CCB header to a fixed location
|
|
* in the HCB using self-modifying SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a140),
|
|
SCR_COPY (sizeof(struct sym_ccbh)),
|
|
}/*-------------------------< _SMS_A140 >------------------------*/,{
|
|
0,
|
|
HADDR_1 (ccb_head),
|
|
/*
|
|
* Load the savep (saved data pointer) into
|
|
* the actual data pointer.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (ccb_head.savep),
|
|
RADDR_1 (temp),
|
|
/*
|
|
* Initialize the status register
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (ccb_head.status),
|
|
RADDR_1 (scr0),
|
|
/*
|
|
* Jump to dispatcher.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
|
|
/*
|
|
* Copy the LCB header to a fixed place in
|
|
* the HCB using self-modifying SCRIPTS.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
PADDR_A (_sms_a145),
|
|
SCR_COPY (sizeof(struct sym_lcbh)),
|
|
}/*-------------------------< _SMS_A145 >------------------------*/,{
|
|
0,
|
|
HADDR_1 (lcb_head),
|
|
/*
|
|
* Load the DSA with the unique ITL task.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (lcb_head.itl_task_sa),
|
|
RADDR_1 (dsa),
|
|
SCR_JUMP,
|
|
PADDR_A (resel_go),
|
|
}/*-------------------------< DATA_IN >--------------------------*/,{
|
|
/*
|
|
* Because the size depends on the
|
|
* #define SYM_CONF_MAX_SG parameter,
|
|
* it is filled in at runtime.
|
|
*
|
|
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
|
|
* || SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
* || offsetof (struct sym_dsb, data[ i]),
|
|
* ##==========================================
|
|
*/
|
|
0
|
|
}/*-------------------------< DATA_IN2 >-------------------------*/,{
|
|
SCR_CALL,
|
|
PADDR_A (datai_done),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< DATA_OUT >-------------------------*/,{
|
|
/*
|
|
* Because the size depends on the
|
|
* #define SYM_CONF_MAX_SG parameter,
|
|
* it is filled in at runtime.
|
|
*
|
|
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
|
|
* || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
|
* || offsetof (struct sym_dsb, data[ i]),
|
|
* ##==========================================
|
|
*/
|
|
0
|
|
}/*-------------------------< DATA_OUT2 >------------------------*/,{
|
|
SCR_CALL,
|
|
PADDR_A (datao_done),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< PM0_DATA >-------------------------*/,{
|
|
/*
|
|
* Read our host flags to SFBR, so we will be able
|
|
* to check against the data direction we expect.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
/*
|
|
* Check against actual DATA PHASE.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
|
PADDR_A (pm0_data_out),
|
|
/*
|
|
* Actual phase is DATA IN.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM0 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
|
|
0,
|
|
/*
|
|
* Move the data to memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.pm0.sg),
|
|
SCR_JUMP,
|
|
PADDR_A (pm0_data_end),
|
|
}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
|
|
/*
|
|
* Actual phase is DATA OUT.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM0 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
|
|
0,
|
|
/*
|
|
* Move the data from memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
|
offsetof (struct sym_ccb, phys.pm0.sg),
|
|
}/*-------------------------< PM0_DATA_END >---------------------*/,{
|
|
/*
|
|
* Clear the flag that told we were moving
|
|
* data from the PM0 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
|
|
0,
|
|
/*
|
|
* Return to the previous DATA script which
|
|
* is guaranteed by design (if no bug) to be
|
|
* the main DATA script for this transfer.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
RADDR_1 (scratcha),
|
|
SCR_REG_REG (scratcha, SCR_ADD, offsetof (struct sym_ccb,phys.pm0.ret)),
|
|
0,
|
|
}/*-------------------------< PM_DATA_END >----------------------*/,{
|
|
SCR_COPY (4),
|
|
RADDR_1 (scratcha),
|
|
PADDR_A (_sms_a150),
|
|
SCR_COPY (4),
|
|
}/*-------------------------< _SMS_A150 >------------------------*/,{
|
|
0,
|
|
RADDR_1 (temp),
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< PM1_DATA >-------------------------*/,{
|
|
/*
|
|
* Read our host flags to SFBR, so we will be able
|
|
* to check against the data direction we expect.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
/*
|
|
* Check against actual DATA PHASE.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
|
PADDR_A (pm1_data_out),
|
|
/*
|
|
* Actual phase is DATA IN.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM1 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
|
|
0,
|
|
/*
|
|
* Move the data to memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.pm1.sg),
|
|
SCR_JUMP,
|
|
PADDR_A (pm1_data_end),
|
|
}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
|
|
/*
|
|
* Actual phase is DATA OUT.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM1 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
|
|
0,
|
|
/*
|
|
* Move the data from memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
|
offsetof (struct sym_ccb, phys.pm1.sg),
|
|
}/*-------------------------< PM1_DATA_END >---------------------*/,{
|
|
/*
|
|
* Clear the flag that told we were moving
|
|
* data from the PM1 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
|
|
0,
|
|
/*
|
|
* Return to the previous DATA script which
|
|
* is guaranteed by design (if no bug) to be
|
|
* the main DATA script for this transfer.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (dsa),
|
|
RADDR_1 (scratcha),
|
|
SCR_REG_REG (scratcha, SCR_ADD, offsetof (struct sym_ccb,phys.pm1.ret)),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (pm_data_end),
|
|
}/*--------------------------<>----------------------------------*/
|
|
};
|
|
|
|
static struct SYM_FWB_SCR SYM_FWB_SCR = {
|
|
/*-------------------------< NO_DATA >--------------------------*/ {
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
|
|
/*
|
|
* We are jumped here by the C code, if we have
|
|
* some target to reset or some disconnected
|
|
* job to abort. Since error recovery is a serious
|
|
* busyness, we will really reset the SCSI BUS, if
|
|
* case of a SCSI interrupt occuring in this path.
|
|
*/
|
|
|
|
/*
|
|
* Set initiator mode.
|
|
*/
|
|
SCR_CLR (SCR_TRG),
|
|
0,
|
|
/*
|
|
* And try to select this target.
|
|
*/
|
|
SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
|
|
PADDR_A (reselect),
|
|
/*
|
|
* Wait for the selection to complete or
|
|
* the selection to time out.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
-8,
|
|
/*
|
|
* Call the C code.
|
|
*/
|
|
SCR_INT,
|
|
SIR_TARGET_SELECTED,
|
|
/*
|
|
* The C code should let us continue here.
|
|
* Send the 'kiss of death' message.
|
|
* We expect an immediate disconnect once
|
|
* the target has eaten the message.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
SCR_MOVE_TBL ^ SCR_MSG_OUT,
|
|
offsetof (struct sym_hcb, abrt_tbl),
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
/*
|
|
* Tell the C code that we are done.
|
|
*/
|
|
SCR_INT,
|
|
SIR_ABORT_SENT,
|
|
}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
|
|
/*
|
|
* Jump at scheduler.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
|
|
/*
|
|
* If it is an EXTENDED (variable size message)
|
|
* Handle it.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
|
|
PADDR_B (msg_extended),
|
|
/*
|
|
* Let the C code handle any other
|
|
* 1 byte message.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
|
|
PADDR_B (msg_received),
|
|
SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
|
|
PADDR_B (msg_received),
|
|
/*
|
|
* We donnot handle 2 bytes messages from SCRIPTS.
|
|
* So, let the C code deal with these ones too.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
|
|
PADDR_B (msg_weird_seen),
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[1]),
|
|
}/*-------------------------< MSG_RECEIVED >---------------------*/,{
|
|
SCR_COPY (4), /* DUMMY READ */
|
|
HADDR_1 (cache),
|
|
RADDR_1 (scratcha),
|
|
SCR_INT,
|
|
SIR_MSG_RECEIVED,
|
|
}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
|
|
SCR_COPY (4), /* DUMMY READ */
|
|
HADDR_1 (cache),
|
|
RADDR_1 (scratcha),
|
|
SCR_INT,
|
|
SIR_MSG_WEIRD,
|
|
}/*-------------------------< MSG_EXTENDED >---------------------*/,{
|
|
/*
|
|
* Clear ACK and get the next byte
|
|
* assumed to be the message length.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[1]),
|
|
/*
|
|
* Try to catch some unlikely situations as 0 length
|
|
* or too large the length.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (DATA (0)),
|
|
PADDR_B (msg_weird_seen),
|
|
SCR_TO_REG (scratcha),
|
|
0,
|
|
SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
|
|
0,
|
|
SCR_JUMP ^ IFTRUE (CARRYSET),
|
|
PADDR_B (msg_weird_seen),
|
|
/*
|
|
* We donnot handle extended messages from SCRIPTS.
|
|
* Read the amount of data correponding to the
|
|
* message length and call the C code.
|
|
*/
|
|
SCR_COPY (1),
|
|
RADDR_1 (scratcha),
|
|
PADDR_B (_sms_b10),
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
}/*-------------------------< _SMS_B10 >-------------------------*/,{
|
|
SCR_MOVE_ABS (0) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[2]),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_received),
|
|
}/*-------------------------< MSG_BAD >--------------------------*/,{
|
|
/*
|
|
* unimplemented message - reject it.
|
|
*/
|
|
SCR_INT,
|
|
SIR_REJECT_TO_SEND,
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (clrack),
|
|
}/*-------------------------< MSG_WEIRD >------------------------*/,{
|
|
/*
|
|
* weird message received
|
|
* ignore all MSG IN phases and reject it.
|
|
*/
|
|
SCR_INT,
|
|
SIR_REJECT_TO_SEND,
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (dispatch),
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_weird1),
|
|
}/*-------------------------< WDTR_RESP >------------------------*/,{
|
|
/*
|
|
* let the target fetch our answer.
|
|
*/
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (nego_bad_phase),
|
|
}/*-------------------------< SEND_WDTR >------------------------*/,{
|
|
/*
|
|
* Send the M_X_WIDE_REQ
|
|
*/
|
|
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_out_done),
|
|
}/*-------------------------< SDTR_RESP >------------------------*/,{
|
|
/*
|
|
* let the target fetch our answer.
|
|
*/
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (nego_bad_phase),
|
|
}/*-------------------------< SEND_SDTR >------------------------*/,{
|
|
/*
|
|
* Send the M_X_SYNC_REQ
|
|
*/
|
|
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_out_done),
|
|
}/*-------------------------< PPR_RESP >-------------------------*/,{
|
|
/*
|
|
* let the target fetch our answer.
|
|
*/
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (nego_bad_phase),
|
|
}/*-------------------------< SEND_PPR >-------------------------*/,{
|
|
/*
|
|
* Send the M_X_PPR_REQ
|
|
*/
|
|
SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_out_done),
|
|
}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
|
|
SCR_INT,
|
|
SIR_NEGO_PROTO,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< MSG_OUT >--------------------------*/,{
|
|
/*
|
|
* The target requests a message.
|
|
* We donnot send messages that may
|
|
* require the device to go to bus free.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
/*
|
|
* ... wait for the next phase
|
|
* if it's a message out, send it again, ...
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (msg_out),
|
|
}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
|
|
/*
|
|
* Let the C code be aware of the
|
|
* sent message and clear the message.
|
|
*/
|
|
SCR_INT,
|
|
SIR_MSG_OUT_DONE,
|
|
/*
|
|
* ... and process the next phase
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DATA_OVRUN >-----------------------*/,{
|
|
/*
|
|
* Zero scratcha that will count the
|
|
* extras bytes.
|
|
*/
|
|
SCR_COPY (4),
|
|
PADDR_B (zero),
|
|
RADDR_1 (scratcha),
|
|
}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
|
|
/*
|
|
* The target may want to transfer too much data.
|
|
*
|
|
* If phase is DATA OUT write 1 byte and count it.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
|
|
16,
|
|
SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun2),
|
|
/*
|
|
* If WSR is set, clear this condition, and
|
|
* count this byte.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
|
|
16,
|
|
SCR_REG_REG (scntl2, SCR_OR, WSR),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun2),
|
|
/*
|
|
* Finally check against DATA IN phase.
|
|
* Signal data overrun to the C code
|
|
* and jump to dispatcher if not so.
|
|
* Read 1 byte otherwise and count it.
|
|
*/
|
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
|
|
16,
|
|
SCR_INT,
|
|
SIR_DATA_OVERRUN,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
|
|
HADDR_1 (scratch),
|
|
}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
|
|
/*
|
|
* Count this byte.
|
|
* This will allow to return a negative
|
|
* residual to user.
|
|
*/
|
|
SCR_REG_REG (scratcha, SCR_ADD, 0x01),
|
|
0,
|
|
SCR_REG_REG (scratcha1, SCR_ADDC, 0),
|
|
0,
|
|
SCR_REG_REG (scratcha2, SCR_ADDC, 0),
|
|
0,
|
|
/*
|
|
* .. and repeat as required.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun1),
|
|
}/*-------------------------< ABORT_RESEL >----------------------*/,{
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
/*
|
|
* send the abort/abortag/reset message
|
|
* we expect an immediate disconnect
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
SCR_INT,
|
|
SIR_RESEL_ABORTED,
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< RESEND_IDENT >---------------------*/,{
|
|
/*
|
|
* The target stays in MSG OUT phase after having acked
|
|
* Identify [+ Tag [+ Extended message ]]. Targets shall
|
|
* behave this way on parity error.
|
|
* We must send it again all the messages.
|
|
*/
|
|
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
|
|
0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
|
|
SCR_JUMP,
|
|
PADDR_A (send_ident),
|
|
}/*-------------------------< IDENT_BREAK >----------------------*/,{
|
|
SCR_CLR (SCR_ATN),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (select2),
|
|
}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (select2),
|
|
}/*-------------------------< SDATA_IN >-------------------------*/,{
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_dsb, sense),
|
|
SCR_CALL,
|
|
PADDR_A (datai_done),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
|
|
/*
|
|
* Message is an IDENTIFY, but lun is unknown.
|
|
* Signal problem to C code for logging the event.
|
|
* Send a M_ABORT to clear all pending tasks.
|
|
*/
|
|
SCR_INT,
|
|
SIR_RESEL_BAD_LUN,
|
|
SCR_JUMP,
|
|
PADDR_B (abort_resel),
|
|
}/*-------------------------< BAD_I_T_L >------------------------*/,{
|
|
/*
|
|
* We donnot have a task for that I_T_L.
|
|
* Signal problem to C code for logging the event.
|
|
* Send a M_ABORT message.
|
|
*/
|
|
SCR_INT,
|
|
SIR_RESEL_BAD_I_T_L,
|
|
SCR_JUMP,
|
|
PADDR_B (abort_resel),
|
|
}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
|
|
/*
|
|
* We donnot have a task that matches the tag.
|
|
* Signal problem to C code for logging the event.
|
|
* Send a M_ABORTTAG message.
|
|
*/
|
|
SCR_INT,
|
|
SIR_RESEL_BAD_I_T_L_Q,
|
|
SCR_JUMP,
|
|
PADDR_B (abort_resel),
|
|
}/*-------------------------< BAD_STATUS >-----------------------*/,{
|
|
/*
|
|
* Anything different from INTERMEDIATE
|
|
* CONDITION MET should be a bad SCSI status,
|
|
* given that GOOD status has already been tested.
|
|
* Call the C code.
|
|
*/
|
|
SCR_COPY (4),
|
|
PADDR_B (startpos),
|
|
RADDR_1 (scratcha),
|
|
SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
|
|
SIR_BAD_SCSI_STATUS,
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
|
|
/*
|
|
* Helper for the C code when WSR bit is set.
|
|
* Perform the move of the residual byte.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.wresid),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< ZERO >-----------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< SCRATCH >--------------------------*/,{
|
|
SCR_DATA_ZERO, /* MUST BE BEFORE SCRATCH1 */
|
|
}/*-------------------------< SCRATCH1 >-------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< PREV_DONE >------------------------*/,{
|
|
SCR_DATA_ZERO, /* MUST BE BEFORE DONE_POS ! */
|
|
}/*-------------------------< DONE_POS >-------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< NEXTJOB >--------------------------*/,{
|
|
SCR_DATA_ZERO, /* MUST BE BEFORE STARTPOS ! */
|
|
}/*-------------------------< STARTPOS >-------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< TARGTBL >--------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
|
|
}/*-------------------------< SNOOPTEST >------------------------*/,{
|
|
/*
|
|
* Read the variable.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (cache),
|
|
RADDR_1 (scratcha),
|
|
/*
|
|
* Write the variable.
|
|
*/
|
|
SCR_COPY (4),
|
|
RADDR_1 (temp),
|
|
HADDR_1 (cache),
|
|
/*
|
|
* Read back the variable.
|
|
*/
|
|
SCR_COPY (4),
|
|
HADDR_1 (cache),
|
|
RADDR_1 (temp),
|
|
}/*-------------------------< SNOOPEND >-------------------------*/,{
|
|
/*
|
|
* And stop.
|
|
*/
|
|
SCR_INT,
|
|
99,
|
|
}/*--------------------------<>----------------------------------*/
|
|
};
|