freebsd-skq/sys/dev/bktr/bktr_tuner.c
Julian Elischer 2f4829e6cb Add code to do better auto detection of tuner types etc.
PR:		kern/75831
Submitted by:	Branko Lankester <branko@euro.net>
MFC after:	1 week
2005-01-23 07:13:09 +00:00

1418 lines
38 KiB
C

/*-
* 1. Redistributions of source code must retain the
* Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Amancio Hasty and
* Roger Hardiman
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* This is part of the Driver for Video Capture Cards (Frame grabbers)
* and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
* chipset.
* Copyright Roger Hardiman and Amancio Hasty.
*
* bktr_tuner : This deals with controlling the tuner fitted to TV cards.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#ifdef __NetBSD__
#include <sys/proc.h>
#endif
#ifdef __FreeBSD__
#if (__FreeBSD_version < 500000)
#include <machine/clock.h> /* for DELAY */
#include <pci/pcivar.h>
#else
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/selinfo.h>
#include <dev/pci/pcivar.h>
#endif
#include <machine/bus_memio.h> /* for bus space */
#include <machine/bus.h>
#include <sys/bus.h>
#endif
#ifdef __NetBSD__
#include <dev/ic/bt8xx.h> /* NetBSD .h file location */
#include <dev/pci/bktr/bktr_reg.h>
#include <dev/pci/bktr/bktr_tuner.h>
#include <dev/pci/bktr/bktr_card.h>
#include <dev/pci/bktr/bktr_core.h>
#else
#include <dev/bktr/ioctl_meteor.h>
#include <dev/bktr/ioctl_bt848.h> /* extensions to ioctl_meteor.h */
#include <dev/bktr/bktr_reg.h>
#include <dev/bktr/bktr_tuner.h>
#include <dev/bktr/bktr_card.h>
#include <dev/bktr/bktr_core.h>
#endif
#if defined( TUNER_AFC )
#define AFC_DELAY 10000 /* 10 millisend delay */
#define AFC_BITS 0x07
#define AFC_FREQ_MINUS_125 0x00
#define AFC_FREQ_MINUS_62 0x01
#define AFC_FREQ_CENTERED 0x02
#define AFC_FREQ_PLUS_62 0x03
#define AFC_FREQ_PLUS_125 0x04
#define AFC_MAX_STEP (5 * FREQFACTOR) /* no more than 5 MHz */
#endif /* TUNER_AFC */
#define TTYPE_XXX 0
#define TTYPE_NTSC 1
#define TTYPE_NTSC_J 2
#define TTYPE_PAL 3
#define TTYPE_PAL_M 4
#define TTYPE_PAL_N 5
#define TTYPE_SECAM 6
#define TSA552x_CB_MSB (0x80)
#define TSA552x_CB_CP (1<<6) /* set this for fast tuning */
#define TSA552x_CB_T2 (1<<5) /* test mode - Normally set to 0 */
#define TSA552x_CB_T1 (1<<4) /* test mode - Normally set to 0 */
#define TSA552x_CB_T0 (1<<3) /* test mode - Normally set to 1 */
#define TSA552x_CB_RSA (1<<2) /* 0 for 31.25 khz, 1 for 62.5 kHz */
#define TSA552x_CB_RSB (1<<1) /* 0 for FM 50kHz steps, 1 = Use RSA*/
#define TSA552x_CB_OS (1<<0) /* Set to 0 for normal operation */
#define TSA552x_RADIO (TSA552x_CB_MSB | \
TSA552x_CB_T0)
/* raise the charge pump voltage for fast tuning */
#define TSA552x_FCONTROL (TSA552x_CB_MSB | \
TSA552x_CB_CP | \
TSA552x_CB_T0 | \
TSA552x_CB_RSA | \
TSA552x_CB_RSB)
/* lower the charge pump voltage for better residual oscillator FM */
#define TSA552x_SCONTROL (TSA552x_CB_MSB | \
TSA552x_CB_T0 | \
TSA552x_CB_RSA | \
TSA552x_CB_RSB)
/* The control value for the ALPS TSCH5 Tuner */
#define TSCH5_FCONTROL 0x82
#define TSCH5_RADIO 0x86
/* The control value for the ALPS TSBH1 Tuner */
#define TSBH1_FCONTROL 0xce
static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
static const struct TUNER tuners[] = {
/* XXX FIXME: fill in the band-switch crosspoints */
/* NO_TUNER */
{ "<no>", /* the 'name' */
TTYPE_XXX, /* input type */
{ 0x00, /* control byte for Tuner PLL */
0x00,
0x00,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0x00, 0x00, 0x00,0x00} }, /* the band-switch values */
/* TEMIC_NTSC */
{ "Temic NTSC", /* the 'name' */
TTYPE_NTSC, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00}, /* band-switch crosspoints */
{ 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
/* TEMIC_PAL */
{ "Temic PAL", /* the 'name' */
TTYPE_PAL, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
/* TEMIC_SECAM */
{ "Temic SECAM", /* the 'name' */
TTYPE_SECAM, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
/* PHILIPS_NTSC */
{ "Philips NTSC", /* the 'name' */
TTYPE_NTSC, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
/* PHILIPS_PAL */
{ "Philips PAL", /* the 'name' */
TTYPE_PAL, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
/* PHILIPS_SECAM */
{ "Philips SECAM", /* the 'name' */
TTYPE_SECAM, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa7, 0x97, 0x37, 0x00 } }, /* the band-switch values */
/* TEMIC_PAL I */
{ "Temic PAL I", /* the 'name' */
TTYPE_PAL, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
/* PHILIPS_PALI */
{ "Philips PAL I", /* the 'name' */
TTYPE_PAL, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa0, 0x90, 0x30,0x00 } }, /* the band-switch values */
/* PHILIPS_FR1236_NTSC */
{ "Philips FR1236 NTSC FM", /* the 'name' */
TTYPE_NTSC, /* input type */
{ TSA552x_FCONTROL, /* control byte for Tuner PLL */
TSA552x_FCONTROL,
TSA552x_FCONTROL,
TSA552x_RADIO },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa0, 0x90, 0x30,0xa4 } }, /* the band-switch values */
/* PHILIPS_FR1216_PAL */
{ "Philips FR1216 PAL FM" , /* the 'name' */
TTYPE_PAL, /* input type */
{ TSA552x_FCONTROL, /* control byte for Tuner PLL */
TSA552x_FCONTROL,
TSA552x_FCONTROL,
TSA552x_RADIO },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */
/* PHILIPS_FR1236_SECAM */
{ "Philips FR1236 SECAM FM", /* the 'name' */
TTYPE_SECAM, /* input type */
{ TSA552x_FCONTROL, /* control byte for Tuner PLL */
TSA552x_FCONTROL,
TSA552x_FCONTROL,
TSA552x_RADIO },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa7, 0x97, 0x37, 0xa4 } }, /* the band-switch values */
/* ALPS TSCH5 NTSC */
{ "ALPS TSCH5 NTSC FM", /* the 'name' */
TTYPE_NTSC, /* input type */
{ TSCH5_FCONTROL, /* control byte for Tuner PLL */
TSCH5_FCONTROL,
TSCH5_FCONTROL,
TSCH5_RADIO },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0x14, 0x12, 0x11, 0x04 } }, /* the band-switch values */
/* ALPS TSBH1 NTSC */
{ "ALPS TSBH1 NTSC", /* the 'name' */
TTYPE_NTSC, /* input type */
{ TSBH1_FCONTROL, /* control byte for Tuner PLL */
TSBH1_FCONTROL,
TSBH1_FCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0x01, 0x02, 0x08, 0x00 } }, /* the band-switch values */
/* MT2032 Microtune */
{ "MT2032", /* the 'name' */
TTYPE_PAL, /* input type */
{ TSA552x_SCONTROL, /* control byte for Tuner PLL */
TSA552x_SCONTROL,
TSA552x_SCONTROL,
0x00 },
{ 0x00, 0x00 }, /* band-switch crosspoints */
{ 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
};
/* scaling factor for frequencies expressed as ints */
#define FREQFACTOR 16
/*
* Format:
* entry 0: MAX legal channel
* entry 1: IF frequency
* expressed as fi{mHz} * 16,
* eg 45.75mHz == 45.75 * 16 = 732
* entry 2: [place holder/future]
* entry 3: base of channel record 0
* entry 3 + (x*3): base of channel record 'x'
* entry LAST: NULL channel entry marking end of records
*
* Record:
* int 0: base channel
* int 1: frequency of base channel,
* expressed as fb{mHz} * 16,
* int 2: offset frequency between channels,
* expressed as fo{mHz} * 16,
*/
/*
* North American Broadcast Channels:
*
* 2: 55.25 mHz - 4: 67.25 mHz
* 5: 77.25 mHz - 6: 83.25 mHz
* 7: 175.25 mHz - 13: 211.25 mHz
* 14: 471.25 mHz - 83: 885.25 mHz
*
* IF freq: 45.75 mHz
*/
#define OFFSET 6.00
static int nabcst[] = {
83, (int)( 45.75 * FREQFACTOR), 0,
14, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
0
};
#undef OFFSET
/*
* North American Cable Channels, IRC:
*
* 2: 55.25 mHz - 4: 67.25 mHz
* 5: 77.25 mHz - 6: 83.25 mHz
* 7: 175.25 mHz - 13: 211.25 mHz
* 14: 121.25 mHz - 22: 169.25 mHz
* 23: 217.25 mHz - 94: 643.25 mHz
* 95: 91.25 mHz - 99: 115.25 mHz
*
* IF freq: 45.75 mHz
*/
#define OFFSET 6.00
static int irccable[] = {
116, (int)( 45.75 * FREQFACTOR), 0,
100, (int)(649.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
95, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
23, (int)(217.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
14, (int)(121.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
0
};
#undef OFFSET
/*
* North American Cable Channels, HRC:
*
* 2: 54 mHz - 4: 66 mHz
* 5: 78 mHz - 6: 84 mHz
* 7: 174 mHz - 13: 210 mHz
* 14: 120 mHz - 22: 168 mHz
* 23: 216 mHz - 94: 642 mHz
* 95: 90 mHz - 99: 114 mHz
*
* IF freq: 45.75 mHz
*/
#define OFFSET 6.00
static int hrccable[] = {
116, (int)( 45.75 * FREQFACTOR), 0,
100, (int)(648.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
95, (int)( 90.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
23, (int)(216.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
14, (int)(120.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
7, (int)(174.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
5, (int)( 78.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
2, (int)( 54.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
0
};
#undef OFFSET
/*
* Western European broadcast channels:
*
* (there are others that appear to vary between countries - rmt)
*
* here's the table Philips provides:
* caution, some of the offsets don't compute...
*
* 1 4525 700 N21
*
* 2 4825 700 E2
* 3 5525 700 E3
* 4 6225 700 E4
*
* 5 17525 700 E5
* 6 18225 700 E6
* 7 18925 700 E7
* 8 19625 700 E8
* 9 20325 700 E9
* 10 21025 700 E10
* 11 21725 700 E11
* 12 22425 700 E12
*
* 13 5375 700 ITA
* 14 6225 700 ITB
*
* 15 8225 700 ITC
*
* 16 17525 700 ITD
* 17 18325 700 ITE
*
* 18 19225 700 ITF
* 19 20125 700 ITG
* 20 21025 700 ITH
*
* 21 47125 800 E21
* 22 47925 800 E22
* 23 48725 800 E23
* 24 49525 800 E24
* 25 50325 800 E25
* 26 51125 800 E26
* 27 51925 800 E27
* 28 52725 800 E28
* 29 53525 800 E29
* 30 54325 800 E30
* 31 55125 800 E31
* 32 55925 800 E32
* 33 56725 800 E33
* 34 57525 800 E34
* 35 58325 800 E35
* 36 59125 800 E36
* 37 59925 800 E37
* 38 60725 800 E38
* 39 61525 800 E39
* 40 62325 800 E40
* 41 63125 800 E41
* 42 63925 800 E42
* 43 64725 800 E43
* 44 65525 800 E44
* 45 66325 800 E45
* 46 67125 800 E46
* 47 67925 800 E47
* 48 68725 800 E48
* 49 69525 800 E49
* 50 70325 800 E50
* 51 71125 800 E51
* 52 71925 800 E52
* 53 72725 800 E53
* 54 73525 800 E54
* 55 74325 800 E55
* 56 75125 800 E56
* 57 75925 800 E57
* 58 76725 800 E58
* 59 77525 800 E59
* 60 78325 800 E60
* 61 79125 800 E61
* 62 79925 800 E62
* 63 80725 800 E63
* 64 81525 800 E64
* 65 82325 800 E65
* 66 83125 800 E66
* 67 83925 800 E67
* 68 84725 800 E68
* 69 85525 800 E69
*
* 70 4575 800 IA
* 71 5375 800 IB
* 72 6175 800 IC
*
* 74 6925 700 S01
* 75 7625 700 S02
* 76 8325 700 S03
*
* 80 10525 700 S1
* 81 11225 700 S2
* 82 11925 700 S3
* 83 12625 700 S4
* 84 13325 700 S5
* 85 14025 700 S6
* 86 14725 700 S7
* 87 15425 700 S8
* 88 16125 700 S9
* 89 16825 700 S10
* 90 23125 700 S11
* 91 23825 700 S12
* 92 24525 700 S13
* 93 25225 700 S14
* 94 25925 700 S15
* 95 26625 700 S16
* 96 27325 700 S17
* 97 28025 700 S18
* 98 28725 700 S19
* 99 29425 700 S20
*
*
* Channels S21 - S41 are taken from
* http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
*
* 100 30325 800 S21
* 101 31125 800 S22
* 102 31925 800 S23
* 103 32725 800 S24
* 104 33525 800 S25
* 105 34325 800 S26
* 106 35125 800 S27
* 107 35925 800 S28
* 108 36725 800 S29
* 109 37525 800 S30
* 110 38325 800 S31
* 111 39125 800 S32
* 112 39925 800 S33
* 113 40725 800 S34
* 114 41525 800 S35
* 115 42325 800 S36
* 116 43125 800 S37
* 117 43925 800 S38
* 118 44725 800 S39
* 119 45525 800 S40
* 120 46325 800 S41
*
* 121 3890 000 IFFREQ
*
*/
static int weurope[] = {
121, (int)( 38.90 * FREQFACTOR), 0,
100, (int)(303.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
90, (int)(231.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
80, (int)(105.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
74, (int)( 69.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
17, (int)(183.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
16, (int)(175.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
15, (int)(82.25 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
13, (int)(53.75 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
5, (int)(175.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
2, (int)(48.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
0
};
/*
* Japanese Broadcast Channels:
*
* 1: 91.25MHz - 3: 103.25MHz
* 4: 171.25MHz - 7: 189.25MHz
* 8: 193.25MHz - 12: 217.25MHz (VHF)
* 13: 471.25MHz - 62: 765.25MHz (UHF)
*
* IF freq: 45.75 mHz
* OR
* IF freq: 58.75 mHz
*/
#define OFFSET 6.00
#define IF_FREQ 45.75
static int jpnbcst[] = {
62, (int)(IF_FREQ * FREQFACTOR), 0,
13, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
0
};
#undef IF_FREQ
#undef OFFSET
/*
* Japanese Cable Channels:
*
* 1: 91.25MHz - 3: 103.25MHz
* 4: 171.25MHz - 7: 189.25MHz
* 8: 193.25MHz - 12: 217.25MHz
* 13: 109.25MHz - 21: 157.25MHz
* 22: 165.25MHz
* 23: 223.25MHz - 63: 463.25MHz
*
* IF freq: 45.75 mHz
*/
#define OFFSET 6.00
#define IF_FREQ 45.75
static int jpncable[] = {
63, (int)(IF_FREQ * FREQFACTOR), 0,
23, (int)(223.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
22, (int)(165.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
13, (int)(109.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
0
};
#undef IF_FREQ
#undef OFFSET
/*
* xUSSR Broadcast Channels:
*
* 1: 49.75MHz - 2: 59.25MHz
* 3: 77.25MHz - 5: 93.25MHz
* 6: 175.25MHz - 12: 223.25MHz
* 13-20 - not exist
* 21: 471.25MHz - 34: 575.25MHz
* 35: 583.25MHz - 69: 855.25MHz
*
* Cable channels
*
* 70: 111.25MHz - 77: 167.25MHz
* 78: 231.25MHz -107: 463.25MHz
*
* IF freq: 38.90 MHz
*/
#define IF_FREQ 38.90
static int xussr[] = {
107, (int)(IF_FREQ * FREQFACTOR), 0,
78, (int)(231.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
70, (int)(111.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
35, (int)(583.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
6, (int)(175.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
3, (int)( 77.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
1, (int)( 49.75 * FREQFACTOR), (int)(9.50 * FREQFACTOR),
0
};
#undef IF_FREQ
/*
* Australian broadcast channels
*/
#define OFFSET 7.00
#define IF_FREQ 38.90
static int australia[] = {
83, (int)(IF_FREQ * FREQFACTOR), 0,
28, (int)(527.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
10, (int)(209.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
6, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
4, (int)( 95.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
3, (int)( 86.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
1, (int)( 57.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
0
};
#undef OFFSET
#undef IF_FREQ
/*
* France broadcast channels
*/
#define OFFSET 8.00
#define IF_FREQ 38.90
static int france[] = {
69, (int)(IF_FREQ * FREQFACTOR), 0,
21, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
5, (int)(176.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
4, (int)( 63.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 4 */
3, (int)( 60.50 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 3 */
1, (int)( 47.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 1 2 */
0
};
#undef OFFSET
#undef IF_FREQ
static struct {
int *ptr;
char name[BT848_MAX_CHNLSET_NAME_LEN];
} freqTable[] = {
{NULL, ""},
{nabcst, "nabcst"},
{irccable, "cableirc"},
{hrccable, "cablehrc"},
{weurope, "weurope"},
{jpnbcst, "jpnbcst"},
{jpncable, "jpncable"},
{xussr, "xussr"},
{australia, "australia"},
{france, "france"},
};
#define TBL_CHNL freqTable[ bktr->tuner.chnlset ].ptr[ x ]
#define TBL_BASE_FREQ freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
#define TBL_OFFSET freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
static int
frequency_lookup( bktr_ptr_t bktr, int channel )
{
int x;
/* check for "> MAX channel" */
x = 0;
if ( channel > TBL_CHNL )
return( -1 );
/* search the table for data */
for ( x = 3; TBL_CHNL; x += 3 ) {
if ( channel >= TBL_CHNL ) {
return( TBL_BASE_FREQ +
((channel - TBL_CHNL) * TBL_OFFSET) );
}
}
/* not found, must be below the MIN channel */
return( -1 );
}
#undef TBL_OFFSET
#undef TBL_BASE_FREQ
#undef TBL_CHNL
#define TBL_IF (bktr->format_params == BT848_IFORM_F_NTSCJ || \
bktr->format_params == BT848_IFORM_F_NTSCM ? \
nabcst[1] : weurope[1])
/* Initialise the tuner structures in the bktr_softc */
/* This is needed as the tuner details are no longer globally declared */
void select_tuner( bktr_ptr_t bktr, int tuner_type ) {
if (tuner_type < Bt848_MAX_TUNER) {
bktr->card.tuner = &tuners[ tuner_type ];
} else {
bktr->card.tuner = NULL;
}
}
/*
* Tuner Notes:
* Programming the tuner properly is quite complicated.
* Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
* The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
* 87.5 Mhz to 108.0 Mhz.
*
* RF and IF. RF = radio frequencies, it is the transmitted signal.
* IF is the Intermediate Frequency (the offset from the base
* signal where the video, color, audio and NICAM signals are.
*
* Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
* NICAM at 32.348 Mhz.
* Strangely enough, there is an IF (intermediate frequency) for
* FM Radio which is 10.7 Mhz.
*
* The tuner also works in Bands. Philips bands are
* FM radio band 87.50 to 108.00 MHz
* Low band 45.75 to 170.00 MHz
* Mid band 170.00 to 450.00 MHz
* High band 450.00 to 855.25 MHz
*
*
* Now we need to set the PLL on the tuner to the required freuqncy.
* It has a programmable divisor.
* For TV we want
* N = 16 (freq RF(pc) + freq IF(pc)) pc is picture carrier and RF and IF
* are in MHz.
* For RADIO we want a different equation.
* freq IF is 10.70 MHz (so the data sheet tells me)
* N = (freq RF + freq IF) / step size
* The step size must be set to 50 khz (so the data sheet tells me)
* (note this is 50 kHz, the other things are in MHz)
* so we end up with N = 20x(freq RF + 10.7)
*
*/
#define LOW_BAND 0
#define MID_BAND 1
#define HIGH_BAND 2
#define FM_RADIO_BAND 3
/* Check if these are correct for other than Philips PAL */
#define STATUSBIT_COLD 0x80
#define STATUSBIT_LOCK 0x40
#define STATUSBIT_TV 0x20
#define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
#define STATUSBIT_ADC 0x07
/*
* set the frequency of the tuner
* If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
* If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
* (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
*
*/
int
tv_freq( bktr_ptr_t bktr, int frequency, int type )
{
const struct TUNER* tuner;
u_char addr;
u_char control;
u_char band;
int N;
int band_select = 0;
#if defined( TEST_TUNER_AFC )
int oldFrequency, afcDelta;
#endif
tuner = bktr->card.tuner;
if ( tuner == NULL )
return( -1 );
if (tuner == &tuners[TUNER_MT2032]) {
mt2032_set_tv_freq(bktr, frequency);
return 0;
}
if (type == TV_FREQUENCY) {
/*
* select the band based on frequency
* XXX FIXME: get the cross-over points from the tuner struct
*/
if ( frequency < (160 * FREQFACTOR ) )
band_select = LOW_BAND;
else if ( frequency < (454 * FREQFACTOR ) )
band_select = MID_BAND;
else
band_select = HIGH_BAND;
#if defined( TEST_TUNER_AFC )
if ( bktr->tuner.afc )
frequency -= 4;
#endif
/*
* N = 16 * { fRF(pc) + fIF(pc) }
* or N = 16* fRF(pc) + 16*fIF(pc) }
* where:
* pc is picture carrier, fRF & fIF are in MHz
*
* fortunatly, frequency is passed in as MHz * 16
* and the TBL_IF frequency is also stored in MHz * 16
*/
N = frequency + TBL_IF;
/* set the address of the PLL */
addr = bktr->card.tuner_pllAddr;
control = tuner->pllControl[ band_select ];
band = tuner->bandAddrs[ band_select ];
if(!(band && control)) /* Don't try to set un- */
return(-1); /* supported modes. */
if ( frequency > bktr->tuner.frequency ) {
i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
i2cWrite( bktr, addr, control, band );
}
else {
i2cWrite( bktr, addr, control, band );
i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
}
#if defined( TUNER_AFC )
if ( bktr->tuner.afc == TRUE ) {
#if defined( TEST_TUNER_AFC )
oldFrequency = frequency;
#endif
if ( (N = do_afc( bktr, addr, N )) < 0 ) {
/* AFC failed, restore requested frequency */
N = frequency + TBL_IF;
#if defined( TEST_TUNER_AFC )
printf("%s: do_afc: failed to lock\n",
bktr_name(bktr));
#endif
i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
}
else
frequency = N - TBL_IF;
#if defined( TEST_TUNER_AFC )
printf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
afcDelta = frequency - oldFrequency;
printf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
#endif
}
#endif /* TUNER_AFC */
bktr->tuner.frequency = frequency;
}
if ( type == FM_RADIO_FREQUENCY ) {
band_select = FM_RADIO_BAND;
/*
* N = { fRF(pc) + fIF(pc) }/step_size
* The step size is 50kHz for FM radio.
* (eg after 102.35MHz comes 102.40 MHz)
* fIF is 10.7 MHz (as detailed in the specs)
*
* frequency is passed in as MHz * 100
*
* So, we have N = (frequency/100 + 10.70) /(50/1000)
*/
N = (frequency + 1070)/5;
/* set the address of the PLL */
addr = bktr->card.tuner_pllAddr;
control = tuner->pllControl[ band_select ];
band = tuner->bandAddrs[ band_select ];
if(!(band && control)) /* Don't try to set un- */
return(-1); /* supported modes. */
band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
* the ioctls RADIO_SETMODE
* and RADIO_GETMODE */
i2cWrite( bktr, addr, control, band );
i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
bktr->tuner.frequency = (N * 5) - 1070;
}
return( 0 );
}
#if defined( TUNER_AFC )
/*
*
*/
int
do_afc( bktr_ptr_t bktr, int addr, int frequency )
{
int step;
int status;
int origFrequency;
origFrequency = frequency;
/* wait for first setting to take effect */
tsleep( BKTR_SLEEP, PZERO, "tuning", hz/8 );
if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
return( -1 );
#if defined( TEST_TUNER_AFC )
printf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
#endif
for ( step = 0; step < AFC_MAX_STEP; ++step ) {
if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
goto fubar;
if ( !(status & 0x40) ) {
#if defined( TEST_TUNER_AFC )
printf( "%s: no lock!\n", bktr_name(bktr) );
#endif
goto fubar;
}
switch( status & AFC_BITS ) {
case AFC_FREQ_CENTERED:
#if defined( TEST_TUNER_AFC )
printf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
#endif
return( frequency );
case AFC_FREQ_MINUS_125:
case AFC_FREQ_MINUS_62:
#if defined( TEST_TUNER_AFC )
printf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
#endif
--frequency;
break;
case AFC_FREQ_PLUS_62:
case AFC_FREQ_PLUS_125:
#if defined( TEST_TUNER_AFC )
printf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
#endif
++frequency;
break;
}
i2cWrite( bktr, addr,
(frequency>>8) & 0x7f, frequency & 0xff );
DELAY( AFC_DELAY );
}
fubar:
i2cWrite( bktr, addr,
(origFrequency>>8) & 0x7f, origFrequency & 0xff );
return( -1 );
}
#endif /* TUNER_AFC */
#undef TBL_IF
/*
* Get the Tuner status and signal strength
*/
int get_tuner_status( bktr_ptr_t bktr ) {
if (bktr->card.tuner == &tuners[TUNER_MT2032])
return 0;
return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
}
/*
* set the channel of the tuner
*/
int
tv_channel( bktr_ptr_t bktr, int channel )
{
int frequency;
/* calculate the frequency according to tuner type */
if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
return( -1 );
/* set the new frequency */
if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
return( -1 );
/* OK to update records */
return( (bktr->tuner.channel = channel) );
}
/*
* get channelset name
*/
int
tuner_getchnlset(struct bktr_chnlset *chnlset)
{
if (( chnlset->index < CHNLSET_MIN ) ||
( chnlset->index > CHNLSET_MAX ))
return( EINVAL );
memcpy(&chnlset->name, &freqTable[chnlset->index].name,
BT848_MAX_CHNLSET_NAME_LEN);
chnlset->max_channel=freqTable[chnlset->index].ptr[0];
return( 0 );
}
#define TDA9887_ADDR 0x86
static int
TDA9887_init(bktr_ptr_t bktr, int output2_enable)
{
u_char addr = TDA9887_ADDR;
i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
/* PAL BG: 0x09 PAL I: 0x0a NTSC: 0x04 */
#ifdef MT2032_NTSC
i2cWrite(bktr, addr, 2, 0x04);
#else
i2cWrite(bktr, addr, 2, 0x09);
#endif
return 0;
}
#define MT2032_OPTIMIZE_VCO 1
/* holds the value of XOGC register after init */
static int MT2032_XOGC = 4;
/* card.tuner_pllAddr not set during init */
#define MT2032_ADDR 0xc0
#ifndef MT2032_ADDR
#define MT2032_ADDR (bktr->card.tuner_pllAddr)
#endif
static int
_MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
{
int ch;
if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
if (bootverbose)
printf("%s: MT2032 write failed (i2c addr %#x)\n",
bktr_name(bktr), MT2032_ADDR);
return -1;
}
if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
if (bootverbose)
printf("%s: MT2032 get register %d failed\n",
bktr_name(bktr), regNum);
return -1;
}
return ch;
}
static void
_MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
{
i2cWrite(bktr, MT2032_ADDR, regNum, data);
}
#define MT2032_GetRegister(r) _MT2032_GetRegister(bktr,r)
#define MT2032_SetRegister(r,d) _MT2032_SetRegister(bktr,r,d)
int
mt2032_init(bktr_ptr_t bktr)
{
u_char rdbuf[22];
int xogc, xok = 0;
int i;
int x;
TDA9887_init(bktr, 0);
for (i = 0; i < 21; i++) {
if ((x = MT2032_GetRegister(i)) == -1)
break;
rdbuf[i] = x;
}
if (i < 21)
return -1;
printf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
bktr_name(bktr),
rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
if (rdbuf[0x13] != 4) {
printf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
return -1;
}
/* Initialize Registers per spec. */
MT2032_SetRegister(2, 0xff);
MT2032_SetRegister(3, 0x0f);
MT2032_SetRegister(4, 0x1f);
MT2032_SetRegister(6, 0xe4);
MT2032_SetRegister(7, 0x8f);
MT2032_SetRegister(8, 0xc3);
MT2032_SetRegister(9, 0x4e);
MT2032_SetRegister(10, 0xec);
MT2032_SetRegister(13, 0x32);
/* Adjust XOGC (register 7), wait for XOK */
xogc = 7;
do {
DELAY(10000);
xok = MT2032_GetRegister(0x0e) & 0x01;
if (xok == 1) {
break;
}
xogc--;
if (xogc == 3) {
xogc = 4; /* min. 4 per spec */
break;
}
MT2032_SetRegister(7, 0x88 + xogc);
} while (xok != 1);
TDA9887_init(bktr, 1);
MT2032_XOGC = xogc;
return 0;
}
static int
MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
{
int n1 = 1, n2, f;
f1 = f1 / 1000; /* scale to kHz to avoid 32bit overflows */
f2 = f2 / 1000;
spectrum_from /= 1000;
spectrum_to /= 1000;
do {
n2 = -n1;
f = n1 * (f1 - f2);
do {
n2--;
f = f - f2;
if ((f > spectrum_from) && (f < spectrum_to)) {
return 1;
}
} while ((f > (f2 - spectrum_to)) || (n2 > -5));
n1++;
} while (n1 < 5);
return 0;
}
static int
MT2032_ComputeFreq(
int rfin,
int if1,
int if2,
int spectrum_from,
int spectrum_to,
unsigned char *buf,
int *ret_sel,
int xogc
)
{ /* all in Hz */
int fref, lo1, lo1n, lo1a, s, sel;
int lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
lo2num, lo2freq;
int nLO1adjust;
fref = 5250 * 1000; /* 5.25MHz */
/* per spec 2.3.1 */
desired_lo1 = rfin + if1;
lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
lo1freq = lo1 * fref;
desired_lo2 = lo1freq - rfin - if2;
/* per spec 2.3.2 */
for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
break;
}
if (lo1freq < desired_lo1) {
lo1 += nLO1adjust;
} else {
lo1 -= nLO1adjust;
}
lo1freq = lo1 * fref;
desired_lo2 = lo1freq - rfin - if2;
}
/* per spec 2.3.3 */
s = lo1freq / 1000 / 1000;
if (MT2032_OPTIMIZE_VCO) {
if (s > 1890) {
sel = 0;
} else if (s > 1720) {
sel = 1;
} else if (s > 1530) {
sel = 2;
} else if (s > 1370) {
sel = 3;
} else {
sel = 4;/* >1090 */
}
} else {
if (s > 1790) {
sel = 0;/* <1958 */
} else if (s > 1617) {
sel = 1;
} else if (s > 1449) {
sel = 2;
} else if (s > 1291) {
sel = 3;
} else {
sel = 4;/* >1090 */
}
}
*ret_sel = sel;
/* per spec 2.3.4 */
lo1n = lo1 / 8;
lo1a = lo1 - (lo1n * 8);
lo2 = desired_lo2 / fref;
lo2n = lo2 / 8;
lo2a = lo2 - (lo2n * 8);
/* scale to fit in 32bit arith */
lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
lo2freq = (lo2a + 8 * lo2n) * fref + lo2num * (fref / 1000) / 3780 * 1000;
if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
lo2a > 7 || lo2n < 17 || lo2n > 30) {
printf("MT2032: parameter out of range\n");
return -1;
}
/* set up MT2032 register map for transfer over i2c */
buf[0] = lo1n - 1;
buf[1] = lo1a | (sel << 4);
buf[2] = 0x86; /* LOGC */
buf[3] = 0x0f; /* reserved */
buf[4] = 0x1f;
buf[5] = (lo2n - 1) | (lo2a << 5);
if (rfin < 400 * 1000 * 1000) {
buf[6] = 0xe4;
} else {
buf[6] = 0xf4; /* set PKEN per rev 1.2 */
}
buf[7] = 8 + xogc;
buf[8] = 0xc3; /* reserved */
buf[9] = 0x4e; /* reserved */
buf[10] = 0xec; /* reserved */
buf[11] = (lo2num & 0xff);
buf[12] = (lo2num >> 8) | 0x80; /* Lo2RST */
return 0;
}
static int
MT2032_CheckLOLock(bktr_ptr_t bktr)
{
int t, lock = 0;
for (t = 0; t < 10; t++) {
lock = MT2032_GetRegister(0x0e) & 0x06;
if (lock == 6) {
break;
}
DELAY(1000);
}
return lock;
}
static int
MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
{
int tad1, lo1a;
tad1 = MT2032_GetRegister(0x0f) & 0x07;
if (tad1 == 0) {
return lock;
}
if (tad1 == 1) {
return lock;
}
if (tad1 == 2) {
if (sel == 0) {
return lock;
} else {
sel--;
}
} else {
if (sel < 4) {
sel++;
} else {
return lock;
}
}
lo1a = MT2032_GetRegister(0x01) & 0x07;
MT2032_SetRegister(0x01, lo1a | (sel << 4));
lock = MT2032_CheckLOLock(bktr);
return lock;
}
static int
MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
{
u_char buf[21];
int lint_try, sel, lock = 0;
if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
return -1;
TDA9887_init(bktr, 0);
/* send only the relevant registers per Rev. 1.2 */
MT2032_SetRegister(0, buf[0x00]);
MT2032_SetRegister(1, buf[0x01]);
MT2032_SetRegister(2, buf[0x02]);
MT2032_SetRegister(5, buf[0x05]);
MT2032_SetRegister(6, buf[0x06]);
MT2032_SetRegister(7, buf[0x07]);
MT2032_SetRegister(11, buf[0x0B]);
MT2032_SetRegister(12, buf[0x0C]);
/* wait for PLLs to lock (per manual), retry LINT if not. */
for (lint_try = 0; lint_try < 2; lint_try++) {
lock = MT2032_CheckLOLock(bktr);
if (MT2032_OPTIMIZE_VCO) {
lock = MT2032_OptimizeVCO(bktr, sel, lock);
}
if (lock == 6) {
break;
}
/* set LINT to re-init PLLs */
MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
DELAY(10000);
MT2032_SetRegister(7, 8 + MT2032_XOGC);
}
if (lock != 6)
printf("%s: PLL didn't lock\n", bktr_name(bktr));
MT2032_SetRegister(2, 0x20);
TDA9887_init(bktr, 1);
return 0;
}
static void
mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
{
int if2,from,to;
int stat, tad;
#ifdef MT2032_NTSC
from=40750*1000;
to=46750*1000;
if2=45750*1000;
#else
from=32900*1000;
to=39900*1000;
if2=38900*1000;
#endif
if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1090*1000*1000, if2, from, to) == 0) {
bktr->tuner.frequency = freq;
stat = MT2032_GetRegister(0x0e);
tad = MT2032_GetRegister(0x0f);
if (bootverbose)
printf("%s: frequency set to %d, st = %#x, tad = %#x\n",
bktr_name(bktr), freq*62500, stat, tad);
}
}